Stormwater Management Plan

Forresters Beach Planning

80514013

Prepared for Terrigal Grosvenor Lodge Pty Ltd

26 April 2021

Contact Information

Document Information

Cardno NSW/ACT Pty Ltd		Prepared for	Terrigal Grosvenor Lodge Pty Ltd
ABN 95 001 14	5 035	Project Name	Forresters Beach Planning
Suite 34/207 A	lbany St Nth	File Reference	80519020 Stormwater Management Plan v3.docx
Telephone: (02) 4320 01000	Job Reference	80514013
Facsimile: (02)	4324 3251	Date	26 April 2021
International: 6	12 4320 1000		
gosford@cardno.com.au www.cardno.com.au		Version Number	v4
Author(s):	Jason Stewart Civil/Env.Engineer		
	Tarni Penn Graduate Civil Engineer	Effective Date	26/04/21
Approved By:	Belgnive		
	Sara Belgrove Principal Civil Engineer	Date Approved:	26/04/21

Document History

Version	Effective Date	Description of Revision	Prepared by:	Reviewed by:
1	29/01/16	Draft	JS	SJB
2	23/12/20	Draft	TP/JS	SJB
3	20/01/21	Issued for Council Review	JS	SJB
4	26/4/21	Re-issued for Council Review with ARR2019 Rainfall	ТР	SJB

© Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

Table of Contents

1	Introduction				
2	Existing Site Conditions				
3	Proposed Development				3
4	On-Site	Detenti	on		4
	4.1	Base Inf	ormation		4
		4.1.1	Catchment Losses		4
	4.2	Catchme	ents		5
		4.2.1	Stage 1 Catchment		5
		4.2.2	Stage 2 Catchment		5
		4.2.3	Stage 4 Catchment		6
		4.2.4	Stages 5+6 Catchment		6
	4.3	Results			6
		4.3.1	Stage 1 OSD		6
		4.3.2	Stage 2 OSD		7
		4.3.3	Stage 4 OSD		7
		4.3.4	Stages 5+6 OSD		7
5	Water C	Quality			9
	5.2	Base Inf	ormation		9
	5.3 Source Nodes				9
	5.4 Treatment Nodes				9
	5.5 Stage 1 Treatment			10	
		5.5.1	Rainwater Tanks		10
		5.5.2	HumeGuard GPT		11
		5.5.3	Constructed Wetland		11
		5.5.4	Results		11
	5.6	Stage 2	Treatment		12
		5.6.2	Rainwater Tanks		12
		5.6.3	HumeGuard GPT		13
		5.6.4	Constructed Wetland		13
		5.6.5	Results		13
	5.7	Stage 4	Treatment		14
		5.7.2	Rainwater Tanks		14
		5.7.3	HumeGuard GPT		14
		5.7.4	Constructed Wetland		15
		5.7.5	Results		15
	5.9	Stages 5	5+6 Treatment		16
		5.9.2	Rainwater Tanks		16
		5.9.3	HumeGuard GPT		17
		5.9.4	Constructed Wetland		17
		5.9.5	Results		17
6	Conclu	sion			18

Tables

IL-CL Parameters	4
Summary of DRAINS Peak Outflows (Stage 1)	6
Summary of DRAINS Peak Outflows (Stage 2)	7
Summary of DRAINS Peak Outflows (Stage 4)	7
Summary of DRAINS Peak Outflows (Stage 5+6)	8
Minimum Pollutant Reduction Targets	9
Summary of MUSIC Model Results (Stage 1)	11
Summary of MUSIC Model Results (Stage 2)	13
Summary of MUSIC Model Results (Stage 4)	15
Summary of MUSIC Model Results (Stages 5+6)	17
	IL-CL Parameters Summary of DRAINS Peak Outflows (Stage 1) Summary of DRAINS Peak Outflows (Stage 2) Summary of DRAINS Peak Outflows (Stage 4) Summary of DRAINS Peak Outflows (Stage 5+6) Minimum Pollutant Reduction Targets Summary of MUSIC Model Results (Stage 1) Summary of MUSIC Model Results (Stage 2) Summary of MUSIC Model Results (Stage 4) Summary of MUSIC Model Results (Stage 5+6)

Figures

Figure 2-1	Satellite Image of Rezoning Area	2
Figure 3-1	Proposed Development Boundaries	3
Figure 4-1	Probability Neutral Burst Initial Loss	5
Figure 5-2	Stage 1 Treatment Train	10
Figure 5-3	Stage 2 Treatment Train	12
Figure 5-4	Stage 2 Treatment Train	14
Figure 5-5	Stages 5+6 Treatment Train	16

1 Introduction

Cardno was engaged by Terrigal Grosvenor Lodge Pty Ltd to undertake the preparation of a Water Cycle Management study in relation to the proposed rezoning of No. 957 and Nos. 987-991 The Central Coast Highway (CCH) and Nos. 137,139, 143 and 145 Bakali Road, Forresters Beach (Lots 1-4 DP1000694, Lot 51 DP 1028301 and Lot 522 DP 1077907).

This report has been prepared in support of a planning proposal to Gosford City Council seeking rezoning of the subject land. The rezoning application seeks to rezone the flood free and non-environmentally sensitive parts of the site to R2 to support low density residential development. Towards this end, an indicative staging layout has been prepared by Bannister and Hunter.

This report outlines the methodology for the analysis of on-site stormwater detention (OSD) and water quality requirements and presents the investigation outcomes. The information presented is to indicate the potential sizes/locations of proposed elements and is not intended to present DA level detail.

2 Existing Site Conditions

The land to be rezoned covers an area of 9.855ha and is located between the CCH and Bakali Rd. The site is bound to the north by Lot 5 DP 1082979, to the east and south-east by existing residential properties which front on to the CCH, to the west by Bakali Road (formed and unformed sections). The existing site falls from the CCH to the western boundary at an approximate grade of 3%. Refer to the survey plan in Appendix A for the existing site survey. Figure 2-1 below shows the site location and existing development form.

Figure 2-1 Satellite Image of Rezoning Area

The existing development on the site consists of open rural grassed paddocks with four residences and a large cluster of trees present towards the top north-western corner of the site. An existing open channel runs through the site which starts directly behind the existing residential allotments fronting the CCH and is situated opposite Maas Parade on the western side of the CCH. A stormwater drainage easement is located on No. 971 CCH, which drains the upstream catchment to the east of the CCH. A dam is present on No. 137 Bakali Road which receives runoff from portions of Nos. 137, 139 and 143 Bakali Road.

3 Proposed Development

For the purposes of this report, an indicative subdivision layout has been prepared by Bannister and Hunter (refer to Appendix A). The proposed layout allows for the development to be undertaken in 6 stages corresponding with different land owners. For the current planning proposal, Stage 3 will initially remain as vacant land with no proposed development except for a section of road to connect the Stage 1 and Stage 2 developments. As such, no stormwater management infrastructure is proposed to detain and treat runoff from the vegetated Stage 3 area. Residential development is proposed over the Stage 3 area following completion of the Central Coast Highway road and drainage upgrades, at which point additional stormwater management measures may be required for this area. Stages 5 and 6 will share OSD and water quality infrastructure and as such have been treated as a single stage for the purpose of this analysis.

Internal road infrastructure is proposed for each stage of development.

It should be noted that the subdivision layout proposed is indicative only and allows for the assessment of required stormwater management infrastructure. Future development past rezoning may differ from the indicative layout provided.

Figure 3-1 below shows the proposed development boundaries.

Figure 3-1 Proposed Development Boundaries

4 On-Site Detention

Section 6.7.7.4.4 of Gosford City Council's DCP 2013 requires on-site detention to ensure that post developed flows from a development site do not exceed pre-development flows for all storm events up to and including the 1% AEP storm events.

Four OSD basins are proposed for the site, one for each stage of development. The Stage 1 OSD basin is proposed to be located adjacent to the western Stage 1 boundary and immediately north of Stage 3. The Stage 2 basin will be located adjacent to the western Stage 2 boundary, immediately north of the existing open channel and immediately south of Stage 3. The Stage 4 basin will be located at site of the existing dam. Finally, the Stages 5+6 basin will be located in the southern corner of the site.

A DRAINS computer model (Version 2020.036) was developed to demonstrate compliance with DCP 2013.

4.1 Base Information

The DRAINS computer model was prepared in accordance with the requirements of Central Coast Council's Civil Works Specification, Volume 1 – Design (2020). Australian Rainfall and Runoff (AR&R) 2019 rainfall data was adopted from Bureau of Meteorology IFD tables for Forresters Beach, accessed from the AR&R data hub.

4.1.1 <u>Catchment Losses</u>

An Initial Loss - Continuing Loss (IL-CL) model has been adopted in accordance with AR&R 2019 procedures. Pervious area loss values were obtained from the AR&R data hub.

Due to the urban nature of the catchment, loss values have been defined for Impervious Areas and Pervious Areas and are presented in Table 4-1below.

Table 4-1 IL-CL Parameters

Parameter	Adopted Value
Effective Impervious Area Initial Loss (mm)	1
Effective Impervious Area Continuing Loss (mm/hr)	0
Pervious Area Initial Loss (mm)	1
Pervious Area Continuing Loss (mm/hr)	2.5

Probability Neutral Burst Initial Losses (PNBIL) were used for the Pervious Areas with differing values based on duration and annual exceedance probability. PNBIL values from the AR&R data hub are within the typical range for pervious areas in urban catchments and were thus left unaltered. The adopted PNBIL values are presented Figure 4-1.

Probability Neutral Burst	Probability Neutral Burst Initial Loss					
min (h)\AEP(%)	50.0	20.0	10.0	5.0	2.0	1.0
60 (1.0)	31.3	16.5	15.5	16.2	17.1	17.5
90 (1.5)	31.2	18.1	17.4	18.9	17.7	15.2
120 (2.0)	29.4	17.7	17.1	18.1	17.5	14.2
180 (3.0)	26.6	18.0	17.5	18.0	16.8	10.8
360 (6.0)	26.2	17.5	16.9	14.9	14.8	8.3
720 (12.0)	33.1	23.6	22.2	19.9	18.6	9.0
1080 (18.0)	33.7	25.0	24.2	22.5	21.4	9.6
1440 (24.0)	39.5	29.6	28.0	25.3	25.8	11.3
2160 (36.0)	42.7	32.6	32.5	30.0	29.6	12.9
2880 (48.0)	48.3	38.9	38.7	38.4	32.7	19.2
4320 (72.0)	51.3	43.4	42.3	47.6	38.0	22.2

Figure 4-1 Probability Neutral Burst Initial Loss

Indirectly Connected Area continuing loss has been set at 2.5mm/hr which is considered typical for urban areas as per Section 3.5.2.2 of AR&R 2019.

4.2 Catchments

For the existing and proposed development cases, four catchments were modelled corresponding to the Stages 1, 2, 4 and 5+6 development boundaries shown in Figure 2-1. For the developed cases, it was assumed that runoff from external catchments will be diverted and thus will not contribute to peak runoff from the subject sites. Consequently, runoff from external catchments was not considered for the existing cases as doing so would not allow for an accurate comparison of pre and post development flows.

The existing catchments were assumed to be in a natural state (0% imperviousness) in accordance with Section 6.7.7.4.4 of DCP 2013.

4.2.1 Stage 1 Catchment

The existing Stage 1 site was modelled as a single catchment of 1.948ha with 0% imperviousness. Time of concentration was estimated at 10.2 minutes using Equation 5.4 in AR&R 1987.

The developed Stage 1 site was modelled as a single catchment of 1.948ha with 70% imperviousness. It is proposed that the entire developed area will drain to an OSD basin. Time of concentration for the developed site was assumed as 5 and 6 minutes for impervious and pervious areas respectively.

4.2.2 Stage 2 Catchment

The existing Stage 2 site was modelled as a single catchment of 1.869ha with 0% imperviousness. Time of concentration was estimated at 10.1 minutes using Equation 5.4 in AR&R 1987.

The developed Stages 2 site was modelled as a single catchment of 1.869 ha with 70% imperviousness. It is proposed that the entire developed site will drain to an OSD basin. Time of concentration for the developed site was assumed as 5 and 6 minutes for impervious and pervious areas respectively.

4.2.3 Stage 4 Catchment

The existing Stage 2 site was modelled as a single catchment of 1.617ha with 0% imperviousness. Time of concentration was estimated at 9.5 minutes using Equation 5.4 in AR&R 1987.

The developed Stage 2 site was modelled as a single catchment of 1.617ha with 70% imperviousness to account for the developed area. It is proposed that the entire developed area will drain to an OSD basin. Time of concentration for the developed site was assumed as 5 and 6 minutes for impervious and pervious areas respectively.

4.2.4 Stages 5+6 Catchment

The existing Stages 5+6 site was modelled as a single catchment of 2.017ha with 0% imperviousness. Time of concentration was estimated at 10.4 minutes using Equation 5.4 in AR&R 1987.

The developed Stages 5+6 site was modelled as a single catchment of 2.017 ha with 70% imperviousness. It is proposed that the entire developed site will drain to an OSD basin. Time of concentration for the developed site was assumed as 5 and 6 minutes for impervious and pervious areas respectively.

4.3 Results

Indicative detention basin volume requirements are identified below. During the DA stage of the project, each detention basin will need to be designed to the meet depth, freeboard and embankment slope requirements specified in Section 10.13 of Council's Civil Works Specification, Volume 1 – Design (2020). DRAINS Data and Results are included in Appendix B for reference.

4.3.1 <u>Stage 1 OSD</u>

The DRAINS model shows that an OSD basin with a 1% AEP storage volume of approximately 275m³ is required to restrict post development flows to no greater than predeveloped flows.

Discharge from the OSD basin will be controlled via 3 x 375 mm diameter Reinforced Concrete Pipes (RCPs) as a primary outlet and a 3.5m wide broad crested weir as a secondary outlet.

Results of peak outflows from the DRAINS model are summarised in Table 4-1.

Storm Event	Predeveloped Flows	Developed Flows (Without OSD)	Developed Flows (With OSD)	Comments
20% AEP	0.626 m ³ /s (10	0.786 m ³ /s (5 min,	0.542 m ³ /s (10	Developed flows less than
	min, Storm 5)	Storm 1)	min, Storm 8)	predeveloped
10% AEP	0.766 m ³ /s (10	0.965 m ³ /s (5 min,	0.637 m ³ /s (15	Developed flows less than
	min, Storm 2)	Storm 1)	min, Storm 6)	predeveloped
5% AEP	0.918 m ³ /s (10	1.15 m ³ /s (5 min,	0.736 m ³ /s (15	Developed flows less than
	min, Storm 2)	Storm 1)	min, Storm 6)	predeveloped
2% AEP	1.138 m ³ /s (10	1.428 m ³ /s (5 min,	1.032 m ³ /s (10	Developed flows less than
	min, Storm 5)	Storm 1)	min, Storm 7)	predeveloped
1% AEP	1.325 m³/s (10	1.656 m ³ /s (5 min,	1.322 m³/s (10	Developed flows equal to
	min, Storm 6)	Storm 1)	min, Storm 7)	predeveloped

Table 4-2 Summary of DRAINS Peak Outflows (Stage 1)

4.3.2 <u>Stage 2 OSD</u>

The DRAINS model shows that an OSD basin with 1% AEP storage volume of approximately 271m³ is required to restrict post development flows to no greater than predeveloped flows.

Discharge from the OSD basin will be controlled via 3 x 375 mm diameter RCPs as a primary outlet and a 4m wide broad crested weir as a secondary outlet.

Results of peak outflows from the DRAINS model are summarised in Table 4-2.

Table 4-3	Summary	of DRAINS Peak	Outflows	(Stage 2	2)
-----------	---------	----------------	----------	----------	----

Storm Event	Predeveloped Flows	Developed Flows (Without OSD)	Developed Flows (With OSD)	Comments
20% AEP	0.610 m ³ / s (10	0.754 m3/s (5	0.513 m3/s (10	Developed flows less than
	min, Storm 1)	min, Storm 1)	min, Storm 8)	predeveloped
10% AEP	0.747 m ³ / s (10	0.926 m3/s (5	0.60 m3/s (15	Developed flows less than
	min, Storm 1)	min, Storm 1)	min, Storm 6)	predeveloped
5% AEP	0.895 m ³ / s (10	1.104 m3/s (5	0.691 m3/s (15	Developed flows less than
	min, Storm 1)	min, Storm 1)	min, Storm 6)	predeveloped
2% AEP	1.109 m³/ s (10	1.37 m3/s (5 min,	1.016 m3/s (10	Developed flows less than
	min, Storm 7)	Storm 1)	min, Storm 7)	predeveloped
1% AEP	1.292 m ³ / s (10	1.589 m3/s (5	1.273 m3/s (10	Developed flows equal to
	min, Storm 6)	min, Storm 1)	min, Storm 7)	predeveloped

4.3.3 <u>Stage 4 OSD</u>

The DRAINS model shows that an OSD basin with 1% AEP storage volume of approximately 200m³ is required to restrict post development flows to no greater than predeveloped flows.

Discharge from the OSD basin will be controlled via 3 x 375 mm diameter RCPs as a primary outlet and a 3.5m wide broad crested weir as a secondary outlet.

Results of peak outflows from the DRAINS model are summarised in Table 4-3.

Storm Event	Predeveloped Flows	Developed Flows (Without OSD)	Developed Flows (With OSD)	Comments
20% AEP	0.533 m³/ s (10	0.653 m3/s (5	0.504 m3/s (10	Developed flows less than
	min, Storm 7)	min, Storm 1)	min, Storm 3)	predeveloped
10% AEP	0.651 m ³ / s (10	0.801 m3/s (5	0.587 m3/s (10	Developed flows less than
	min, Storm 8)	min, Storm 1)	min, Storm 6)	predeveloped
5% AEP	0.781 m ³ / s (10	0.955 m3/s (5	0.679 m3/s (10	Developed flows less than
	min, Storm 8)	min, Storm 1)	min, Storm 6)	predeveloped
2% AEP	0.972 m ³ / s (10	1.185 m3/s (5	0.808 m3/s (10	Developed flows less than
	min, Storm 8)	min, Storm 1)	min, Storm 7)	predeveloped
1% AEP	1.133 m³/ s (10	1.375 m3/s (5	1.097 m3/s (10	Developed flows less than
	min, Storm 8)	min, Storm 1)	min, Storm 7)	predeveloped

Table 4-4 Summary of DRAINS Peak Outflows (Stage 4)

4.3.4 <u>Stages 5+6 OSD</u>

The DRAINS model shows that an OSD basin with 1% AEP storage volume of approximately 296m³ is required to restrict post development flows to no greater than predeveloped flows.

Discharge from the OSD basin will be controlled via 3 x 375 mm diameter RCPs as a primary outlet and a 3.5m wide broad crested weir as a secondary outlet.

Results of peak outflows from the DRAINS model are summarised in Table 4-4.

Storm Event	Predeveloped Flows	Developed Flows (Without OSD)	Developed Flows (With OSD)	Comments
20% AEP	0.639 m ³ / s (10	0.814 m3/s (5	0.553 m3/s (10	Developed flows equal to
	min, Storm 2)	min, Storm 1)	min, Storm 8)	predeveloped
10% AEP	0.782 m³/ s (10	0.999 m3/s (5	0.651 m3/s (15	Developed flows less than
	min, Storm 7)	min, Storm 1)	min, Storm 6)	predeveloped
5% AEP	0.938 m³/ s (10	1.191 m3/s (5	0.751 m3/s (15	Developed flows less than
	min, Storm 9)	min, Storm 1)	min, Storm 6)	predeveloped
2% AEP	1.162 m³/ s (10	1.478 m3/s (5	1.036 m3/s (10	Developed flows less than
	min, Storm 10)	min, Storm 1)	min, Storm 7)	predeveloped
1% AEP	1.354 m ³ / s (10	1.715 m3/s (5	1.354 m3/s (10	Developed flows less than
	min, Storm 10)	min, Storm 1)	min, Storm 7)	predeveloped

Table 4-5 Summary of DRAINS Peak Outflows (Stage 5+6)

5 Water Quality

Section 6.7.7.3.3 of DCP 2013 requires, as a minimum, the following reductions in total pollutant load compared to untreated runoff from the developed site.

Pollutant	Minimum Reduction
Total Suspended Solids (TSS)	80%
Total Phosphorus (TP)	45%
Total Nitrogen (TN)	45%
Gross Pollutants	80%

Table 5-1 Minimum Pollutant Reduction Targets

Section 6.7.7.3.3 of DCP 2013 discusses various options to achieve compliance with the minimum pollutant reduction targets as an area of specified treatment per 100m² of impervious area.

In order to optimise the treatment train while still demonstrating compliance with Section 6.7.7.3.3 of DCP 2013, a MUSIC model was prepared for the development site.

5.2 Base Information

The MUSIC model was prepared in computer model Version 6.3 (Build 0.1908) in accordance with the NSW MUSIC Modelling Guidelines, August 2015.

Meteorological stations near the development site were reviewed in reference to distance from the development site, completeness of data record, dates of data record and type of data record.

Historical pluviograph data was taken from Meteorology Station Number 061351 at Waratah Road, Peats Ridge. The station is approximately 15km from the development site with the rainfall record approximately 99% complete.

Over 25 years of historical rainfall data was analysed in 6 minute time steps from 3 October 1981 to 30 June 2007. The average annual rainfall over this period was 1,122mm.

Daily evapotranspiration data from Sydney was analysed over the same 25 year time period noted above.

5.3 Source Nodes

Pollutant loads for source nodes were adopted from Table 5-6 and 5-7 of the NSW MUSIC Modelling Guidelines (BMT WBM, 2015).

Stochastic pollutant generation was selected.

5.4 Treatment Nodes

Three treatment nodes are proposed as part of the water cycle treatment train for each stage of development:

- 1. Rainwater Tanks
- 2. HumeGuard GPT
- 3. Constructed Wetland

5.5 Stage 1 Treatment

The Stage 1 treatment train is presented in Figure 5-2 below.

Figure 5-2 Stage 1 Treatment Train

5.5.1 <u>Rainwater Tanks</u>

It is assumed that rainwater tanks will be fitted to each property in the Stage 1 development. The rainwater tanks have been modelled with a nominal storage volume of 3kL per lot/dwelling, totalling 39kL for an assumed 13 lots.

Stormwater reuse was assumed to be used for the following:

- 1. Toilet
- 2. Laundry
- 3. External use

Reuse has been estimated with reference to BMT WBM's MUSIC Modelling Guidelines for urban dwellings with an average of 3.05 occupants. An internal reuse figure of 0.176kL/dwelling/day and an external reuse figure of 0.151kL/dwelling/day were adopted, totalling 4.25kL/day for the assumed 13 dwellings in Stage 1.

5.5.2 <u>HumeGuard GPT</u>

A Humegard GPT is proposed as a primary treatment device to remove gross pollutants and coarse sediments from stormwater runoff. The HumeGuard MUSIC treatment node was downloaded from the Humes website.

5.5.3 Constructed Wetland

A constructed wetland with a permanent pool volume of 343m³ and minimum surface area of 400m² is proposed at the base of the Stage 1 OSD basin to facilitate the removal of finer nutrients and sediment from stormwater runoff. The combined volume of the Stage 1 rainwater tanks and wetland permanent pool volume meets the required Stage 1 Stormwater Retention Volume of 382m³.

The wetland parameters were selected in accordance with Section 6.5.13 of the NSW MUSIC Modelling Guidelines (BMT WBM, 2015). The high-flow bypass was set at the 3-month ARI flow.

5.5.4 <u>Results</u>

Results of the MUSIC model show the nominated treatment train for Stage 1 exceeds the pollutant removal targets outlined in DCP 2013. Table 5-2 presents a summary of the MUSIC model results.

 Table 5-2
 Summary of MUSIC Model Results (Stage 1)

Pollutant	Minimum Reduction	Achieved Reduction	Comments
Total Suspended Solids (TSS)	80%	85.4%	Treatment exceeds minimum
Total Phosphorus (TP)	45%	72.7%	Treatment exceeds minimum
Total Nitrogen(TN)	45%	47.9%	Treatment exceeds minimum
Gross Pollutants	80%	100%	Treatment exceeds minimum

The above results demonstrate compliance with the minimum pollutant reduction detailed in Section 6.7.7.3.2 of DCP 2013.

5.6 Stage 2 Treatment

The Stage 2 treatment train is presented in Figure 5-3 below.

Figure 5-3 Stage 2 Treatment Train

5.6.2 <u>Rainwater Tanks</u>

It is assumed that rainwater tanks will be fitted to each property in the Stage 2 development. The rainwater tanks have been modelled with a nominal storage volume of 3kL per lot/dwelling, totalling 60kL for an assumed 20 lots.

Stormwater reuse was assumed to be used for the following:

- 4. Toilet
- 5. Laundry
- 6. External use

Reuse has been estimated with reference to BMT WBM's MUSIC Modelling Guidelines for urban dwellings with an average of 3.05 occupants. An internal reuse figure of 0.176kL/dwelling/day and an external reuse figure of 0.151kL/dwelling/day were adopted, totalling 6.54kL/day for the assumed 20 dwellings in Stage 2.

5.6.3 <u>HumeGuard GPT</u>

A Humegard GPT is proposed as a primary treatment device to remove gross pollutants and coarse sediments from stormwater runoff. The HumeGuard MUSIC treatment node was downloaded from the Humes website.

5.6.4 Constructed Wetland

A constructed wetland with a permanent pool volume of 310m³ and minimum surface area of 400m² is proposed at the base of the Stage 2 OSD basin to facilitate the removal of finer nutrients and sediment from stormwater runoff. The combined volume of the Stage 2 rainwater tanks and wetland permanent pool volume meets the required Stage 2 Stormwater Retention Volume of 367m³.

The wetland parameters were selected in accordance with Section 6.5.13 of the NSW MUSIC Modelling Guidelines (BMT WBM, 2015). The high-flow bypass was set at the 3-month ARI flow.

5.6.5 <u>Results</u>

Results of the MUSIC model show the nominated treatment train for Stage 2 exceeds the pollutant removal targets outlined in DCP 2013. Table 5-3 presents a summary of the MUSIC model results.

Table 5-3 Summary of MUSIC Model Results (Stage 2)

Pollutant	Minimum Reduction	Achieved Reduction	Comments
Total Suspended Solids (TSS)	80%	85.4%	Treatment exceeds minimum
Total Phosphorus (TP)	45%	72.7%	Treatment exceeds minimum
Total Nitrogen(TN)	45%	49.1%	Treatment exceeds minimum
Gross Pollutants	80%	100%	Treatment exceeds minimum

The above results demonstrate compliance with the minimum pollutant reduction detailed in Section 6.7.7.3.2 of DCP 2013.

5.7 Stage 4 Treatment

The Stage 4 treatment train is presented in Figure 5-4 below.

Figure 5-4 Stage 2 Treatment Train

5.7.2 Rainwater Tanks

It is assumed that rainwater tanks will be fitted to each property in the Stage 4 development. The rainwater tanks have been modelled with a nominal storage volume of 3kL per lot/dwelling, totalling 39kL for an assumed 13 lots.

Stormwater reuse was assumed to be used for the following:

- 7. Toilet
- 8. Laundry
- 9. External use

Reuse has been estimated with reference to BMT WBM's MUSIC Modelling Guidelines for urban dwellings with an average of 3.05 occupants. An internal reuse figure of 0.176kL/dwelling/day and an external reuse figure of 0.151kL/dwelling/day were adopted, totalling 4.25kL/day for the assumed 13 dwellings in Stage 4.

5.7.3 HumeGuard GPT

A Humegard GPT is proposed as a primary treatment device to remove gross pollutants and coarse sediments from stormwater runoff. The HumeGuard MUSIC treatment node was downloaded from the Humes website.

5.7.4 Constructed Wetland

A constructed wetland with a permanent pool volume of 280m³ and minimum surface area of 400m² is proposed at the base of the Stage 4 OSD basin to facilitate the removal of finer nutrients and sediment from stormwater runoff. The combined volume of the Stage 4 rainwater tanks and wetland permanent pool volume meets the required Stage 4 Stormwater Retention Volume of 317m³.

The wetland parameters were selected in accordance with Section 6.5.13 of the NSW MUSIC Modelling Guidelines (BMT WBM, 2015). The high-flow bypass was set at the 3-month ARI flow.

5.7.5 <u>Results</u>

Results of the MUSIC model show the nominated treatment train for Stage 4 exceeds the pollutant removal targets outlined in DCP 2013. Table 5-4 presents a summary of the MUSIC model results.

Pollutant	Minimum Reduction	Achieved Reduction	Comments
Total Suspended Solids (TSS)	80%	86.8%	Treatment exceeds minimum
Total Phosphorus (TP)	45%	71.5%	Treatment exceeds minimum
Total Nitrogen(TN)	45%	45.4%	Treatment exceeds minimum
Gross Pollutants	80%	100%	Treatment exceeds minimum

Table 5-4 Summary of MUSIC Model Results (Stage 4)

The above results demonstrate compliance with the minimum pollutant reduction detailed in Section 6.7.7.3.2 of DCP 2013.

5.9 Stages 5+6 Treatment

The Stages 5+6 treatment train is presented in Figure 5-5 below.

Figure 5-5 Stages 5+6 Treatment Train

5.9.2 Rainwater Tanks

It is assumed that rainwater tanks will be fitted to each property in the Stage 5+6 development. The rainwater tanks have been modelled with a nominal storage volume of 3kL per lot/dwelling, totalling 48kL for an assumed 16 lots.

Stormwater reuse was assumed to be used for the following:

- 10. Toilet
- 11. Laundry
- 12. External use

Reuse has been estimated with reference to BMT WBM's MUSIC Modelling Guidelines for urban dwellings with an average of 3.05 occupants. An internal reuse figure of 0.176kL/dwelling/day and an external reuse figure of 0.151kL/dwelling/day were adopted, totalling 5.23kL/day for the assumed 16 dwellings in Stage 5+6.

5.9.3 HumeGuard GPT

A Humegard GPT is proposed as a primary treatment device to remove gross pollutants and coarse sediments from stormwater runoff. The HumeGuard MUSIC treatment node was downloaded from the Humes website.

5.9.4 Constructed Wetland

A constructed wetland with a permanent pool volume of 350m³ and minimum surface area of 500m² is proposed at the base of the Stage 5+6 OSD basin to facilitate the removal of finer nutrients and sediment from stormwater runoff. The combined volume of the Stage 5+6 rainwater tanks and wetland permanent pool volume meets the required Stage 5+6 Stormwater Retention Volume of 395m³.

The wetland parameters were selected in accordance with Section 6.5.13 of the NSW MUSIC Modelling Guidelines (BMT WBM, 2015). The high-flow bypass was set at the 3-month ARI flow.

5.9.5 <u>Results</u>

Results of the MUSIC model show the nominated treatment train for Stages 5+6 exceeds the pollutant removal targets outlined in DCP 2013. Table 5-5 presents a summary of the MUSIC model results.

Table 5-5 Summary of MUSIC Model Results (Stages 5+6)

Pollutant	Minimum Reduction	Achieved Reduction	Comments
Total Suspended Solids (TSS)	80%	86.8%	Treatment exceeds minimum
Total Phosphorus (TP)	45%	71.6%	Treatment exceeds minimum
Total Nitrogen(TN)	45%	45.6%	Treatment exceeds minimum
Gross Pollutants	80%	100%	Treatment exceeds minimum

The above results demonstrate compliance with the minimum pollutant reduction detailed in Section 6.7.7.3.2 of DCP 2013.

6 Conclusion

This report has outlined the methodology behind the analysis of on-site detention and water quality requirements for the proposed rezoning development.

It was found that a single OSD basin for each stage of development (shared basin for Stages 5 and 6) will be sufficient to ensure developed flows do not exceed pre-developed flows for all storm events up to and including the 1% AEP event. Spatial requirements and details of the OSD basins will be confirmed during DA design.

It was found that a treatment train consisting of rainwater tanks, a HumeGuard GPT and a constructed wetland will be sufficient to meet Council's water quality requirements for each stage of development (shared treatment train for Stages 5 and 6).

Forresters Beach Planning

APPENDIX

DEVELOPMENT LAYOUT

- PLAN SUBJECT TO REVIEW OF ENGINEERING, BUSHFIRE & ENVIRONMENTAL CONTROLS

OPEN SPACE WITHIN STAGE 1 (4000m²)

T.T.

- ALL FINAL DIMENSIONS AND AREAS SUBJECT TO SURVEY

VPA PLAN - 12

PRELIMINARY NOT TO BE USED FOR CONSTRUCTION

DEVELOPMENT LAYOUT WITH STORMWATER MANAGEMENT MEASURES Forresters Beach Planning

APPENDIX

DRAINS DATA AND RESULTS

Report
Plan
Management
- Stormwater
Subdivision -
esters Beach
Forr(

Cardno 26/04/2021

DRAINS Data																			
PIT / NODE DETAILS			Version 15	10											i				
Name	Type	Family	Size	Ponding	Pressure	Surface	Max Pond	Base	Blocking	×	Y	Bolt-down i	а Б	art Full	Inflow Pi	is Inter	nal Inflow	is Minor	r Safe
				Volume	Change	Elev (m)	Depth (m)	Inflow	Factor			lid	Ś	hock Los:	Hydrograph	Widt	th Misaliç	jned Pond	I Dept
	Node			(cu.m)	Coeff. Ku			(cu.m/s)								mm)		Ê)	
NI	anone									101.92	14.201		- 007 1		0				
N646 N667	Node									335.21	5 10.43		1429		ON C				
N4824	Node					6.6				168.22	7 -113.19		11201		2 9				
N9626	Node					6.8		0		342.47	2 -119.461		22580		0				
N25731	Node					6.8		0		506.56	3 -126.405		61023		9				
N40223	Node					6.6		0		49.85	6 -71.565		93659		9				
N40224	Node					6.6	-	0		18.7	5 27.802		93665		9				
N40222	Node					8		0		60.61	4 -14.753	~	93643		9				
N74	Node					8.4		0		178.2	6 -55.675		149		P				
N660	Node					0	-	0		369.07	9 -49.76	~	1457		9				
N680	Node					8.4		0		530.33	4 -58.5	6	1513		No				
DETENTION BASIN D	ETAILS																		
Name	Elev	Volume	Not Used	Outlet Type	×	Dia(mm)	Centre RL	Pit Family	Pit Type	×	Y	HED	Crest RL C	rest Leng	q				
BasinSt 2	8.15	0		Culvert	0.5	10				74.68	4 23.65	3 No			155907				
	9.15	271																	
BasinSt.1	8.05	0		Culvert	0.5	2				206.4	5 3.496	S No			155910				
	9.2	275																	
BasinSt.4	7.6	0		Culvert	0.5					397.56	7 7.976	S No			155914				
	8.8	200																	
BasinSt.5+6	8	0		Culvert	0.5					558.44	9 -1.729	No No			155918				
	9.2	296																	
SUB-CATCHMENT DI	ETAILS																		
Name	Pit or	Total	EIA	Perv	RIA	EIA	Perv	RIA	EIA	Perv	RIA	EIA	Perv R	P	EIA Pé	erv RIA	Rainfa	_	
	Node	Area		Area		Time	Time	Time	_ength	Length	Length	Slope(%) {	Slope S.	lope	Rough R(ugh Rou	gh Multipl	ier	
		(ha)	%	%	%	(min)	(min)	(min)	(m)	(m)	(u)	%	% %						
Pre-Dev St.1	۶	1.9477	0	100	5	3	10.21	2										-	
Pre-dev St.4	N646	1.617	0	100	0	5	9.51	2										-	
Pre-dev St.5+6	N667	2.017	0	100	0	5	10.35	2										-	
Pre-Dev St.2	N40224	1.8691	0	100	5	3	10.05	2										-	
Post Dev St.2	BasinSt 2	1.8691	02	30	0	5	9	2										-	
Post-Dev St.1	BasinSt.1	1.9477	02	30		3	9	2										-	
Post-Dev St.4	BasinSt.4	1.617	20	30	0		9	N										-	
Post-Dev St.5+6	BasinSt.5+	2.017	20	30	3	3	9	7		_								-	
Name	From	To	l enoth	II S/I1	U/S II	auolo	Tvne	Dia	C	Rouch	Pine Is	No Pines	Tha From At	t Cha	Cho RI	ChO	Ā	etc	
		2	(m)	(m)	(m)	(%)	246.	(mm)	(mm)	18000	2 22			2	(m)	(m)	(m)	(m)	
Pipe STG2 Basin	BasinSt 2	N40222	10	8.15	7.95	2	Concrete, I	375	3.	75 0.01	1 NewFixed	3	40222	0					
Pipe STG1 Basin	BasinSt.1	N74	10	8.05	7.85	2	Concrete, I	375	3;	75 0.01	1 NewFixed	3	174	0					
Pipe STG 4 Basin	BasinSt.4	N660	10	7.6	7.4	1	Concrete, I	375		75 0.01	1 NewFixed	е П	1660	0					
Pipe STG 56 Basin	BasinSt.5+	-N680	10	8	7.8	2	Concrete,	375	3.	75 0.01	1 NewFixed	3	V680	0					
	S CRUSSI				:			:											
Pipe	Chg	Bottom	Height of	SChg	Bottom	Height or	SChg	Bottom	Height of Service	etc									
	(m)	Elev (m)	(m)	(m)	Elev (m)	(u)	(m)	Elev (m)	(m)	etc									

																	l	
CHANNEL DETAILS																		
Name	From	То	Туре	Length	U/S IL	D/S IL	Slope	Base Widt	L.B. Slope	R.B. Slope	Manning	Depth	Roofed					
				(m)	(m)	(m)	(%)	(m)	(1:?)	(1:?)	n	(m)						
OVERFLOW ROUTE	DETAILS																	
Name	From	То	Travel	Spill	Crest	Weir	Cross	Safe Depth	SafeDepth	Safe	Bed	D/S Area		id				
			Time	Level	Length	Coeff. C	Section	Major Stor	Minor Storms	DxV	Slope	Contributi	ng					
			(min)	(m)	(m)			(m)	(m)	(sq.m/sec)	(%)	%						1
OF STG 2	BasinSt 2	N40222	0.1	9	4	2	Dummy us	0.2	0.05	0.6	i 1	0)	93645		10		
OF20073	N40222	N40223	0.5	5			Dummy us	0.2	0.05	0.6	i 1	C)	93646				
OSD High Level STG1	BasinSt.1	N74	0.5	9.05	3.5	2	Dummy us	0.2	0.05	0.6	i 1	0)	530				
OF1543	N74	N4824	0.5	5			Dummy us	0.2	0.05	0.6	i 1	0		11210				
OF STG4	BasinSt.4	N660	0.5	8.68	3.5	2	Dummy us	0.2	0.05	0.6	i 1	0		1464				
OF3746	N660	N9626	0.5	5			Dummy us	0.2	0.05	0.6	i 1	0		22581				
OF STG 56	BasinSt.5+	N680	0.5	9.05	3.5	2	Dummy us	0.2	0.05	0.6	i 1	C)	1506				
OF12448	N680	N25731	0.5	5			Dummy us	0.2	0.05	0.6	i 1	C		61024				
PIPE COVER DETAIL	S																	
Name	Туре	Dia (mm)	Safe Cove	rCover (m)														
Pipe STG2 Basin	Concrete,	375	0.6	-0.41	Unsafe													
Pipe STG1 Basin	Concrete,	ı 375	0.6	-0.41	Unsafe													
Pipe STG 4 Basin	Concrete,	375	0.6	-0.41	Unsafe													
Pipe STG 56 Basin	Concrete,	375	0.6	-0.41	Unsafe													
This model has no pip	es with non-	-return valve	es															

DRAINS results prepared	red from Ve	e <mark>rsion 2020</mark> .	<mark>036 - 20% /</mark>	EP					
				Manalan O					
PTT / NODE DETAILS		May Davad	Mary Crimford	Version 8	N //:	Ourflow	Constaciat		
Name	Max HGL	Max Pond	Max Surfac	Max Pond	Min	Overflow	Constraint		
		HGL	FIOW AFRIVI	voiume	Freeboard	(cu.m/s)			
N40000	0.1/		(cu.m/s)	(cu.m)	(m)				
N40222	8.16		0						
N/4	8.06		0						
N660	/.6		0						
IN680	8.02		0						-
SUB-CATCHIVIENT DE	IAILS			F1	DIA	D A			
Name	Max	EIA	Remaining	EIA	RIA	PA	Due to Sto	rm	
	Flow Q	Max Q	Max Q				(
	(cu.m/s)	(cu.m/s)	(cu.m/s)	(cu.m/s)	(min)	(min)	(min)		
Pre-Dev St.1	0.626	0	0.626	5	2	10.21	20% AEP, 1	0 min burs	t, Storm 5
Pre-dev St.4	0.533	0	0.533	5	2	9.51	20% AEP, 1	0 min burs	t, Storm 7
Pre-dev St.5+6	0.639	0	0.639	5	2	10.35	20% AEP, 1	0 min burs	t, Storm 2
Pre-Dev St.2	0.61	0	0.61	5	2	10.05	20% AEP, 1	0 min burs	t, Storm 1
Post Dev St.2	0.754	0.558	0.196	5	2	6	20% AEP, 5	5 min burst,	, Storm 1
Post-Dev St.1	0.786	0.582	0.204	5	2	6	20% AEP, 5	5 min burst,	, Storm 1
Post-Dev St.4	0.653	0.483	0.17	5	2	6	20% AEP, 5	5 min burst,	, Storm 1
Post-Dev St.5+6	0.814	0.602	0.212	5	2	6	20% AEP, 5	5 min burst,	, Storm 1
PIPE DETAILS									
Name	Max Q	Max V	Max U/S	Max D/S	Due to Sto	rm			
	(cu.m/s)	(m/s)	HGL (m)	HGL (m)					
Pipe STG2 Basin	0.513	2.75	8.454	8.156	20% AEP, 1	0 min burs	t, Storm 8		
Pipe STG1 Basin	0.542	2.79	8.361	8.063	20% AEP, 1	0 min burs	t, Storm 8		
Pipe STG 4 Basin	0.504	2.74	7.901	7.604	20% AEP, 1	0 min burs	t, Storm 3		
Pipe STG 56 Basin	0.553	2.8	8.315	8.016	20% AEP, 1	0 min burs	t, Storm 8		
CHANNEL DETAILS									
Name	Max Q	Max V			Due to Sto	rm			
	(cu.m/s)	(m/s)							
OVERFLOW ROUTE DE	TAILS								
Name	Max Q U/S	Max Q D/S	Safe Q	Max D	Max DxV	Max Width	Max V	Due to Sto	rm
OF STG 2	0	0	0.256	0	0	0	0		
OF20073	0.513	0.513	0.256	0.066	0.05	17.2	0.8	20% AEP, 1	10 min burst, Storm 8
OSD High Level STG1	0	0	0.256	0	0	0	0		
OF1543	0.542	0.542	0.256	0.068	0.05	17.56	0.81	20% AEP, 1	10 min burst, Storm 8
OF STG4	0	0	0.256	0	0	0	0		
OF3746	0.504	0.504	0.256	0.066	0.05	17.2	0.79	20% AEP, 1	10 min burst, Storm 3
OF STG 56	0	0	0.256	0	0	0	0		
OF12448	0.553	0.553	0.256	0.069	0.06	17.74	0.8	20% AEP, 1	10 min burst, Storm 8
DETENTION BASIN DE	TAILS								
Name	Max WL	MaxVol	Max Q	Max Q	Max Q				
			Total	Low Level	High Level				
BasinSt 2	8.67	140.5	0.513	0.513	0				
BasinSt.1	8.62	135.2	0.542	0.542	0				
BasinSt.4	8.1	83.9	0.504	0.504	0				
BasinSt.5+6	8.58	143.9	0.553	0.553	0				
					Ŭ				
Run Log for Forresters	SOSD v6 AR	R2019 SIB c	u Irn run at 1	5:03:16 on	26/4/2021	usina versio	n 2020.036)	
The maximum flow in	these overf	low routes	່ is unsafe: ດ	F20073. OF	1543. OF37	46, OF1244	8		
						.,		1	1

DRAINS results prepar	red from Ve	rsion 2020.	<mark>036 - 10% A</mark>	EP					
PIT / NODE DETAILS				Version 8					
Name	Max HGL	Max Pond	Max Surface	Max Pond	Min	Overflow	Constraint		
		HGL	Flow Arrivi	Volume	Freeboard	(cu.m/s)			
			(cu.m/s)	(cu.m)	(m)				
N40222	8.18		0						
N74	8.09		0						
N660	7.62		0						
N680	8.04		0						
SUB-CATCHMENT DET	TAILS								
Name	Max	EIA	Remaining	EIA	RIA	PA	Due to Sto	rm	
	Flow Q	Max Q	Max Q	Tc	Тс	Тс			
	(cu.m/s)	(cu.m/s)	(cu.m/s)	(cu.m/s)	(min)	(min)	(min)		
Pre-Dev St.1	0.766	0	0.766	5	2	10.21	10% AEP, 1	0 min burs	t, Storm 2
Pre-dev St.4	0.651	0	0.651	5	2	9.51	10% AEP, 1	0 min burs	t, Storm 8
Pre-dev St.5+6	0.782	0	0.782	5	2	10.35	10% AEP, 1	0 min burs	t, Storm 7
Pre-Dev St.2	0.747	0	0.747	5	2	10.05	10% AEP. 1	0 min burs	t. Storm 1
Post Dev St.2	0.926	0.685	0.241	5	2	6	10% AFP. 5	min burst	Storm 1
Post-Dev St 1	0.965	0 714	0.211	5	2	6	10% AFP F	min burst	Storm 1
Post-Dev St 4	0.700	0.711	0.201	5	2	6	10% AFP F	min burst	Storm 1
Post-Dev St 5+6	0.001	0.372	0.207	5	2	6	10% AED F	min burst	Storm 1
	0.777	0.737	0.20	5	2	0			
Namo	Max O	Max V	May 11/S	May D/S	Duo to Sto	rm			
Name		IVIDX V	IVIAX U/S	IVIAX D/ 3	Due lo sio				
Dina CTC2 Desin		(111/5)		ПGL (III) 0 170	100/ AFD 1	E min huro	t Ctorm (
Pipe STG2 Basin	0.0	2.85	8.513	0.178	10% AEP, 1				
Pipe STGT Basin	0.637	2.89	8.452	8.087	10% AEP, 1	5 min burs	L, Storm 6		
Pipe STG 4 Basin	0.587	2.84	7.949	7.624	10% AEP, 1	0 min burs	t, Storm 6		
Pipe STG 56 Basin	0.651	2.9	8.417	8.04	10% AEP, 1	5 min burs	t, Storm 6		
CHANNEL DE LAILS					-				
Name	Max Q	Max V			Due to Sto	rm			
	(cu.m/s)	(m/s)							
OVERFLOW ROUTE DE	TAILS								
Name	Max Q U/S	Max Q D/S	Safe Q	Max D	Max DxV	Max Width	Max V	Due to Sto	rm
OF STG 2	0	0	0.256	0	0	0	0		
OF20073	0.6	0.6	0.256	0.07	0.06	18.1	0.84	10% AEP, 1	15 min burst, Storm 6
OSD High Level STG1	0	0	0.256	0	0	0	0		
OF1543	0.637	0.637	0.256	0.072	0.06	18.46	0.85	10% AEP, 1	15 min burst, Storm 6
OF STG4	0	0	0.256	0	0	0	0		
OF3746	0.587	0.587	0.256	0.07	0.06	17.92	0.83	10% AEP, 1	10 min burst, Storm 6
OF STG 56	0	0	0.256	0	0	0	0		
OF12448	0.651	0.651	0.256	0.073	0.06	18.64	0.85	10% AEP, 1	15 min burst, Storm 6
DETENTION BASIN DE	TAILS								
Name	Max WL	MaxVol	Max Q	Max Q	Max Q				
			Total	Low Level	High Level				
BasinSt 2	8.81	180.2	0.6	0.6	0				
BasinSt.1	8.78	174.7	0.637	0.637	0				
BasinSt.4	8.24	106.9	0.587	0.587	0				
BasinSt.5+6	8.76	186.4	0.651	0.651	0				
Run Log for Forresters	SOSD v6 AR	R2019 SJB.c	Irn run at 1	5:02:00 on	26/4/2021	using versio	n 2020.036	·	
~~~~~									
The maximum flow in	these overf	low routes	is unsafe: O	, F20073, OF	1543, OF37	46, OF1244	8		

DRAINS results prepar	r <mark>ed from V</mark> e	e <mark>rsion 2020</mark> .	<mark>036 - 5% Al</mark>	P					
				Vansian O					
PIT / NODE DETAILS		May Dand	Mary Cruefe	Version 8	N 41-	Quanflaur	Constasiat		
Name	IVIAX HGL	IVIAX Pond	IVIAX SUITA	IVIAX Pond	IVIIN	Overflow	Constraint		
		HGL	FIOW AFFIV	volume	Freeboard	(cu.m/s)			
N140000	0.0		(cu.m/s)	(cu.m)	(m)				
N40222	8.2		0.077						
N/4	8.11		0.004						
N660	/.65		0						
N680	8.07		0						
SUB-CATCHIVIENT DET	AILS		Description		DIA	DA	Due la Cha	<u> </u>	
Name	IVIAX	EIA	Remaining	EIA	RIA T.	PA	Due to Sto	rm	
	Flow Q	Max Q	Max Q				(		
	(cu.m/s)	(cu.m/s)	(cu.m/s)	(cu.m/s)	(min)	(min)	(min)		
Pre-Dev St.1	0.918	0	0.918	5	2	10.21	5% AEP, 10	) min burst,	Storm 2
Pre-dev St.4	0.781	0	0.781	5	2	9.51	5% AEP, 10	) min burst,	Storm 8
Pre-dev St.5+6	0.938	0	0.938	5	2	10.35	5% AEP, 10	) min burst,	Storm 9
Pre-Dev St.2	0.895	0	0.895	5	2	10.05	5% AEP, 10	) min burst,	Storm 1
Post Dev St.2	1.104	0.816	0.288	5	2	6	5% AEP, 5	min burst, S	Storm 1
Post-Dev St.1	1.15	0.85	0.3	5	2	6	5% AEP, 5	min burst, S	Storm 1
Post-Dev St.4	0.955	0.706	0.249	5	2	6	5% AEP, 5	min burst, S	Storm 1
Post-Dev St.5+6	1.191	0.88	0.311	5	2	6	5% AEP, 5	min burst, S	Storm 1
PIPE DETAILS									
Name	Max Q	Max V	Max U/S	Max D/S	Due to Sto	rm			
	(cu.m/s)	(m/s)	HGL (m)	HGL (m)					
Pipe STG2 Basin	0.691	2.93	8.612	8.201	5% AEP, 15	min burst,	Storm 6		
Pipe STG1 Basin	0.736	2.94	8.563	8.115	5% AEP, 15	min burst,	Storm 6		
Pipe STG 4 Basin	0.679	2.92	8.049	7.648	5% AEP, 10	) min burst,	Storm 6		
Pipe STG 56 Basin	0.751	2.95	8.531	8.069	5% AEP, 15	min burst,	Storm 6		
CHANNEL DETAILS									
Name	Max Q	Max V			Due to Sto	rm			
	(cu.m/s)	(m/s)							
	(********	(							
OVERFLOW ROUTE DE	TAILS								
Name	Max O U/S	Max O D/S	Safe O	Max D	Max DxV	Max Width	Max V	Due to Sto	rm
OF STG 2	0	0	0.256	0	0	0	0	240 10 010	
OF20073	0.691	0.691	0.256	0.075	0.06	19	0.86	5% AFP 15	5 min burst Storm 6
OSD High Level STG1	0.071	0.071	0.256	0.070	0.00	0	0.00	0707121710	
OF1543	0 736	0 736	0.256	0.077	0.07	19.36	0.88	5% AFP 15	5 min burst Storm 6
OF STG4	0.700	0.700	0.256	0.077	0.07	0	0.00	0707121710	
OF 3746	0.679	0.679	0.256	0.074	0.06	18.82	0.87	5% AFP 10	) min hurst Storm 6
OF STG 56	0.077	0.077	0.256	0.071	0.00	0.02	0.07	57071EF, 10	
OF 12448	0 751	0 751	0.250	0.078	0.07	10 5/	0 88	5% AFD 15	5 min hurst Storm 6
01 12440	0.751	0.751	0.230	0.070	0.07	17.34	0.00	J/0 ALL , 10	
DETENTION BASIN DE	Ι								
Name	Max WI	MaxVol	Max O	Max O	Max O				
		IVIANVOI	Total		High Loval				
RacinSt 2	8 0 8	225.1	0.601	0.601					
BasinGt 1	0.70 רח ח	220.1	0.091	0.071	0				
Dasilist. I	0.97	219.5	0.736	0.730	0				
DdSIIISL4	8.41	134.9	0.679	0.079	0				
Basins1.5+6	8.95	234	0.751	0.751	0				
Dura La ra fa Sanci	000 ( 45		 	F 00 05	0////0001	L			
Kun Log for Forresters	SUSD V6 AR	K201A 21B.0	arn runat 1	5:00:35 ON	26/4/2021	using versio	on 2020.036	)	
<b>-</b>	<u> </u>				15.10 555				
I ne maximum flow in	tnese overf	low routes	ıs unsafe: O	F20073, OF	1543, OF37	46, OF1244	8		

DRAINS results prepar	r <mark>ed from Ve</mark>	e <mark>rsion 2020</mark> .	<mark>036 - 2% Al</mark>	P					
PIT / NODE DETAILS				Version 8	N 41	0 1	<u> </u>		
Name	Max HGL	Max Pond	Max Surfac	Max Pond	Min	Overflow	Constraint		
		HGL	FIOW Arrivi	volume	Freeboard	(cu.m/s)			
N40000	0.00		(cu.m/s)	(cu.m)	(m)				
N40222	8.22		0.535						
N/4	8.14		0.478						
N66U	/.68		0.217						
IN08U	8.09		0.408						
Namo	May	FIΛ	Domaining	FIΛ	DIA	D۸	Duo to Sto	rm	
					Tc	TC			
	$(\alpha m/s)$	$(c_1, m/s)$	$(c_1, m/s)$	$(c_1 m/s)$	(min)	(min)	(min)		
Pro-Dov St 1	1 128	(cu.iii/ 3)	1 128	(cu.m/s) 5	2	10.21	2% AFD 10	) min hurst	Storm 5
Pre-dev St. 1	0 072	0	0 072	5	2	0.51	2% AED 10	) min burst,	Storm 8
Pro-dov St 5+6	1 162	0	1 162	5	2	10.35	2% AED 10	) min burst	Storm 10
Pre-Dev St 2	1.102	0	1.102	5	2	10.33	2% AEP 10	) min hurst	Storm 7
Post Dev St 2	1.107	1 012	0 358	5	2	10.03	2% AFP 5	min hurst	Storm 1
Post-Dev St 1	1.37	1.012	0.330	5	2	6	2% ΔEP 5	min hurst	Storm 1
Post-Dev St 4	1.120	0.875	0.070	5	2	6	2% AFP 5	min hurst	Storm 1
Post-Dev St 5+6	1.103	1 092	0.31	5	2	6	2% AEP 5	min hurst	Storm 1
1 031 Dev 31.310		1.072	0.000		2	0	2707121,0		
PIPE DETAILS									
Name	Max O	Max V	Max U/S	Max D/S	Due to Sto	rm			
	$(c_1 m/s)$	(m/s)	HGL (m)	HGL (m)	240 10 010				
Pine STG2 Basin	0 753	2 95	8 684	8 22	2% AFP 10	) min hurst	Storm 7		
Pipe STG1 Basin	0.823	2.99	8.669	8,141	2% AFP, 10	) min burst.	Storm 7		
Pipe STG 4 Basin	0.808	2.98	8,201	7,686	2% AFP, 10	) min burst.	Storm 7		
Pipe STG 56 Basin	0.844	3	8.646	8.097	2% AFP, 10	) min burst.	Storm 7		
	0.011	0	0.010	0.077	2707121710				
CHANNEL DETAILS									
Name	Max O	Max V			Due to Sto	rm			
	(cu.m/s)	(m/s)							
	(	(							
OVERFLOW ROUTE DE	TAILS								
Name	Max Q U/S	Max Q D/S	Safe Q	Max D	Max DxV	Max Width	Max V	Due to Sto	rm
OF STG 2	0.263	0.263	0.256	0.051	0.03	14.15	0.66	2% AEP, 10	) min burst, Storm 7
OF20073	1.016	1.016	0.256	0.088	0.08	21.51	0.96	2% AEP, 10	) min burst, Storm 7
OSD High Level STG1	0.209	0.209	0.256	0.046	0.03	13.25	0.62	2% AEP, 10	) min burst, Storm 7
OF1543	1.03	1.03	0.256	0.088	0.08	21.69	0.96	2% AEP, 10	) min burst, Storm 7
OF STG4	0	0	0.256	0	0	0	0		
OF3746	0.808	0.808	0.256	0.079	0.07	19.9	0.91	2% AEP, 10	) min burst, Storm 7
OF STG 56	0.192	0.192	0.256	0.044	0.03	12.89	0.61	2% AEP, 10	) min burst, Storm 7
OF12448	1.033	1.033	0.256	0.088	0.08	21.69	0.96	2% AEP, 10	) min burst, Storm 7
DETENTION BASIN DE	TAILS								
Name	Max WL	MaxVol	Max Q	Max Q	Max Q				
			Total	Low Level	High Level				
BasinSt 2	9.1	258.2	1.016	0.753	0.263				
BasinSt.1	9.15	262.2	1.032	0.823	0.209				
BasinSt.4	8.67	177.6	0.808	0.808	0				
BasinSt.5+6	9.14	281.5	1.036	0.844	0.192				
Run Log for Forresters	OSD v6 AR	R2019 SJB.c	Irn run at 1	4:59:11 on	26/4/2021	using versio	n 2020.036		
						_			
The maximum flow in	these overf	low routes	is unsafe: O	F STG 2, OF	20073, OF1	543, OF374	6, OF12448	}	

DRAINS results prepar	r <mark>ed from Ve</mark>	e <mark>rsion 2020.</mark>	<mark>036 - 1% Al</mark>	EP					
				Vansian 0					
PIT / NODE DETAILS	MaxUC	May Dand	May Curfo	Version 8	Min	Quarflow	Constraint		
Name	IVIAX HGL		IVIAX SULTA	Volume	IVIIN	Overnow	constraint		
		IGL		volume	(m)	(cu.111/5)			
N/40222	0 22		(cu.iii/s)	(cu.m)	(11)				
N40222	0.22		0.047						
N/4 N660	0.13		0.023						
N680	Q 11		0.023						
11000	0.11		0.043						
SUB-CATCHMENT DET	Alls								
Name	Max	FIA	Remaining	FIA	RIA	PA	Due to Sto	rm	
	Flow O	Max O	Max O	Tc	Tc	Tc	240 10 010		
	(cum/s)	(cum/s)	(cum/s)	(cum/s)	(min)	(min)	(min)		
Pre-Dev St.1	1.325	0	1.325	5	2	10.21	1% AEP. 10	) min burst.	Storm 6
Pre-dev St 4	1,133	0	1,133	5	2	9.51	1% AFP, 10	) min burst	Storm 8
Pre-dev St.5+6	1.354	0	1.354	5	2	10.35	1% AEP, 10	) min burst.	Storm 8
Pre-Dev St.2	1.292	0	1.292	5	2	10.05	1% AEP, 10	) min burst	Storm 6
Post Dev St.2	1.589	1.173	0.416	5	2	6	1% AEP. 5	min burst.	Storm 1
Post-Dev St.1	1.656	1,223	0.433	5	2	6	1% AFP. 5	min burst.	Storm 1
Post-Dev St.4	1.375	1.015	0.36	5	2	6	1% AEP. 5	min burst.	Storm 1
Post-Dev St.5+6	1.715	1.266	0.449	5	2	6	1% AEP, 5	min burst, S	Storm 1
PIPE DETAILS									
Name	Max Q	Max V	Max U/S	Max D/S	Due to Sto	rm			
	(cu.m/s)	(m/s)	HGL (m)	HGL (m)					
Pipe STG2 Basin	0.779	2.96	8.716	8.228	1% AEP, 10	) min burst,	Storm 7		
Pipe STG1 Basin	0.855	3.01	8.71	8.15	1% AEP, 10	) min burst,	Storm 7		
Pipe STG 4 Basin	0.863	3.01	8.272	7.703	1% AEP, 10	) min burst,	Storm 7		
Pipe STG 56 Basin	0.878	3.02	8.692	8.107	1% AEP, 10	) min burst,	Storm 7		
CHANNEL DETAILS									
Name	Max Q	Max V			Due to Sto	rm			
	(cu.m/s)	(m/s)							
OVERFLOW ROUTE DE	TAILS								
Name	Max Q U/S	Max Q D/S	Safe Q	Max D	Max DxV	Max Width	Max V	Due to Sto	rm
OF SIG 2	0.494	0.494	/.665	0.065	0.05	17.02	0.79	1% AEP, 10	) min burst, Storm 7
OF20073	1.2/3	1.2/3	/.665	0.097	0.1	23.31	1.01	1% AEP, 10	) min burst, Storm 7
OSD High Level STGT	0.467	0.467	7.665	0.063	0.05	16.66	0.79	1% AEP, 10	) min burst, Storm /
OF 1543	1.319	1.319	7.665	0.097	0.1	23.49	1.03	1% AEP, 10	D min burst, Storm 7
OF SIG4	0.234	0.234	7.665	0.048	0.03	13.61	0.64	1% AEP, 10	D min burst, Storm 7
	1.094	1.094	7.005	0.09	0.09	22.05	0.98	1% AEP, 10	D min burst, Storm 7
OF 51G 50	0.475	0.475	7.005	0.064	0.05	10.84	0.78	1% AEP, 10	D min burst, Storm 7
UF 12448	1.301	1.301	C00.1	0.098	0.1	23.07	1.04	1% AEP, 10	
DETENTION BASIN DET									
Name	May WI	MaxVol		Max O	Max O				
		IVIANVUI							
BasinSt 2	9.16	272.8	1 273	0 779	0.494				
BasinSt 2	9.10	272.0	1.273	0.777	0.47				
BasinSt 4	8.78	107.3	1.022	0.000	0.407				
BasinSt 5+6	9.22	300.1	1.077	0.000	0.231				
	1.22	500.1	1.554	0.070	0.773				
Run Log for Forresters	OSD v6 AR	R2019 SJB (	i Irn run at 1	4:57:14 on	26/4/2021	usina versio	n 2020.036	)	
The maximum water le	evel in these	e storages e	xceeds the	maximum	elevation vo	u specified	BasinSt 5	+6, BasinSt	1, BasinSt 2.
DRAINS has extrapolat	ed the Elev	ation vs Sto	rage table 1	o a higher l	Elevation. F	lease provi	de accurate	values for	higher elevations.
Flows were safe in all o	overflow ro	utes.							
P									