

Property New South Wales

Detailed Site Investigation

Peat Island,

Mooney Mooney, NSW

5 August 2021 54933/118680 (Rev 3) JBS&G

Property New South Wales Detailed Site Investigation

> Peat Island, Mooney Mooney, NSW

5 August 2021 54933/118680 (Rev 3) JBS&G

Table of Contents

Executive Summary	viii
,	
1. Introduction	1
1.1 Introduction and Background	1
1.2 Objective	1
1.3 Scope of Work	1
1.4 Relevant Guidance	2
2. Site Condition and Surrounding Environment	3
2.1 Site Identification	3
2.2 Site Description	3
2.3 Surrounding Land Use	4
2.4 Topography	5
2.5 Geology and Soils	5
2.6 Acid Sulfate Soils (ASS)	6
2.7 Hydrology	6
2.8 Hydrogeology	6
3. Review of Provided Information	7
3.1 Phase 1 Environmental Site Assessment (JBS 2013a) .	7
3.2 Hazardous Materials Survey (JBS 2013b)	7
3.3 UPSS Contamination Assessment (NAA 2013)	7
3.4 Preliminary Contamination Assessment (JBS&G 2016)8
3.5 SAQP (JBS&G 2018)	8
3.6 Completeness of Provided Reports	9
3.7 Summary of Site History	9
4. Conceptual Site Model	10
4.1 Potential Areas of Environmental Concern	10
4.2 Potentially Impacted Media	11
4.3 Potential Receptors	12
4.4 Potential Exposure Pathways	12
4.5 Potential for Migration	12
4.6 Preferential Pathways	13
4.7 Data Gap Assessment	13
5. Sampling and Analysis Plan	14
5.1 Data Quality Objectives	14
5.1.1 State the Problem	14
5.1.2 Identify the Decision	14

		5.1.3	Identify Inputs to the Decision	14
		5.1.4	Define the Site Boundaries	15
		5.1.5	Develop a Decision Rule	15
		5.1.6	Specify Limits of Decision Error	16
		5.1.7	Optimise the Decision for Obtaining Data	17
	5.2	Ground	Penetrating Radar	22
		5.2.1	Service Station (Portion 7)	22
		5.2.2	Peat Island (Portion 3)	22
	5.3	Identifie	ed Above Ground and Underground Storage Tanks	22
	5.4	Soil Inve	estigation	23
		5.4.1	Soil Sampling Methodology	23
		5.4.2	Soil Sampling Summary	24
	5.5	Ground	water Investigation	24
		5.5.1	Installation of New Groundwater Monitoring Wells	24
		5.5.2	Development of Groundwater Monitoring Wells	24
		5.5.3	Groundwater Sampling Methodology	24
		5.5.4	Decontamination	25
		5.5.5	Duplicate and Triplicate Sample Preparation	25
	5.6	Laborate	ory Analyses	25
6.	Asses	ssment Cr	iteria	27
	6.1	Soil Asse	essment Criteria Selection	27
	6.2	Assessm	nent Criteria	27
	6.3	Ground	water Assessment Criteria Selection	30
7.	Quali	ity Assura	nce / Quality Control	32
8.	Discu	ission of I	nvestigation Results	33
	8.1	Soil Obs	ervations	33
	8.2	Soil Ana	lytical Results	34
		8.2.1	Heavy Metals	34
		8.2.2	Petroleum Hydrocarbons (TRH and BTEX)	35
		8.2.3	PAHs	35
		8.2.4	PCBs	35
		8.2.5	OCPs	35
		8.2.6	PFAS	35
		8.2.7	Asbestos	35
	8.3	Ground	water Observations	36
	8.4	Ground	water Analytical Results	36
		8.4.1	Heavy Metals	36
		8.4.2	Petroleum Hydrocarbons	37

		8.4.3	PAHS	3/
		8.4.4	Volatile Organic Compounds	37
9.	Site C	haracteri	sation	38
	9.1	Potentia	Risks to Future Onsite Receptors	38
	9.2	Backgrou	und Soil Concentrations	38
	9.3	Chemica	l Mixtures	38
	9.4	Aestheti	c Issues	38
	9.5	Potentia	Migration of Contaminants	38
	9.6	Site Man	agement Strategy	38
10.	Concl	usions an	d Recommendations	40
11.	Limita	ations		41
List	of Ta	bles		
Table	2.1: S	ummary S	ite Details	3
Table	3.1 Su	ımmary Si	te History	9
Table	4.1: A	reas of En	vironmental Concern and Contaminants of Potential Concern	10
Table	5.1: S	ummary c	f Decision Rules	15
Table	5.2: S	ummary c	of Data Quality Indicators	17
Table	5.3: S	ampling a	nd Analysis Plan Completed	19
Table	5.4: Ic	lentified A	ASTs and USTs	23
Table	5.5: A	nalytical S	Schedule	25
Table	6.1 He	ealth Base	d Soil Investigation Criteria and Hydrocarbon Management Limits.	27
Table	6.2 Ec	ological S	creening and Investigation Levels	29
Table	6.3: D	erived EIL	criteria for urban residential and public open space land use	30
Table	6.4: G	roundwat	ter Criteria (all units in mg /L unless otherwise shown)	31
Table	H.1: C	A/QC Res	sults Summary - Soil	13
Table	H.2: C	QA/QC Res	sults Summary - Groundwater	16
List	of Fig	ures		

Figure 1 Site Location

Figure 2 Site Layout

Figure 3A – 3G Sampling Locations

Figure 4 Former Service Station Layout

Figure 5A – 5F Criteria Exceedances

Appendices

Appendix J

Appendix A Summary Tables

Appendix B Concept Plan

Appendix C Previous Site History Information

Calibration Records

Appendix D Site Photographs

Appendix E Borelogs

Appendix F Laboratory Certificates and Chain of Custody Documentation

Appendix G Field Sheets

Appendix I Statistical Assessment
Appendix I QA/QC Assessment

Abbreviations

Term	Definition
ACM	Asbestos containing material
AF/FA	Asbestos Fibres/Friable Asbestos
AFFF	Aqueous Film Forming Foam
As	Arsenic
Cd	Cadmium
COPC	Contaminants of Potential Concern
CSM	Conceptual site model
Cr	Chromium
Cu	Copper
bgs	below ground surface
ВТЕХ	Benzene, toluene, ethylbenzene and xylenes
B(a)P	Benzo(a)pyrene
DQOs	Data Quality Objectives
DSI	Detailed Site Investigation
EIL/ESL	Ecological Investigation Level/Ecological Screening Level
EPA	NSW Environment Protection Authority
ha	Hectare
Hg	Mercury
HIL/HSL	Health Investigation Level/Health Screening Level
LOR	Limit of Reporting
Mn	Manganese
NEPM	National Environment Protection Measure
NEPC	National Environment Protection Council
Ni	Nickel
ОСР	Organochlorine Pesticides
OPP	Organophosphorus Pesticides
PAHs	Polycyclic aromatic hydrocarbons
Pb	Lead
PFAS	Poly fluorinated alkyl substance
PNSW	Property New South Wales
PQL	Practical Quantitation Limit
PSI	Preliminary Site Investigation
QA/QC	Quality Assurance/Quality Control
RMS	Roads and Maritime Services
RPD	Relative Percentage Difference
SAQP	Sampling, Analysis and Quality Plan
TPH/TRH	Total Petroleum/Recoverable Hydrocarbons
Zn	Zinc

Executive Summary

JBS&G Australia Pty Ltd (JBS&G) was engaged by Property New South Wales (PNSW, the client) to conduct a Detailed Site Investigation (DSI) of Peat Island and adjacent land areas at Mooney Mooney, NSW (the site). The site location and site layout are shown on **Figures 1 and 2** respectively. The site has an area of approximately 38 ha.

A planning proposal seeks to rezone the subject land from SP2-Infrastructure and RE1 – Public Recreation to a mix of residential, tourist, recreation and conservation zones. The planning proposal was lodged with Central Coast Council on 18 October 2016, and was granted Gateway Determination by the Department of Planning and Environment in August 2017. This DSI version has been issued in response to release of a revised Concept Plan (Rev K) in in July 2021.

Previous investigations identified a number of areas of potential environmental concern (AECs) posing contamination risks associated with historical and current uses of the site and, recommended intrusive sampling targeting identified AECs to provide an assessment of potential soil contamination and confirm the findings of the preliminary investigation.

Based on the site inspection and known history of the site, a targeted investigation focusing on identified AECs including filled areas and a former service station, together with a grid-based sampling approach across the remaining site was considered the most appropriate sampling technique. A total of 73 test pits and boreholes were advanced across the site, with five groundwater monitoring wells also installed. Three previously installed groundwater monitoring wells located at the former service station were also sampled.

The results of the soil sampling identified lead concentrations in two soil sample locations (SS15 0-0.1 and SS50 0-0.1) above the adopted health-based criteria for low-density residential land use. Statistical analysis of the lead samples indicated that the identified lead concentrations were a low risk for the proposed development. It is noted the individual lead concentrations do not exceed ecological criteria or health-based criteria for less sensitive land uses at these locations as is currently proposed within the draft concept plan (**Appendix B**).

Fragments of ACM were identified on the surface within Portion 1 (former staff residence) and Portion 3 (Peat Island). In addition, ACM was also observed within test pit SS03 (located in the northern portion of Peat Island). A soil sample (SS03 0.5-0.6) was also collected which identified the presence of friable asbestos within the soil above the adopted human health criteria for all land uses.

Concentrations of nickel and zinc above the adopted ecological criteria were identified at six locations across the site, generally within near surface soils. Benzo(a)pyrene concentration in one sample also exceeded the adopted ecological criteria.

The following presents an assessment of the findings:

- Filling has historically occurred on Peat Island (Portion 3) and foreshore areas (Portion 4 and Portion 11);
- Underground storage tanks (USTs) at the site were identified to the east of the former laundry – Portion 1 (a diesel UST) and at the former service station – Portion 7 (three USTs with one UST decommissioned by concrete filling);
- Concentrations of COPCs reported from soil sample locations within the site were generally
 reported below the adopted assessment criteria, with the exception of the presence of
 asbestos containing materials on the surface soils in Portions 1 and 3, and within the fill
 material at location SSO3. All other concentrations were not considered to present a health
 risk for the proposed development. Some samples at the site identified heavy metals and

PAHs above the adopted ecological criteria, and these areas may need to be remediated/managed during development;

- Isolated samples at two locations identified elevated concentrations of lead above the
 adopted human health criteria for a residential land use. Statistical analysis was completed
 on all lead concentrations reported across the site which indicated that lead presented a low
 risk to human health for the proposed residential land use;
- Surficial ACM and building material was observed in Portion 1 and Portion 3 of the site which represents a potential human health and aesthetic issue for the proposed development. The surficial ACM will require management and/or remediation;
- Friable asbestos was identified at one location in conjunction with ACM in the northern part
 of Portion 3 (Peat Island) which will require remediation and/or management for the
 proposed development;
- Elevated copper, nickel and zinc concentrations were identified within the majority of
 groundwater samples collected from the site. As the concentrations were generally
 consistent, it is considered that the likely source of these heavy metals is the underlying
 sandstone and not indicative of source contamination. Lead was reported within one
 sample marginally above the adopted criteria, however is considered consistent with other
 groundwater monitoring wells within the vicinity and not indicative of lead contamination
 within the groundwater; and
- Potential acid sulfate soils were identified below the groundwater table in the northern portion of Peat Island. Should any excavation of the natural material occur below groundwater at the site, an acid sulfate soils management plan should be prepared.

Based on the findings of this investigation and subject to the limitations in **Section 11**, the following conclusions are made:

The site can be made suitable for the proposed land use, subject to removal and validation
of the USTs and remediation and/or management of the surficial ACM, buried asbestos and
heavy metals identified above the ecological criteria.

The following recommendations are made:

- Due to the presence of asbestos fines and ACM at the site, an Asbestos Management Plan is required to manage the presence of asbestos at the site prior to remediation/development; and
- As per the *Protection of the Environment Operations (Underground Petroleum Storage System) Regulations 2019*, as the USTs are currently not in use, the identified USTs should be removed and the tank excavation appropriately validated.

1. Introduction

1.1 Introduction and Background

JBS&G Australia Pty Ltd (JBS&G) was engaged by Property New South Wales (PNSW, the client) to conduct a Detailed Site Investigation (DSI) at Peat Island and adjacent lands at Mooney Mooney, NSW (the site). The site location and site layout are shown on **Figures 1 and 2** respectively. The site has an area of approximately 38 ha.

A planning proposal seeks to rezone the subject land from SP2-Infrastructure and RE1 – Public Recreation to a mix of residential, tourist, recreation and conservation zones. The planning proposal was lodged with Central Coast Council on 18 October 2016, and was granted Gateway Determination by the Department of Planning and Environment in August 2017. This DSI version has been issued in response to release of a revised Concept Plan (Rev K) in July 2021.

JBS&G undertook a preliminary site investigation (PSI) in 2013¹, and updated the assessment in 2016² to include an enlarged site and to assess the changes which may have occurred at the site in the intervening period. Also, in 2013 JBS&G undertook a Hazardous Materials Survey³ of the area subject of the PSI (JBS, 2013b).

Investigations identified a number of areas of potential environmental concern (AECs) posing contamination risks associated with historical and current uses of the site and recommended intrusive sampling targeting identified AECs to provide an assessment of potential soil contamination and confirm the findings of the preliminary investigation.

A sampling, analysis and quality plan (SAQP⁴) was prepared including data quality objectives (DQO), in conjunction with the development of a conceptual site model (CSM) to visualise the linkages and pathways associated with potential contamination risks to site uses as part of the planning process and to develop potential future intrusive detailed investigation requirements.

The purpose of the DSI report is to support the planning proposal and enable a Site Audit Statement for the proposed development.

1.2 Objective

The objective of this investigation was to undertake a targeted DSI to satisfy the consent authority that a decision can be made on the planning proposal regarding potential contamination within the site.

1.3 Scope of Work

The scope of work completed comprised:

- Review of previous environmental investigation reports including site history, analytical results and site conditions outlined within the SAQP;
- Soil sampling and analysis at 78 locations across the site;
- Installation of five (5) groundwater monitoring wells;

¹ Phase 1 Environmental Site Assessment, Government Property. Peat Island, Mooney Mooney, NSW, February 2013, JBS 42532 – 553028 (Rev 0), JBS Environmental Pty Ltd (now JBS&G) (JBS 2013a)

² Preliminary Contamination Assessment, Surplus NSW Government Land, Mooney Mooney & Peat Island, NSW. 29 August 2016, JBS&G 51475 – 103723, JBS&G Australia Pty Ltd (JBS&G 2016)

³ Hazardous Materials Survey, Government Property NSW. Peat Island & Adjoining Land Mooney Mooney, NSW, March 2013, JBS 42351 – 53106 (Rev 0) (JBS 2013b)

⁴ Sampling Analysis and Quality Plan, Property NSW. Peat Island, Mooney Mooney, NSW. 6 September 2018, JBS&G 54933/116943 (Rev 0) (JBS&G 2018)

- Sampling of the five (5) installed groundwater monitoring wells and three (3) previously installed groundwater monitoring wells for COCs;
- Preparation of this investigation report in general accordance with guidelines made or approved by the EPA.

1.4 Relevant Guidance

This report has been prepared with reference to guidelines made or approved by the NSW Environmental Protection Authority (EPA) including:

- Sampling design guidelines, NSW EPA 1995;
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality, ANZG 2018;
- Consultants reporting on contaminated land: Contaminated land guidelines, NSW EPA 2020;
- Guidelines for the Assessment of Management of Groundwater Contamination, DEC March 2007;
- National Environment Protection (Assessment of Site Contamination) Measure 1999, Amendment No.1, (NEPM 2013);
- Asbestos in or on Soil, WorkCover NSW 2014; and
- Guidelines for the NSW Site Auditor Scheme, 3rd Edition, NSW EPA 2017;

Where applicable, the State Environmental Planning Policy No. 55 (SEPP 55) – Remediation of Land under the Environmental Planning and Assessment Act (EP&A Act) 1979 will be considered.

In addition to the above guidelines comments provided by the Department of Planning, Industry and Environment (DPIE) associated with the Gateway Determination were also considered. This included the recommendation of investigations where areas of environmental concern had been previously identified.

2. Site Condition and Surrounding Environment

2.1 Site Identification

The location of the site is shown in **Figure 1**. The site details are summarised in **Table 2.1** and described in detail in the following sections.

Table 2.1: Summary Site Details

Address	Peat island, Mooney Mooney, NSW and Point Road, Mooney Mooney, NSW		
Lot/DP	Lots 2, 3 & 4 deposited plan (DP) 239249; Lot 2 in DP 431999; Lot 2 in DP		
	597504; Lot 21 in DP 836628; Lots 10 & 11 in DP 1157280; Lot 1 in DP 431780;		
	and Lots 1 & 2 in DP 945014; Lot 7011 in DP 1057994; Lot 23 in DP 86305; Lots 9,		
	10 & 11 in DP 863305; and Lot 7302 in DP 1151629.		
Local Government Authority	Central Coast Council		
Approximate MGA Coordinates (MGA	E: 332888 (center of the site)		
56)	N: 6288720 (center of the site)		
Site Zoning	SP2 (Hospital, Educational and Water Storage), RE1 Public Recreation, W2		
	Recreational Waterways and unzoned land.		
Current Use	The site had generally been vacated with the service station, the fire station, the		
	school and the previous Peat Island hospital not in use. The residential		
	properties were leased and occupied at the site of the investigation.		
Previous Use	Department of Education School, mental hospital and residence for hospital		
	staff, service station, fire station, residential and Hawkesbury River Ambulance		
	Station/Roads and Maritime Services (RMS) Depot.		
Proposed use	The Concept Plan (Appendix B) for the site proposes the site to include		
	community facilities; low and medium density residential; Public car parking		
	areas; Hotel/Accommodation, including new and existing buildings on Peat		
	Island; Emergency services facilities to be relocated within the site; RMS facilities		
	to be relocated within the site; Vehicle access and parking facilities; Landscaping		
	and open spaces including a foreshore walkway and multiple public parks; and		
	areas of National Park. In addition, a land based marina is proposed that will be		
	the subject of a future planning proposal. There will also be an additional		
	location for marine rescue facility subject to further stakeholder consultation		
	and separate proposal.		
Site Area	Approximately 38 ha		

2.2 Site Description

JBS&G inspected the site on 26 July and 17 September 2018. The inspections were completed to identify any changes to the site that may have occurred since the previous JBS (2013a) Preliminary Site Investigation and to optimise the proposed investigation works. The site is divided into Portions 1 to 13, as shown on **Figure 2**. Site photographs are provided in **Appendix D**.

Portion 1 comprised vacant buildings (former laundry and peat island staff residencies) located along a single lane bitumen road. The portion was fenced and accessed via a locked gate. The buildings were noted to be in moderate to poor condition with some broken and missing eaves. Asbestos containing materials (ACM) associated with the vacant buildings were observed on the surface of the site. An underground storage tank (UST) and vent line was observed to the north of the laundry and was reported to contain diesel. A generator and LPG gas tank were observed to the south of the buildings. A disused pool and cleaning room was noted to be in the central area of Portion 1, between buildings.

Portion 2 was predominantly vacant, with the exception of an administration / security building and bitumen access road to peat Island. A 1000 L diesel above ground storage tank (AST) was located to the south west of the administration building. The tank was positioned within a brick storage shed and was noted to be rusted. No evidence of spills or leaks were observed.

Portion 3 comprised Peat Island and a single lane bridge providing access to the island from Portion 2. The bridge appeared to have been constructed predominantly using sandstone. The island had

been vacated at the time of the inspection and all buildings had been boarded up. The southern area of Portion 3 appeared to have been reclaimed and potentially been filled with unknown material. Sea walls were observed on the western boundary of Peat Island which generally comprised of rock, however some areas appeared to have been repaired with concrete. Potential ACM was observed on some of the concrete used for the sea wall. ACM was observed on the ground surface associated with the buildings at the site. A diesel AST was observed and was located within the bunded area. No stains or spills were observed. The AST was empty at the time of the inspection. A chemical storage unit was also identified in the western portion of the island comprising a small brick building.

Portion 4 comprised vacant and vegetated, reclaimed land, with bitumen, concrete, bricks and plastic observed being used as reclamation materials.

Portion 5 consisted of a private wharf and carpark utilised by the local ferries.

Portion 6 was predominantly bushland, with a water tower located in the central northern section. The southern portion comprised a vacated church of brick construction and buildings associated with the peat island facility. The buildings were noted to be in poor condition, with missing eaves and railings. An LPG gas tank was observed south of the buildings.

Portion 7 consisted of a former service station. The service station building and above-ground infrastructure (bowsers) had been demolished. Three fill points (one concreted) were observed in the northern portion of the service station. Three USTs (one decommissioned by concrete filling) was located in the grass area to the north of the service station. The two accessible USTs are understood to be approximately 10,000L in volume. Three groundwater monitoring wells were observed at the site. No ACM was observed on the surface of the site within this portion.

Portion 8 comprised residential properties along the western boundary with bushland to the east. No evidence of oyster faming activities was observed to occur at Portion 8, noting an oyster farm was located east and south east of this portion.

Portion 9 and 10 consisted of a former fire station, school and teachers' cabin. The former fire station was a single-story brick building, located on Point Road, with two concrete underground water tanks located adjacent the building to the south. An inspection of the fire station and the surrounding area did not identify any evidence of a fire training/practice area. A number of wooden and brick cabins used for the former school and teachers' cabin was located in the north east. A playground was located within the central section of the school. A concrete toilet block was located at the southern boundary of the school, with a single, concrete septic tank located to the south east of the toilet block. A large sports field was located to the east of the school.

Portion 11 comprised bushland and a reclaimed carpark and rest area. Bushland was noted to have been cleared in the northern and central area for the installation of overhead power lines. Some remnant earthen tracks were identified in the northern section, associated with access road to the power lines. A levelled, flat, reclaimed area was noted in the south and consisted of a large bitumen carpark and rest area. A wharf and boat ramp were allocated to the west.

Portion 12 was used as a rest stop accessed from the Pacific Motorway. A single lane bitumen road dissected the portion and was fronted by several picnic tables and carparks. A single-story toilet block was positioned in the centre of the portion adjacent to a single underground sewerage tank.

Portion 13 was used as an ambulance station and road and maritime services compound. The facilities were secured by metal fencing and accessed via security swipe card. Surrounding areas were cleared and relatively levelled, surfaced with grass cover.

2.3 Surrounding Land Use

The current land use of adjacent properties is shown in Figure 2 and summarised below.

 North –generally comprised of bushland and residential properties and the Pacific Motorway.

- East Commercial purposes including a lawn bowling club and oyster shed, Pacific Highway, Pacific Motorway, residences and bushland/vegetated areas. Further to the east is the Hawkesbury River and Mooney Mooney Creek.
- South Bushland and Hawkesbury River.
- West Hawkesbury River.

Based on the surrounding land uses identified during the site inspection, there is no significant potential offsite contamination sources located in the vicinity of the site, however it is noted that there is potential that the presence of the Pacific Motorway through the centre of the site may have the potential to impact the site via surface runoff.

2.4 Topography

Review of topographic information obtained from the Spatial Information Exchange Viewer, LPI regional topographic map indicated that Portion 6 contains the highest point at 80 m Australian Height Datum (AHD), the topography was then observed to fall in a north eastern, eastern, southern and western direction.

Portion 11 additionally contains a small rise with a high point of 30 m AHD falling to less than 10 m AHD in all directions.

The remainder of the site generally contains a gentle slope towards the Hawkesbury River at an approximate AHD of 4 m to 15 m.

Based on observations made during the site inspection, the topography of Peat Island (Portion 3) rises to the north approximately 4 m, with buildings located on the slopes.

The Pacific Motorway was observed to be raised above Portions 1, 2, 6 and 12 through the central area of the site. The Pacific Motorway generally follows the ridgeline with the site sloping from the Pacific Motorway towards the surrounding Hawkesbury River to the east, west and south.

2.5 Geology and Soils

JBS 2013a previously undertook a review of the regional 1:100 000 Sydney geological map, sheet series 9130 (1983), which indicated that the site is underlain by Triassic interbedded laminite, shale, and quartz to lithic quartz sandstone from the Narrabeen Group.

Reference to the online ESPADE 2.0 tool hosted by the NSW Office of Environment and Heritage (OEH 2017⁵) indicates that the site is within the Erina and Watagan residual soil landscapes.

The Erina residual soil landscape group typically occurs on undulating to rolling rises and low hills on fine-grained sandstones and claystones of the Narrabeen Group. The soils are characterised by moderately deep Yellow Podzolic Soils on sandstone crests and slopes; moderately deep Red Podzolic Soils on shale crests and steeper slopes; deep Yellow Podzolic Soils on shale lower slopes; and some deep Yellow Earths on colluvial footslopes. Soil limitations included very high soil erosion hazard, impermeable plastic low wet-strength subsoil, localised run-on, seasonal waterlogging of footslopes.

The Watagan residual soil landscape group typically occurs on rolling to very steep hills on fine-grained Narrabeen Group sediments. The soils are characterised by shallow to deep Lithosols/Siliceous Sands and Yellow Podzolic Soils on sandstones; moderately deep Brown Podzolic Soils, Red and Gleyed Podzolic Soils on shales.

⁵ 'ESAPDE 2.0', NSW Office of Environment and heritage, Accessed 6 October 2017, OEH (2017)

2.6 Acid Sulfate Soils (ASS)

Review of JBS&G 2016 indicated that the site is located within an area which has a "Disturbed terrain" which may include filled areas, which often occur during reclamation of low lying swamps for urban development. JBS&G 2016 concluded that based on the geography and geology it was possible that ASS will be present at locations proximal to the river.

2.7 Hydrology

Peat Island is surrounded by the Hawkesbury River, which is the closest surface water body to the majority of the site. Surface water runoff is anticipated to flow in a westerly direction west of the motorway, toward the Hawkesbury River. Surface water runoff from Peat Island is anticipated to flow into the stormwater drains which feed into the Hawkesbury River from Peat Island.

For the remainder of the site, during heavy or prolonged rain periods, runoff is anticipated to follow the natural topography of these portions; with surface water runoff being anticipated to flow into the stormwater drains along adjacent roads. A ridgeline is located through the centre of the site (along the Pacific Motorway) with the portions to the east of the Pacific Motorway sloping downward to the east and the portions to the west of the Pacific Motorway sloping downward towards the west. There is also a moderate slope downwards to the south in the southern portions of the site. Any surface water not collected within the stormwater system is expected to follow local topography and into the Hawkesbury River which is located to the east, south and west of the site.

2.8 Hydrogeology

A review of the NSW Department of Primary Industries, Office of Water's Ground Water Monitoring overview map (accessed 26 October 2018) indicated there are a total of three registered groundwater bores within a 1.5 km search radius of the site. There was no available data for the three wells identified.

As discussed in JBS (2013a), groundwater is anticipated to be underlying the site within the interbedded sandstones. There may be shallow perched groundwater at the interfaces of fill and residual soils and bedrock. Shallow groundwater in areas close to Mooney Mooney Creek or the Hawkesbury River may be tidally influenced and undergo partial mixing with these surface water bodies.

Groundwater flow direction is anticipated to be to the south west and east towards Hawkesbury River, based on the local topography either side of the central ridgeline.

Three groundwater monitoring wells were previously installed at the former service station in 2013 by Noel Arnold & Associates (NAA). The depth to groundwater was reported between 3.3 and 4.94m bgs. During installation of the groundwater monitoring wells, the groundwater strike was reported approximately 8.5m bgs, indicating that the groundwater was likely located within the underlying fractured sandstone and was semi confined. Field parameter recorded by NAA indicated that the groundwater was slightly acidic, fresh water (based on electrical conductivity) and oxidising.

2.9 Flood Potential

A review of the Central Coast Council 1:100 year flood mapping tool indicated that there was potential that flooding may occur in:

- the northern and southern areas of Peat Island (Portion 3);
- the western portion of Portion 1 and 2 adjacent to the Hawkesbury River;
- the reclaimed area of Portion 4;
- the eastern boundary of Portion 8 and 9; and
- the reclaimed southern area of Portion 11.

3. Review of Provided Information

3.1 Phase 1 Environmental Site Assessment (JBS 2013a)

JBS Environmental Pty Ltd (JBS, now JBS&G) was engaged by Government Property NSW to complete a Preliminary Environmental Site Investigation (PSI, also referred to as a Phase 1 Environmental Site Assessment). The PSI assessed two areas, Peat Island, Mooney Mooney and the former DEC school, Point Road, Mooney Mooney.

The PSI was completed for portions 1 to 10 and was based on the review of site history including aerial photographs and a site inspection. The PSI identified potential areas of environmental concern (AECs). The AECs identified included an underground storage tanks (UST) associated with a former laundry, former sewage treatment, above ground storage tanks (ASTs), painter sheds, reclaimant land, suspected historical USTs, vacant service station (and underground infrastructure), oyster farmers and septic tank.

JBS (2013a) recommended that a detailed site investigation be undertaken at the site and that the identified USTs were decommissioned and validated.

3.2 Hazardous Materials Survey (JBS 2013b)

JBS (now JBS&G) completed a Hazardous Materials Survey (HMS) on the former Peat Island facility and associated surrounding areas. The HMS assessed two areas of the site, the former Peat Island facility and the former DEC school site. Selected buildings were inspected for ACM, asbestos in dust, lead based paint, lead in dust, synthetic mineral fibres (SMF) and polychlorinated biphenyls (PCBs).

Multiple buildings across the site were identified to contain suspected ACM, however the ACM was generally observed to be in a good condition and encapsulated with paint. The exterior paint on the former classroom and window sills of the service station were identified to contain lead paint. SMF was identified in the insulation lagging on the pipes of the laundry and the understory of the coffee shop/laundry. PCBs containing equipment were not identified during the inspections.

3.3 UPSS Contamination Assessment (NAA 2013)

Noel Arnold and Associates Pty Ltd (NAA) completed a Contamination Assessment of the Underground Petroleum Storage System (UPSS) at the former service station, located at Lot 3 DP 239249. The report identified two USTs using ground penetrating radar, one near the northern boundary aligned north to south and the other within the grassed area to the north aligned east west. Hydrocarbon odours were noted in the soils around the USTs and near the former service station building. No hydrocarbon impacts were reported in soil or groundwater samples collected and analysed. Soil and groundwater samples were also analysed for lead. The concentrations of lead within the soil samples were low and generally below the laboratory limit of reporting. All lead concentrations reported within the groundwater samples were below the laboratory limit of reporting. Additionally, ACM fragments were reported at the ground surface within the service station premises.

The groundwater wells were reported to have been installed to a depth between 10 and 10.5m bgs. The wells were reported to contain a 3m screen length. The standing water level was reported between 3.3 and 4.34m below the top of the well casing. For the investigation, the groundwater wells were surveyed which indicated the groundwater flow direction was to the east, generally following the local topography.

The report recommended the preparation and implementation of a remedial action plan (RAP) including additional investigations of other UPSS components (fuel lines, bowsers), followed by appropriate validation. Additionally, it was recommended that the asbestos identified be assessed and remediated.

3.4 Preliminary Contamination Assessment (JBS&G 2016)

JBS&G (2016) provided an update to JBS (2013a) PSI which reviewed the new conceptual proposal and provided updated recommendations to address the revised land use and site boundaries (consistent with current investigation), as well as changes to the site since the 2013 report.

At the time of the report, the plan provided to be submitted as part of the planning proposal for the site included the following zones: B2 Neighbourhood Centre, R1 General Residential, R2 Low Density Residential, RE1 Public Recreation, RE2 Private Recreation, E1 National Parks and Nature Reserves, SP2 Infrastructure and SP3 Tourist. Th Concept Plan for the site included:

- Community facilities including the construction of a local neighbourhood centre;
- 268 residences including residential lots, townhouses and apartment;
- Public car parking areas;
- Hotel/Accommodation, including new and existing buildings on Peat Island;
- Marina with wet berths, dry stacking facility and adjoining car parking area;
- Emergency services facilities to be relocated within the site;
- RMS facility to be relocated within the site;
- Vehicle access and parking facilities
- Landscaping and open spaces including a foreshore walkway and multiple public parks; and
- Areas of National Park.

JBS&G (2016) stated that the AECs identified within JBS (2013a) remained unchanged from the previous report. With the amended boundary, additional AECs identified included:

- Reclaimed land associated with Mooney Mooney Point;
- Reclaimed land associated with rerouting of the Pacific Highway through former mangrove swamp in the south east of the site; and
- Former service station.

It was concluded that there is potential for contamination of the site to have occurred based on past and current site usage, however historical use of the areas in question was not intensive and there were no indication of gross or widespread impact that would require management or impede development of the site. It was recommended that prior to redevelopment of the site, intrusive sampling targeting identified AECs applicable to the site should be undertaken to provide an adequate assessment of potential soil contamination and confirm the findings of the preliminary investigation.

3.5 SAQP (JBS&G 2018)

JBS&G (2018) completed a sampling, analysis and quality plan (SAQP) which reviewed the new conceptual proposal and provided updated recommendations to address the revised land use and site boundaries (consistent with current investigation), as well review the previous investigation undertaken at the site.

The SAQP identified where data gaps were considered to have occurred and outlined the proposed sampling plan for this targeted DSI.

3.6 Completeness of Provided Reports

It is considered that the review of previously reports provide generally adequate information for the design of the DSI. Copies of the aerial photographs and previous Dangerous Goods searches for selected lots is provided in **Appendix C**. It is noted that the Dangerous Goods search for the former service station did not identify any records relating to the USTs at the site.

3.7 Summary of Site History

A review of the historical information available for the site including aerial photographs, title details and news articles about the site was compiled following the review of previous reports. The site history review also included a review of the historical aerial photographs provided in **Appendix C**. The table below summaries the findings.

Table 3.1 Summary Site History

Period	Activity	Source
Prior to 1945	Peat Island was being used as a mental hospital at least from	Title deeds and news articles
	1901 and was owned by the Crown from at least 1924.	
	The Department of Education and Communities (DEC) school	
	property was privately owned and used as an orchard until	
	1927 when the main roads of NSW acquired the land.	
1945	DEC land was acquired by the Crown	Title deeds
1947	The south western area appeared to have agriculture	Aerial photograph (1947)
	occurring.	
1950s-1960s	Potential burial of human remains on Peat Island	Other
1964	The F3 Motorway was being constructed, with reclamation	Aerial photograph (1964)
	of land occurring along the southern and western	
	foreshores.	
1978	Further reclamation of land along the southern foreshore	Aerial photograph (1978)
1979	Peat Island dedicated to hospital use	Title deeds
1986	Service Station and rural fire station constructed	Aerial photograph (1986)
1994	The DEC school site was transferred from Crown and to the	Title deeds
	Minister of education	
2015	Additional structure visible on the grounds of the	Aerial photograph (2015)
	Hawkesbury River Ambulance Station and rest stop facilities	
	to the east of the M1.	

4. Conceptual Site Model

NEPC (2013) identifies a CSM as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The development of a CSM is an essential part of all site assessments.

NEPC (2013) identified the essential elements of a CSM as including:

- Known and potential sources of contamination and contaminants of concern including the mechanism(s) of contamination;
- Potentially affected media (soil, sediment and ambient air);
- Potential receptors; and
- Potential and complete exposure pathways.

4.1 Potential Areas of Environmental Concern

Based on the review of previous environmental investigations, history review and observations made during the JBS&G inspection of the site the identified AECs and associated COPCs for the site are presented in **Table 4.1**.

A location plan indicating AEC across the site is provided on Figure 3.

Table 4.1: Areas of Environmental Concern and Contaminants of Potential Concern

Portion	Areas of Environmental Concern (AEC)	Primary Contaminants of Potential Concern (COPC)
Portion 1 Former Laundry, education and leisure centre	 Generator Former large laundry UST associated with Laundry (possibly two tanks based on Dangerous Goods Records) Potential of unknown origin fill material Hazardous building material associated with the buildings 	Heavy metals, total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene and xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and asbestos
Portion 2 Administration Building and Reclaimed Land	 AST (diesel) Reclaimed land along water edge Hazardous building material associated with the buildings Possible RMS compound Potential Aqueous Film Forming Foam (AFFF) runoff which may have been used for motor accidents on adjacent freeway 	Heavy metals, TPH, BTEX and PAHs, asbestos, PCBs and per- and polyfluoroalkyl substances (PFAS).
Portion 3 Peat Island	 AST (diesel) Painters shed Cleaners shed Potential fill material (including reclamation areas identified within the aerial photographs) Hazardous building material associated with the buildings Dangerous goods search indicated 1x 5250 L Petrol UST, 1x 2250 L Petrol UST, 1 x Compressed Chlorine Gas, 2x LPG gas tanks, 1x 4000 L diesel AST Potential burial of human remains on Peat Island 	Heavy metals, TPH, BTEX, PAHs, OCPs, PCBs and asbestos
Portion 4 Western Foreshore	Potential Fill material associated with reclaimed land along water edge	Heavy metals, TPH, BTEX, PCBs and asbestos
Portion 5 Wharf	 Potential Fill material Former sewage treatment Wood Preservatives 	Heavy metals, TPH, BTEX, PAHs, PCBs and asbestos.

Portion	Areas of Environmental Concern (AEC)	Primary Contaminants of Potential Concern (COPC)
Portion 6 Church and Cottages and bushland	 Hazardous building material associated with the buildings/structures AST of heating oil 	Heavy metals, TPH, BTEX, PAHs, OCPs, PCBs and asbestos
Portion 7 Former Service Station	 Hazardous building material associated with the former buildings Three USTs Potential fill material 	Heavy metals, TPH, BTEX, PAHs, OCPs, PCBs and asbestos
Portion 8 Cottages	 Hazardous building material associated with the buildings Oyster Farms 	Heavy metals, TPH, BTEX, PAHs, OCPs, PCBs and asbestos
Portion 9 DEC School Farms and rural fire service depot	 Former Orchard Septic Tank Potential use/storage of AFFF (RFS site) 	Heavy metals, TPH, BTEX, PAHs, OCPs, PCBs, asbestos and PFAS
Portion 10 Cottages	Hazardous building material associated with the buildings	Heavy metals, TPH, BTEX, PAHs, OCPs, PCBs and asbestos
Portion 11 Reclaimed land associated with Mooney Mooney Point	Fill of unknown origin Acid sulphate soils	Heavy metals, TPH, BTEX, PAHs, OCPs, PCBs and asbestos
Portion 12 Rest Stop	Fill of unknown originRunoff from Highway (including AFFF)	Heavy metals, TPH, BTEX, PAHs, OCPs, PCBs, asbestos and PFAS
Portion 13 Ambulance Station/RMS Depot	 Hazardous building material associated with buildings Potential USTs to service ambulances 	Heavy metals, TPH, BTEX, PAHs, OCPs, PCBs and asbestos

4.2 Potentially Impacted Media

Each of the AECs and corresponding COPCs identified in **Table 4.1** have the potential to result in impact to soil and groundwater underlying the site to the extent reflective of the size and potential contaminants associated with the identified AEC.

It is anticipated that the greatest level of potential impact will be to surface or shallow soils for the majority of the site. This is a consequence of the surface application of liquids (fuels, pesticides/herbicides, metals etc.) and other waste material, in addition to the potential for use of fill material at the site. If impact is found in surface soils, there may be potential for contamination to have leached/migrated into the deeper soil profile. There is potential for deeper impact to have occurred within the vicinity of the USTs and where reclamation of land (adjacent to Hawkesbury River) has occurred.

Due to the proximity of the site to the M1 motorway, there is potential that AFFF may have been used during fires associated with major accidents on the M1. Review of available information has indicated numerous fires associated with crashes in the vicinity of the site, however the use of AFFF is unknown.

Based on the potential leachability and mobility of the liquid nature (including hydrocarbons) of some identified COPCs, natural soils are considered to be potentially impacted media. As with the natural soils, the potential for groundwater impact will depend on the actual nature, occurrence and characteristic of impacts within the overlying fill materials and, potentially, the natural soils. Areas where liquid chemicals have potentially been stored, such as the USTs, has a greater potential to impact groundwater via downward migration of liquid contaminants.

In addition, it is noted fill material is likely underlain by relatively permeable alluvial deposits in foreshore areas, that potentially aid in the vertical migration of leachable COPCs. The anticipated fine sandstone/shale bedrock is likely to be relatively impermeable and will significantly reduce the migration of potentially contaminated media. Similar to groundwater, should soil impacts be identified, the potential for soil vapour as a contaminated media may require further consideration if volatile COPC are present.

4.3 Potential Receptors

Potential human and ecological receptors on or adjoining the site include:

- Site occupants / workers / residents and visitors;
- Flora and fauna on the site; and
- The marine water ecosystem of Hawksbury River.

4.4 Potential Exposure Pathways

Based on the COPCs identified in soil, groundwater and soil vapour, the potential exposure pathways for the site include:

- Oral and dermal pathways from impacted soils and groundwater (either through beneficial groundwater re-use or made accessible via ground disturbance);
- Inhalation of airborne contaminants (including airborne asbestos fibres);
- Inhalation of vapours migrating from impacted soils and groundwater; and
- Contaminant uptake via vegetation (flora) or bioaccumulation within fauna.

4.5 Potential for Migration

Contaminants generally migrate from site AECs via a combination of windblown dusts, rainwater infiltration, groundwater migration, vapour convection/diffusion and surface water runoff. The potential for contaminants to migrate is a combination of:

- The nature of the contaminants (solid/liquid and mobility characteristics);
- The extent of the contaminants (isolated or widespread);
- The location of the contaminants (surface soils or at depth); and
- The site topography, geology, hydrology and hydrogeology.

The potential contaminants of concern identified as part of the site history review and site inspection are potentially present in solid (e.g. ACM) and liquid (i.e. petroleum products associated with underground/above ground storage tanks) form.

The site surface was either hard or had good grass cover, which significantly reduces the potential for windblown contaminants to migrate onto or offsite.

There is the potential for contaminants to migrate via surface water runoff from the site, given the slope of the site and the proximity of the river to the site. It is noted that the observed vegetation and grass cover would slow the migration of contaminants.

There is potential for contaminants to migrate through the soil and into groundwater. Identified COPC were likely present as solids for asbestos or had been potentially applied/stored in liquid form, such as metals, pesticides and fuels. It is considered that metals or pesticides would typically be applied in a liquid form (water base), which upon drying, would leave COPC in a dry form that would be expected to adsorb to soil particles. Petroleum products, such as fuels have a greater potential to impact underlying groundwater, particularly surrounding, which had potentially been used for vehicle mechanical repairs and storage of petroleum products. Based on the type of COPC and the anticipated depth to groundwater it is considered that the potential for sub-surface migration processes is typically low at the site, with the exception of subsurface fuel storage in USTs which poses a greater risk to shallow groundwater.

4.6 Preferential Pathways

For the purpose of this assessment, preferential pathways have been identified as natural and/or man-made pathways that result in the preferential migration of COPC as either solids (sediments), liquids (services / drainage) or volatile compounds (vapour).

Man-made preferential pathways are likely to be present on the site generally associated with areas of previously disturbed natural ground including service/drainage trenches, fill materials present beneath existing ground surface, and at near surface depths. Fill materials and disturbed natural soil are anticipated to have a higher permeability than the underlying natural soil and/or bedrock.

4.7 Data Gap Assessment

In the development of the CSM the following data gaps were identified and the investigation to address the data gaps have been incorporated into the updated sampling analysis plan (Section 5):

- The location and status of USTs at Peat Island (Portion 3) and the former service station (Portion 7);
- The type and chemical suitability of the fill material used (predominantly associated with reclamation area of Peat Island (Portion 3), Portion 4 and the southern area of Portion 11;
- Potential runoff and impact from the M1 Motorway; and
- Potential impact from the Rural Fire Service.

5. Sampling and Analysis Plan

5.1 Data Quality Objectives

Data Quality Objectives (DQO's) were established for the investigation, as discussed in the following sections.

5.1.1 State the Problem

The site is to be potentially redeveloped for a mixed land use, including sensitive residential and open space areas. No extensive intrusive investigations have been undertaken, however, the site has been subjected to potential contaminating activities including filling and fuel storage. Assessment is required to ascertain if there is a potential contamination risk for any proposed future rezoning and development at the site which could not be remediated or managed under an environmental management plan.

5.1.2 Identify the Decision

Based on the decision-making process for assessing urban redevelopment sites in EPA (2017⁶), the following decisions must be made:

- Are there any unacceptable risks to likely future onsite receptors from soil?
- Are there any unacceptable risks to likely future receptors from impacted groundwater?
- Are there any issues relating to the local area background soil concentrations that exceed appropriate soil criteria?
- Are there any impacts from chemicals mixtures?
- Are there any aesthetics issues in fill soils at the site?
- Is there any evidence of, or potential for, migration of contaminants off-site?
- Is there any areas of contamination that would restrict proposed land use suitability?
- Is a remediation or site management strategy required?

5.1.3 Identify Inputs to the Decision

Inputs to the decisions are:

- Site condition information and site historical information;
- Field observations, sampling and analytical data during the investigation works;
- Completion of ground penetrating radar (GPR) where underground infrastructure is potentially located;
- Physical observations, including visual and olfactory observations;
- Data quality indicators as assessed by quality assurance/quality control procedures (QA/QC);
- Consideration of the proposed development and site use as provided;
- Adopted assessment criteria from guidelines made or approved by the EPA.

Specifically, sufficient data was required to be collected from the identified potentially impacted media in the identified areas of environmental concern for the associated potential contaminants of concern (Section 4.1).

Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme (3rd Edition).' NSW Environmental Protection Authority, November 2017, EPA (2017)

5.1.4 Define the Site Boundaries

The lateral extent of the site is an area of approximately 38 ha known as the Peat Island Precinct, Mooney Mooney, NSW. (Figure 1 and 2). The vertical extent of the investigation was 3.0 m bgs and extended into natural soils at all locations.

The temporal boundaries were limited to the period of the investigation. Given the investigation objectives, it was not necessary to consider seasonality.

5.1.5 Develop a Decision Rule

The results of the soil assessment were directly compared the initial screening criteria. Should exceedances be identified, consideration of appropriate criteria for the proposed development were considered. In addition, where appropriate, statistical analysis may be undertaken with the following statistical criteria adopted:

- The 95 % Upper Confidence Limit (UCL) on the average concentration for each analyte (calculated for samples collected from consistent soil horizons, stratigraphy or material types) must be below the adopted criterion;
- No single analyte concentration shall exceed 250 % of the adopted criterion; and
- The standard deviation of the results must be less than 50 % of the criterion.

Groundwater results were compared against the adopted criteria for the investigation, data obtained from historical investigations (service station), and appropriate background data, to assess if impact has occurred to the groundwater which would present a risk to the proposed development.

The decision rules adopted to answer the decisions identified in **Section 5.1.2** are summarised in **Table 5.1**.

Table 5.1: Summary of Decision Rules

Decision Required to be Made	Decision Rule
1. Are there any unacceptable risks to likely future onsite receptors from soil?	Statistical analysis of the data was completed in accordance with relevant guidance documents, as appropriate, to facilitate the decisions. The criteria in Section 6 , and the following statistical criteria were adopted with respect to soils:
	Either: the reported concentrations were all below the Site criteria;
	Or: the average site concentration for each analyte was below the adopted site criterion; no single analyte concentration exceeded 250 % of the adopted site criterion; and the standard deviation of the results was less than 50 % of the Site criterion;
	And: the 95 % UCL of the average concentration for each analyte was below the adopted site criterion.
	If the statistical criteria stated above were satisfied, the answer to the decision was No.
	If the statistical criteria were not satisfied, the answer to the decision was Yes.
2. Are there any unacceptable risks to likely future receptors from impacted groundwater?	Groundwater concentrations will be compared against the appropriate criteria as present in Section 6 .
3. Are there any issues relating to the local area background soil concentrations that exceed appropriate soil criteria?	Background soil concentrations as detailed in Trace Element Concentrations in Soils from Rural and Urban Areas of Australia (Henry Olzworthy Et Al. 1995 ⁷) were used for comparison of site soil data. If there were any contaminants at concentrations substantially outside background ranges, then the answer was yes, otherwise the answer was no.

⁷ 'Trace Element Concentrations in Soils from Rural and Urban Areas of Australia', Henry Olszowy Et Al., (Henry Olszowy et Al. 1995)

Decision Required to be Made	Decision Rule	
4. Are there any impacts from chemical mixtures?	Were there more than one group of contaminants present which increase the risk of harm?	
Chemical mixtures:	If there was, the decision was Yes.	
	Otherwise, the decision was No.	
5. Are there any aesthetic issues in fill soils at the site?	If there were any Asbestos Containing Material (ACM) fragments on the ground surface, any unacceptable odours, any soil discolouration, or excessive amounts of anthropogenic material, the answer to the decision was Yes. Otherwise, the answer to the decision was No.	
6.Is there any evidence of, or	Based on assessment results, was there any evidence of, or the potential for,	
potential for, migration of	unacceptable contaminant concentrations to migrate from the Site?	
contaminants off-site?	If yes, the answer to the decisions was Yes.	
	Otherwise, the answer to the decision was No.	
7. Is there any areas of	Based on the results, are there any areas that would be restricted from a residential	
contamination that would restrict	development?	
proposed land use suitability?	If yes, the answer to the decision was Yes.	
	Otherwise, the answer to the decision was No.	
8. Is a remediation or site	Was the answer to any of the above decisions Yes?	
management strategy required?	If yes, a site management/remediation strategy is required.	
	If no, a site management/remediation strategy is not required.	

5.1.6 Specify Limits of Decision Error

This step is to establish the decision maker's tolerable limits on decision errors, which are used to establish performance goals for limiting uncertainty in the data. Data generated during this project must be appropriate to allow decisions to be made with confidence.

Specific limits for this project have been adopted in accordance with the appropriate guidance from NSW EPA, NEPC 2013, appropriate indicators of data quality (DQIs) established for the project as discussed below in relation to precision, accuracy, representativeness, comparability, completeness and sensitivity (PARCCS parameters). The acceptable limit on decision error is 95 % compliance with DQIs.

The DQIs and data assessment criteria are summarised in **Table 5.2**.

- **Precision** measures the reproducibility of measurements under a given set of conditions. The precision of the laboratory data and sampling techniques is assessed by calculating the Relative Percent Difference (RPD) of duplicate samples.
- Accuracy measure the bias in a measurement system. The accuracy of the laboratory data
 that are generated during this study is a measure of the closeness of the analytical results
 obtained by a method to the 'true' value. Accuracy is assessed by reference to the analytical
 results of laboratory control samples, laboratory spikes and analyses against reference
 standards.
- Representativeness expresses the degree which sample data accurately and precisely
 represent a characteristic of a population or an environmental condition.
 Representativeness is achieved by collected samples on a representative basis across the
 site, and by using an adequate number of sample locations to characterise the site to the
 required accuracy.
- Comparability expresses the confidence with which one data set can be compared with another. This is achieved through maintaining a level of consistency in techniques used to collect samples; ensuring analysing laboratories use consistent analysis techniques and reporting methods.
- **Completeness** is defined as the percentage of measurements made which are judged to be valid measurements. The completeness goal is set at there being sufficient valid data generated during the study.

 Sensitivity – expresses the appropriateness of the chosen laboratory methods, including the limits of reporting, in producing reliable data in relation to the adopted site assessment criteria.

Table 5.2: Summary of Data Quality Indicators

Data Quality Indicators	Frequency	Data Quality Criteria
Precision		
Blind duplicates (intra laboratory)	1 / 20 samples	<30 % RPD or agreement
Blind duplicates (inter laboratory)	1 / 20 samples	between asbestos
		presence/absence ¹
Trip spike	1 per sampling event	70-130 % recovery
Laboratory duplicates	1 / 20 samples	<50 % RPD ¹
Accuracy		
Surrogate spikes	All organic samples	70-130 %
Laboratory control samples	1 per lab batch	<lor< td=""></lor<>
Matrix spikes	1 per lab batch	70-130 %
Representativeness		
Sampling appropriate for media and analytes	-	-2
Samples extracted and analysed within holding times	-	Soil: organics (14 days),
		inorganics (6 months)
		Groundwater:
		sTPHs/PAHs (7 days),
		VOCs/vTPHs (14 days),
		Metals (6 months)
Trip blank	1 per sampling event	<lor< td=""></lor<>
Rinsate blank	1 per sampling event	<lor< td=""></lor<>
Comparability		
Standard operating procedures for sample collection and	All samples	All samples
handling		
Standard analytical methods used for all analyses	All samples	All samples
Consistent field conditions, sampling staff and laboratory analysis	All samples	All samples ²
Limits of reporting appropriate and consistent	All samples	All samples
Completeness		
Sample description and COCs completed and appropriate	All samples	All samples ²
Appropriate documentation	All samples	All samples ²
Satisfactory frequency and result for QC samples	All QA/QC samples	95 % compliance
Data from critical samples considered valid	-	Critical samples valid
Sensitivity		
Analytical methods and limits of recovery appropriate for	All samples	LOR <= Site assessment
media and adopted site assessment criteria		criteria

⁽¹⁾ If the RPD between duplicates is greater than the pre-determined data quality indicator, a judgement will be made as to whether the excess is critical in relation to the validation of the data set or unacceptable sample error is occurring in the field.

If any of the DQIs were not met, further assessment was necessary to determine whether the non-conformance significantly affected the usefulness of the data. Corrective actions might have included requesting further information from samplers and/or analytical laboratories, downgrading of the quality of the data or alternatively, re-collection of the data.

5.1.7 Optimise the Decision for Obtaining Data

Various strategies for developing a statistically based sampling plan are identified in EPA (1995), including judgemental, random, systematic and stratified sampling patterns.

Based on the review of historical reports and available information provided for the site, it was considered that sampling from 78 locations was suitable to identify potential contaminating risks.

⁽²⁾ A qualitative assessment of compliance with standard procedures and appropriate sample collection methods will be completed during the DQI compliance assessment.

The sample locations were designed to target areas of environmental concern (AEC) identified within the previous reports. Where potential historically contaminating activities may have occurred, random grid-based sampling was completed within the general vicinity of the AEC.

Due to the consistent site use, the lack of industrial activities to have occurred at the site or in the general area, the generally reliable historical data obtained, review of the previous reports and observations made during the site inspection, it is considered that targeted sampling of the AEC was an appropriate sampling strategy and is in general accordance of with Australian Standard 4482 and NEPC 2013.

Five groundwater monitoring wells were installed targeting the location of known or suspected underground infrastructure (underground storage tanks) which likely contained petroleum hydrocarbons. In addition to the installation of the groundwater wells, previously installed groundwater wells at the service station (three wells) were also sampled. The three wells previously installed were inspected prior to sampling. The wells were free of blockages and were considered to be in adequate condition for sampling. The three previously installed groundwater monitoring wells were installed to a depth between 10 and 10.5m bgs. The screen depths for the wells was between 7 and 10.5m bgs. It was noted that this was below the base of the USTs. During the installation of MW03 by JBS&G (located adjacent to the USTs), it was noted that groundwater was not intercepted until approximately 7m bgs. This was consistent with the reported depth of water in the previously installed groundwater wells. It was noted that the standing water level (SWL) in all groundwater wells was above the screen in the groundwater wells indicating that the groundwater beneath the service station is semi-confined. In addition, as no evidence of staining, volatile (through the use of a PID) and odours were generally identified, it is considered that the groundwater wells are adequate to identify any light non-aqueous phase liquid (LNAPL) associated with the previous use as a service station within the groundwater at the site.

Due to the inconsistencies identified during the review of previous investigations and Dangerous Goods records, it was considered that a geophysical survey (ground penetrating radar (GPR)) be used. The use of the GPR was completed in areas where USTs had been previously indicated (by Dangerous Goods records on Peat Island) or suspected from observations made during the site inspection (former service station). The results of the GPR are summarised in **Section 5.2**.

Where building rubble is identified within fill material and dilapidated buildings where ACM was previously identified within the Asbestos Register, ACM was considered a contaminant of concern. ACM was assessed during the investigation through visual assessment and the collection and analysis of soil and ACM fragment samples (where identified).

Due to the dense vegetation located in the northern area of Portion 1, the majority of Portion 6, the eastern area of Portion 8 and the central area od Portion 11, soil sampling was not completed in these areas due to access constraints. A limited site inspection was completed at these locations and observations did not identify the presence of significantly contaminating features which would prevent the proposed development. Due to the dense vegetation and lack of historical use, it is considered that contamination at these locations would be low.

A summary of the sampling and analysis plan completed is provided in **Table 5.3**.

Table 5.3: Sampling and Analysis Plan Completed

Portion	Area of Concern	Media and Sampling method	Summary	Analysis
Portion 1 Former Laundry, education and leisure centre	 Generator Former large laundry UST associated with Laundry (possibly two tanks based on Dangerous Goods Records) Potential of unknown origin fill material Hazardous building material associated with the buildings 	Groundwater (two wells) Installed via solid flight auger (GW01 and GW02) Soil (seven locations) Five locations advanced via test pit (SS09 to SS13) Two via solid flight auger (GW01 and GW02)	 Fill material – estimated to be between 0.1 and 0.7 m bgs End of hole between 0.3 and 5.0 m bgs. 	 Heavy Metals – seven samples TRH/BTEX – five samples PAH – one sample OCP/PCB - one sample
Portion 2 Administration Building and Reclaimed Land	 Aboveground storage tank (AST) (diesel) Reclaimed land along water edge Hazardous building material associated with the buildings Former sewage treatment 	Soil (ten locations) Two locations via hand auger (SS69 and SS71) Eight via Test pit (SS14, SS15, SS16, SS18, SS19, SS23, SS24, SS31)	 Fill material – estimated to be between 0 and 0.3 m bgs End of hole between 0.1 and 3.5 m bgs. 	 Heavy Metals – eight samples TRH/BTEX – three samples PAH – one sample OCP/PCB – two samples
Portion 3 Peat Island	 Above Ground Storage Tanks (diesel) Painters shed Cleaners shed Potential fill material Hazardous building material associated with the buildings Dangerous goods search indicated 1x 5250 L Petrol UST, 1x 2250 L Petrol UST, 1 x Compressed Chlorine Gas, 2x LPG gas tanks, 1x 4000 L diesel AST UST, bowser and vent line adjacent to wharf Potential burial of human remains on Peat Island 	Groundwater (two locations) Installed via solid flight auger (GW04 and GW05) Soil (14 locations) Ten via test pit (SS01 to SS08, SS27 and SS28) Two via hand auger (SS30 and SS73) Two via solid flight auger (GW04 and GW05)	 Fill material – estimated to be between 0.15 and 1.7 m bgs End of hole between 0.1 and 1.8 m bgs. No evidence of UST identified via GPR 	 Heavy Metals – 16 samples TRH/BTEX – 12 samples PAH – five samples OCP/PCB – three samples Asbestos – six samples
Portion 4 Western Foreshore	Potential Fill material associated with reclaimed Land along water edge	Soil (two locations) Two via test pit (SS25 and SS26)	 Fill material – estimated to be to a depth of 0.2m bgs. End of hole between 0.5 and 1.3 m bgs. 	 Heavy Metals – two samples TRH/BTEX – one sample PAH – one sample OCP/PCB – one sample
Portion 5 Wharf	Potential Fill materialWood Preservatives	Soil (two locations) one via test pit (SS17) one via hand auger (SS40)	 Fill material – estimated to be between 0 and 0.6 m bgs. End of hole between 0.1 and 1.1 m bgs. 	 Heavy Metals – two samples TRH/BTEX – one sample PAH – one sample OCP/PCB – one sample

Portion	Area of Concern	Media and Sampling method	Summary	Analysis
Portion 6 Church and Cottages and bushland	 Hazardous building material associated with the buildings AST of heating oil 	Soil (nine locations) - three via hand auger (SS48*, SS68 and SS72) - six via test pit (SS33, SS35, SS37, SS39, SS41, SS42)	 Fill material – estimated to be between 0 and 0.3 m bgs. End of hole between 0.1 and 2.0 m bgs. 	 Heavy Metals – nine samples TRH/BTEX – four samples PAH – four sample OCP/PCB – three samples Asbestos – one sample PH, % Clay, CEC – one sample
Portion 7 Service Station	 Hazardous building material associated with the buildings USTs (two, possibly three tanks) Potential fill material 	Groundwater (four locations) - one via solid flight auger (GW03) - three existing (MW01 to MW03) Soil (two locations) - one via test pit (SS29) - one via solid flight auger (GW03)	 Fill material – estimated to be between 0.3 and 3.0 m bgs. End of hole depth between 3.0 and 10.0 m bgs. Three USTs identified via GPR 	 Heavy Metals – four samples TRH/BTEX – three samples PAH – two samples
Portion 8 Cottages	 Hazardous building material associated with the buildings USTs (two, possibly three tanks) Potential fill material 	Soil (10 locations) Advanced via hand auger (SS56 to SS65)	 Fill material – estimated to be between 0.1 and 0.4 m bgs. End of hole between 0.2 and 0.5 m bgs. 	 Heavy Metals – 12 samples TRH/BTEX – four samples PAH – one sample OCP/PCB – three samples Asbestos – one sample PH, % Clay, CEC – one sample
Portion 9 DEC School Farms and rural fire service depot	 Former Orchard Septic Tank Possible storage/use of AFFF 	Soil (four locations) Two via hand auger (SS46, SS47) Two via test pit (SS43, SS44)	 Fill material – estimated to be between 0 and 0.3 m bgs. End of hole between 0.1 and 0.3 m bgs. 	Heavy Metals – four samples TRH/BTEX – one sample
Portion 10 Cottages	Hazardous building material associated with the buildings Oyster	Soil (five locations) - three via test pit (SS45, SS48 and SS49) - two via hand auger (SS54 and SS55)	 Fill material – estimated to be between 0.1 and 0.2 m bgs. End of hole between 0.1 and 1.4 m bgs. 	 Heavy Metals – three samples PFAS – two samples
Portion 11 Reclaimed land associated with Mooney Mooney Point	Fill of unknow originAcid sulphate soils	Soil (six locations) three via test pit (SS20 to SS22) three via hand auger (SS32, SS34, SS36)	 Fill material – estimated to be between 0 and 0.7 m bgs. End of hole between 0.2 and 2.5 m bgs. 	 Heavy Metals – six samples TRH/BTEX – three samples PAH – one sample OCP/PCB – two samples Asbestos – two samples

Portion	Area of Concern	Media and Sampling method	Summary	Analysis
Portion 12 Rest Stop	Fill of unknow originRunoff from Highway	Soil (five locations) - advanced via hand auger (SS50 to SS53 and SS70)	 Fill material – estimated to be between 0.1 and 0.4 m bgs. End of hole between 0.1 and 0.4 m bgs. 	 Heavy Metals – four samples OCP/PCB – one sample PH, % Clay, CEC – one sample PFAS – one sample
Portion 13 Ambulance Station	 Hazardous building material associated with buildings Potential USTs to service ambulances 	Soil (two locations) advanced via hand auger (SS66 and SS67)	 Fill material – estimated to be between 0.1 and 0.2 m bgs. End of hole between 0.2 and 0.7 m bgs. 	 Heavy Metals – three samples TRH/BTEX – two samples PAH – two samples OCP/PCB – one sample Asbestos – one sample

5.2 Ground Penetrating Radar

A GPR survey was completed at the former service station (Portion 7) and on Peat Island (Portion 3) where underground infrastructure was suspected to be located. This was completed to provide additional information associated with data gaps regarding historical USTs at the site. Historical Dangerous Goods records indicated the historical presence of up to three USTs on Peat Island (Portion 3), however no indicators of the USTs were identified during the site inspection. It was noted that the Dangerous Goods records indicated at least two of the USTs were to be decommissioned, however it was unknown if this occurred. No Dangerous Goods records were available for the former service station, however the site inspection identified the presence of three fill points, however the locations and status of the USTs was unknown.

5.2.1 Service Station (Portion 7)

The GPR survey at the service station identified the presence of three underground storage tanks (USTs). This is consistent with site observations where three fill points were observed within the service station boundary. The USTs were located within an unsealed area to the north of the service station concrete forecourt. The dip points were exposed to allow an inspection of the USTs. It was noted that one of the UST had been decommissioned by concrete filling. The remaining two USTs were accessed, and dipsticks were located within the dip points. The dip sticks indicated that the USTs were approximately 10,000L each. The northern most UST was noted to contain approximately 2000L of fuel or a fuel/water mix. The locations of the identified USTs are shown in **Figure 4**.

5.2.2 Peat Island (Portion 3)

A review of the licensed Dangerous Goods Register provided in 2013 identified three locations on Peat Island where USTs were potentially located. During the site inspection, no evidence of USTs (including dip points, fill points, vent pipes or bowsers) were observed. The GPR survey also failed to identify potential location for the USTs (associated with disturbed material). The potential UST located in the south eastern portion of Peat Island was licensed in 1949 and was likely associated with refilling of boats which operated between the mainland and Peat Island. Following the completion of the causeway (understood to be circa 1957), it is considered likely that the UST became redundant. The two remaining USTs appeared to have remained licensed until at least 2003 where records indicated the USTs were reported for decommissioning.

As no indicators of the USTs were identified via visual observation or the GPR survey, a groundwater wells were installed within the vicinity of the suspected locations to allow a greater assessment of significant impact associated with leaks or spills from the USTs. Soil samples were also collected the in the general area where the USTs may have been located.

5.3 Identified Above Ground and Underground Storage Tanks

A review of the previous historical records, site observations and the completion of the GPR survey at selected locations as outlined within **Section 5.2** identified the presence of ASTs and USTs at the site. A summary of the ASTs and USTs identified is provided in **Table 5.4**

Table 5.4: Identified ASTs and USTs

Туре	Location	Approximate Size	Status
	Portion 3 (Peat Island)	4,000L	Empty
AST	Portion 2 (Administration Building and Reclaimed Land)	1,000L	Empty
	Portion 1 (Former Laundry)	2,200L	Unknown
LPG	Portion 3 (Peat Island)	1,000L	Unknown
	Portion 3 (Peat Island)	2,000L	Unknown
	Portion 9 (School)	1,000L	Unknown
	Portion 6 (Church)	1,250L	Unknown
UST		10,000L	Decommissioned
	Portion 7 (Service Station)	10,000L	Empty
	(2000)	10,000L	Approximately 2000L fuel or fuel / water mix
	Portion 1 (Former laundry, education and leisure centre)	Unknown	Unknown

5.4 Soil Investigation

5.4.1 Soil Sampling Methodology

5.4.1.1 General Site

Soil samples were collected from test pits via mechanical excavation, hand auger, grab samples from solid flight auger or hand tools between 17 September and 28 September 2018. Where possible, samples were collected via test pitting to allow visual assessment of the underlying soils. Soil samples were collected from the centre of the excavator bucket with collection of the sample completed with a fresh pair of nitrile gloves. Where hand augers were used, the samples were collected from the hand auger with a fresh pair of nitrile gloves and placed within the appropriate jars for analysis. During the installation of the groundwater monitoring wells, grab samples were also collected from the spoil with a fresh pair of nitrile gloves and placed within appropriate jars for analysis. All samples were placed within a cooler for transport to the laboratory.

During the collection of soil samples, features such as seepage, discolouration, staining, odours and other indicators of potential contamination were noted on test pit logs if observed (**Appendix E**). Soil bags were collected for the purposes of volatile field screening with the use of the PID with readings reported on the test pit logs (**Appendix E**). Calibration records for the PID are provided in **Appendix J**. The PID was calibrated daily prior to use with calibration certificates provided in **Appendix J**.

Collected soil samples were immediately transferred to laboratory supplied sample jars and polyethylene zip lock bags. The sample containers were labelled, sealed and transferred to an esky for sample preservation prior to and during shipment. A chain-of-custody form was completed and forwarded with the samples to the testing laboratory and is attached as **Appendix F**.

Not all soil samples collected were analysed. Samples were analysed in accordance with the analytical schedule (Section 5.4).

5.4.1.2 PFAS locations

All samples collected for PFAS analysis were collected via a shovel to prevent any potential cross contamination of potentially PFAS impacted soil. All samples were collected with a fresh pair of PFAS free gloves. The samples were placed within laboratory supplied jars with the absence of Teflon-lined lids. Care was also taken the ensure that soils did not come into contact with clothing,

plastic food wrappers or other items which potential contain PFAS. Each sample was labelled with the use of a ball point pen.

5.4.2 Soil Sampling Summary

Based on the review of previous environmental investigations, historical review, observations made during site inspections and discussions with the site owner, the investigation was completed to assess areas of environmental concern that would restrict the proposed redevelopment of the site. A summary of the soil investigation completed for each portion at the site is provided in **Table A**.

It was noted during the site inspection that the northern area of Portion 1, the majority of Portion 6, the eastern area of Portion 8 and the central area of Portion 11 were density vegetated.

5.5 Groundwater Investigation

5.5.1 Installation of New Groundwater Monitoring Wells

New groundwater monitoring wells were constructed from PVC (Class 18) casing and pre-slotted screen were installed into a drilled borehole such that the screen interval was across the groundwater. Gravel pack (clean graded sand) was added to the annulus across the screen interval and then sealed by bentonite. Construction details are provided in **Appendix E**. All groundwater monitoring wells were drilled using solid flight auger, however hard sandstone was encountered within monitoring wells GW02 and GW03 where air hammer was used to drill to the depth required for the installation of the groundwater monitoring well.

5.5.2 Development of Groundwater Monitoring Wells

Following installation, the installed groundwater monitoring wells were developed to remove any impact to the groundwater caused during the drilling and installation process. The groundwater monitoring wells were developed using a "foot valve". Removal if the groundwater occurred until the groundwater became clear (no evidence of drilling impact) or at least until 60L of groundwater was removed.

The newly installed groundwater monitoring wells were allowed to settle (equilibrate) for at least 5 days after development. In addition, due to the length of time between sampling events, all previously installed groundwater wells were redeveloped at least 3 days prior to purging and sampling.

5.5.3 Groundwater Sampling Methodology

Prior to sampling, the monitoring wells were purged by micropurge pump (bladder pump). Standing water within the monitoring wells was pumped out at the highest possible flow rate while ensuring that minimal fluctuations in depth to water occurred. Standing water levels were continuously monitored and sample flow rates were altered to minimise groundwater drawdown. A flow cell was used to facilitate the continuous monitoring of water quality parameters using a water quality meter, that included: electrical conductivity (EC); redox potential (Eh); pH; dissolved oxygen (DO); and temperature. As per sampling guidance provided by the Victorian EPA (April 2000) — Groundwater Sampling Guidelines, groundwater samples were collected when field parameters had stabilised as follows:

- Consecutive EC readings are within 3%;
- Consecutive Eh readings are within 10mV;
- Consecutive DO readings are within 10%; and
- Consecutive pH readings are within 0.5.

The micropurge pump was placed at approximately halfway of the screened depth to ensure that all groundwater purged and collected was representative of the aquifer. It is considered that the

potential for stagnant water mixing with groundwater samples are low due to the redevelopment of the groundwater wells at least 5 days prior to groundwater sampling.

Sampling notes were completed for each monitoring well detailing parameter stabilisation and sampling observations. The sampling notes are provided in **Appendix G**. Collected groundwater samples were immediately transferred to laboratory supplied sample bottles specific to each analyte. Samples for metal analysis were filtered $(0.45\mu m)$ in the field prior to transfer to a preacidified laboratory prepared bottles. Sample containers were then transferred to a chilled cooler for sample preservation prior to and during shipment to the testing laboratory. A fresh pair of nitrile gloves were used between each sample collection. Sample preparation and preservation was completed in accordance with the protocols outlined within NEPC 2013.

5.5.4 Decontamination

All samples were collected with the use of a fresh pair of nitrile gloves. Rinsate samples were collected where reusable equipment was used during the samples collection process. Hand tools including the hand auger was washed with Decon 90 and rinsed with deionised water between each sample location. Where samples were collected for PFAS analysis using a shovel, the shovel was washed with PFAS free detergent and rinsed with deionised water between each sample location.

At the completion of groundwater sampling at each location, single use equipment was disposed of and re-usable equipment including the interface probe were decontaminated as follows:

- Pressure spray with Decon 90 detergent and potable water mix;
- Pressure spray rinse with potable water; and
- Air drying.

5.5.5 Duplicate and Triplicate Sample Preparation

Field duplicate and triplicate soil samples were obtained during sampling using the above sampling methods. The collected samples were then divided laterally into three samples within minimal disturbance to reduce the potential for loss of volatiles and placed in three glass jars or sample bags as appropriate. Each sample was then labelled with a primary, duplicate or triplicate sample identification before being placed in the same chilled esky for laboratory transport.

5.6 Laboratory Analyses

JBS&G subcontracted Eurofins MGT Ltd (Eurofins) at Lane Cove, NSW as the primary laboratory for the required analyses. The secondary laboratory for the works was Envirolab Services Pty Ltd (Envirolab) at Chatswood. Both laboratories are NATA accredited for the required analyses. Laboratory analysis of samples was conducted with reference to COPCs identified for the site. The analytical schedule adopted for the investigation is summarised in **Table 5.4** below.

Table 5.5: Analytical Schedule

Area of Environmental Concern (AEC)	No. of Sampling Locations	No. of Analyses (excl. QA/QC)	
Soil	78 locations	Heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) – 81	
		samples (selected samples also included Ag, Mo,	
		Se, Sn)	
		Petroleum Hydrocarbons – 20 samples	
		PAHs – 20 samples	
		OCPs, PCBs – 20 samples	
		Asbestos – 13 samples (500mL per NEPC 2013)	
		Ecological Parameters (% Clay content, CEC & pH) -	
		3 samples	
		PFAS – 6 samples	
Groundwater	8 locations	TRH/BTEXN – 8 samples	
		PAH – 8 samples	
		VOCs – 3 samples	

Heavy metals (A	s, Cd, Cr, Cu, Hg, Ni, Pb, Zn) – 8
samples	

In addition to the primary sample analyses as outlined in **Table 5.3** below, field QA/QC samples were collected/prepared and submitted for analysis at the densities required to meet the project DQI requirements outlined in **Table 5.2**.

6. Assessment Criteria

Site assessment criteria have been adopted with consideration to aspects of the following guidelines, as relevant:

- National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1), National Environment Protection Council (NEPC 2013);
- Contaminated Sites: Sampling Design Guidelines, NSW EPA, 1995 (EPA 1995);
- Guidelines for consultants reporting on contaminated land: Contaminated land guidelines, NSW EPA, 2020 (EPA 2020);
- Contaminated Sites: Guidelines for the NSW Site Auditor Scheme, 3rd Edition, NSW EPA, 2017 (EPA 2017);
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018);
- Australian Drinking Water Guidelines 6, National Health and Medical Research Council, 2011 (ADWG 2011); and
- PFAS National Environmental Management Plan Version 2.0 (NEMP) (HEPA 2020).

In addition, Managing Land Contamination, Planning Guidelines SEPP 55 – Remediation of Land was considered for this investigation.

6.1 Soil Assessment Criteria Selection

6.2 Assessment Criteria

The site may be developed for a range of future land uses including tourism, commercial, open space and residential. Noting that use of the site for residential use would be the most sensitive potential land-use scenario, concentrations of contaminants will be initially screened against NEPC (2013) health-based investigation and screening levels (HILS and HSLs), and ecological investigation and screening levels (EILs and ESLs), for residential land use scenarios where there is access to surface soils.

Where required, results will be statistically assessed.

The adopted screening criteria for PFAS was based on the PFAS National Environment Management Plan.

Where appropriate, after consideration of relevant ESLs and HSLs for TRH fractions, NEPC (2013) Management Limits for TPH fractions may be utilised.

Table 6.1 Health Based Soil Investigation Criteria and Hydrocarbon Management Limits

	Limit of Reporting	Laboratory Method	Health Investigation/ Screening Levels Residential A (mg/kg)	Management Limits ⁵ Residential, parkland and open space (mg/kg)
METALS				
Arsenic	2.0	ICP-AES (USEPA 200.7)	100	-
Cadmium	0.4	ICP-AES (USEPA 200.7)	20	-
Chromium	5.0	ICP-AES (USEPA 200.7)	100 ¹	-
Chromium (VI)	5.0	Alkali leach colorimetric (APHA3500-Cr/USEAP3060A)	100	-
Copper	5.0	ICP-AES (USEPA 200.7)	6000	-
Nickel	5.0	ICP-AES (USEPA 200.7)	400	-
Lead	5.0	ICP-AES (USEPA 200.7)	300	-
Zinc	5.0	ICP-AES (USEPA 200.7)	7400	-
Mercury (inorganic)	0.05	Cold Vapour ASS (USEPA 7471A)	402	-

	Limit of Reporting	Laboratory Method	Health Investigation/ Screening Levels Residential A (mg/kg)	Management Limits ⁵ Residential, parkland and open space (mg/kg)
POLYCYCLIC AROM	IATIC HYDR	OCARBONS		
Carcinogenic PAHs (as B(a)P TPE) ³	0.5	GCMS (USEPA8270)	3	-
Naphthalene	0.5	GCMS (USEPA8270)	36	=
Total PAHs ⁴	0.5	GCMS (USEPA8270)	300	=
ORGANOCHLORINI	E PESTICIDE	S		
DDT+DDE+DDD	0.05	LTM-ORG-2220	240	-
Aldrin and dieldrin	0.05	LTM-ORG-2220	6	-
Chlordane	0.1	LTM-ORG-2220	50	-
Endosulfan	0.05	LTM-ORG-2220	270	-
Endrin	0.05	LTM-ORG-2220	10	=
Heptachlor	0.05	LTM-ORG-2220	6	-
НСВ	0.05	LTM-ORG-2220	10	-
Methoxychlor	0.2	LTM-ORG-2220	300	-
Toxaphene	1	LTM-ORG-2220	20	-
BENZENE, TOULEN	E, ETHYLBE	NZENE and XYLENES		
Benzene	0.1	Purge Trap-GCMS (USEPA8260)	0.5 ⁶	-
Toluene	0.1	Purge Trap-GCMS (USEPA8260)	160 ⁶	-
Ethylbenzene	0.1	Purge Trap-GCMS (USEPA8260)	55 ⁶	-
Total Xylenes	0.3	Purge Trap-GCMS (USEPA8260)	40 ⁶	-
TOTAL RECOVERAE				
F1 C ₆ -C ₁₀ ⁷	10	TPH Purge Trap-GCMS (USEPA8260)	45 ^{6,}	700 ⁵
F2 >C ₁₀ -C ₁₆	50	TPH Purge Trap-GCMS (USEPA8260)	110 ⁶	10005
F3 >C ₁₆ -C ₃₄	100	TPH Purge Trap-GCMS (USEPA8260)	-	25005
F4 >C ₃₄ -C ₄₀	100	TPH Purge Trap-GCMS (USEPA8260)	-	100005
OTHER ORGANICS				
РСВ	0.5	LTM-ORG-2220	1	-
ASBESTOS				
Bonded ACM within fill materials	_	PLM / Dispersion Staining (500 mL sample)	0.01% v	v/w
Asbestos fines/fibrous asbestos (FA/AF)	-	PLM / Dispersion Staining (500 mL sample)	0.001%	w/w
Surface soils (0-0.1 m)	No visible a	sbestos		
PFAS				
PFOS/PFHxS	0.000005	LTM-ORG-2100 Per – and Polyfluoroalkyl Substances	0.01	-
PFOA	0.000005	LTM-ORG-2100 Per – and Polyfluoroalkyl Substances	0.1	-

Notes:

- 1. Guideline values presented are for Chromium (VI) in absence of total Chromium values. Where total Chromium results are elevated, samples will be analysed for Chromium (VI).
- 2. Guideline values are for inorganic mercury. Where elevated mercury concentrations are encountered and/or site information suggests the potential presence of elemental mercury and/or methyl mercury, consideration of applicability would be needed.
- 3. Carcinogenic PAHs calculated as per Benzo(a)pyrene Toxicity Equivalent Factor requirements presented in NEPC 2013.
- 4. Total PAHs calculated as per requirements presented in NEPC 2013.
- 5. Management Limits are based on coarse grained soil, with F1 and F2 concentrations inclusive of naphthalene and BTEX compounds.

- 6. Soil Health Screening Levels for Vapour Intrusion: Sand Soils. Values presented are those for 0 to <1 m below ground surface (bgs) for low high residential land use. Reference should be made to results tables for further detail of levels at greater depths. NL: Non-limiting.
- 7. Values for F1 C6-C9 are obtained by subtracting BTEX (Sum) from laboratory result for C6-C9 TRH.

Table 6.2 Ecological Screening and Investigation Levels

	Limit of Reporting	Laboratory Method	ESLs Urban Residential and public open space (mg/kg) ¹	EILs (Aged) ³ Urban Residential and public open space (mg/kg)
METALS				
Arsenic	4.0	ICP-AES (USEPA 200.7)	-	100
Cadmium	0.4	ICP-AES (USEPA 200.7)	-	=
Chromium	1.0	ICP-AES (USEPA 200.7)	-	460
Chromium (VI)	1.0	Alkali leach colorimetric (APHA3500-Cr/USEAP3060A)	-	-
Copper	1.0	ICP-AES (USEPA 200.7)	-	100
Nickel	1.0	ICP-AES (USEPA 200.7)	-	35
Lead	1.0	ICP-AES (USEPA 200.7)	-	1100
Zinc	1.0	ICP-AES (USEPA 200.7)	-	460
Mercury (inorganic)	0.1	Cold Vapour ASS (USEPA 7471A)	-	-
POLYCYCLIC ARON	ATIC HYDR	OCARBONS		
Benzo(a)pyrene	0.5	GCMS (USEPA8270)	0.7	-
Naphthalene	0.1	GCMS (USEPA8270)	-	170
ORGANOCHLORIN	E PESTICIDE	S		
DDT	0.05	LTM-ORG-2220	180	-
BTEX	<u>, </u>			
Benzene	1.0	Purge Trap-GCMS (USEPA8260)	50	-
Toluene	1.0	Purge Trap-GCMS (USEPA8260)	85	-
Ethylbenzene	1.0	Purge Trap-GCMS (USEPA8260)	70	-
Total Xylenes	3.0	Purge Trap-GCMS (USEPA8260)	105	-
TOTAL RECOVERA	BLE HYDRO	CARBONS		
F1 C ₆ -C ₁₀	10	TPH Purge Trap-GCMS (USEPA8260)	180 ²	-
F2 >C ₁₀ -C ₁₆	50	TPH Purge Trap-GCMS (USEPA8260)		-
F3 >C ₁₆ -C ₃₄	100	TPH Purge Trap-GCMS (USEPA8260)		-
F4 >C ₃₄ -C ₄₀	100	TPH Purge Trap-GCMS (USEPA8260)	2800	-

Notes:

- 1. ESLs Urban Residential and public open space (mg/kg) coarse grained soils.
- 2. Values for F1 C6-C9 are obtained by subtracting BTEX (Sum) from laboratory result for C6-C9 TRH.
- 3. ElLs will be derived using site specific data using NEPC 2013 methodology, using the ElL calculator.

Where there were no NSW EPA endorsed thresholds the laboratory LOR was adopted as an initial screening value for the purposes of this assessment.

EILs for some metals were derived using site specific data reported for pH, cation exchange capacity (CEC), and clay content, consistent with NEPC (2013) guidelines.

The results of asbestos analysis were assessed in general accordance with NEPC (2013) including DOH (2009) guidance.

To derive EILs for selected inorganic COPCs, the pH, cation exchange capacity (CEC) and percent clay content for soils at the site were obtained. A total of three samples were collected for analysis from three different portions of the investigation area. For the purposes of deriving appropriate EILs, the average of the three samples was used. Based on this information the following criteria for copper, nickel, chromium and zinc in **Table 6.3** were derived for urban residential and public open space land use scenarios with access to soil using the EIL spreadsheet provided in the NEPC 2013. Additionally, NEPC 2013 provides generic EILs for lead, arsenic, DDT and naphthalene, as shown in **Table A** (Appendix A).

Table 6.3: Derived EIL criteria for urban residential and public open space land use

рН	CEC (meq/100g)	Clay Content (%)	Cu (mg/kg)	Ni (mg/kg)	Zn (mg/kg)	Cr (mg/kg)
6	5	>10	100	35	210	460

6.3 Groundwater Assessment Criteria Selection

The assessment criteria provided in **Table 6.4** have been adopted from the following guidelines:

- NEPC (2013) criteria for the protection of marine water;
- Primary Contact Recreation (PCR) criteria derived in accordance with NHMRC (2008) and NHMRC (2011, as amended 2017); and
- Vapour intrusion based HSLs provided in the 2013 ASC NEPM.

It is considered that due to the presence of a reticulated water system, the extraction of groundwater for drinking purposes is considered unlikely.

Table 6.4: Groundwater Criteria (all units in mg/L unless otherwise shown)

	Limit of Reporting	Laboratory Method	Recreation Criteria ¹	Aquatic Ecosystem Criteria ²	Health Screening Levels Residential Sand (NEPC 2013) ³	Adopted GAC
Metals						
Arsenic (As V)	0.001	ICP-AES (USEPA 200.8)	0.16	0.0138	-	0.013
Cadmium	0.001	ICP-AES (USEPA 200.8)	0.02	0.0007	-	0.0007
Chromium (Cr VI)	0.001	ICP-AES (USEPA 200.8)	-	0.0044	-	0.0044
Copper	0.001	ICP-AES (USEPA 200.8)	20	0.0013	-	0.0013
Lead	0.001	ICP-AES (USEPA 200.8)	0.1	0.0044	-	0.0044
Nickel	0.001	ICP-AES (USEPA 200.8)	0.2	0.007	-	0.007
Zinc	0.001	ICP-AES (USEPA 200.8)	-	0.015	-	0.015
Mercury	0.0001	ICP-AES (USEPA 200.8)	0.01	0.00001	-	0.00001
TRH						
F1 C ₆ -C ₁₀	0.2	P&T GC/MS (USEPA 8020A, 8000)	-	-	1	1
F2 >C ₁₀ -C ₁₆	0.05	P&T GC/MS (USEPA 8020A, 8000)	-	-	1	1
BTEX						
Benzene	0.001	P&T GC/MS (USEPA 8020A)	0.01	0.5	0.8	0.001
Toluene	0.001	P&T GC/MS (USEPA 8020A)	8	0.18 ⁵	NL	0.18
Ethylbenzene	0.001	P&T GC/MS (USEPA 8020A)	3	0.0055	NL	0.005
m-Xylene	0.001	P&T GC/MS (USEPA 8020A)		0.0754	NL	0.075
p-Xylene	0.001	P&T GC/MS (USEPA 8020A)	6	0.24	NL	0.2
o-Xylene	0.001	P&T GC/MS (USEPA 8020A)		0.354	NL	0.35
PAHs						
Naphthalene	0.0001	GCMS (USEPA8270)	-	0.016	NL	0.016
Fluoranthene	0.0001	GCMS (USEPA8270)	-	0.001	-	0.001
Phenanthrene	0.0001	GCMS (USEPA8270)	-	0.0006	-	0.0006
Benzo(a)pyrene	0.0001	GCMS (USEPA8270)	0.0001	0.000014	-	0.00001

Notes:

 $^{^{1}}$. Drinking Water NHMRC (2017) by a factor of 10

². Freshwater criteria adopted where no marine water criteria available

³. NEPC (2013) B1 – Table 1A(4) HSL A & B low-high density residential health screening values for vapour intrusion – sandy soils 4-8 m+ as the most representative potential criterion. NL: Non limiting

⁴. Trigger values – protection level for 99 % species

⁵. Low reliability trigger value (ANZECC/ARMCANZ 2000)

⁶. Arsenic in drinking water criteria threshold is based on arsenic (total), not arsenic V.

 $^{^{\}rm 8}$ Freshwater Criteria adopted where no marine water criteria available

7. Quality Assurance / Quality Control

A discussion of the quality control results is discussed in **Appendix I**. It is considered that results of the field and laboratory QA/QC program indicate the data obtained from the sampling and analysis are of suitable quality to achieve the objectives of the investigation.

8. Discussion of Investigation Results

8.1 Soil Observations

Soil encountered at the site during the field works is summarised below. Test pit logs, bore logs and groundwater monitoring well logs are included in **Appendix E**.

The ground surface was predominantly covered in buildings, hardstand or grass. Evidence of filling was observed in the near foreshore areas of the proposed development and on Peat Island. Fill material use on Peat Island consisted of building rubble, concrete, bricks, road base and large sandstone boulders. Fill material used in the foreshore area of Portion 11 (southern portion of the site) generally consisted of large sandstone boulders and possible dredging or beach sands due to the presence of shells. These filling areas were generally associated with reclamation of land.

Fill material identified at other portions of the site generally consisted of silty sand or sandy silt. The fill material identified is likely to have been sourced locally and was potentially reworked natural material. Inclusions within the fill material were generally limited to sandstone gravels with the occasional minor anthropogenic material. Where significant filling has occurred on the mainland (Portion 4 and southern area of Portion 11), the fill material appeared to generally consist of sandstone. It was noted that from historical aerial photographs, these areas appeared to be filled/reclaimed during the construction of the M1 Motorway which was cut into the sandstone during construction. As such, it is considered the sandstone fill material was likely sourced from the cuttings of the sandstone associated with the construction of the M1 Motorway and are not considered to pose a significant environmental risk. Fill material identified at the northern and southern portions of Peat Island (Portion 3)

The underlying natural soil generally consisted of silty sand, clayey and or sand overlying weathered sandstone. The depth to sandstone generally depended on the topography of the site with sandstone generally identified at shallower depth in the highest elevation areas of the site.

Fragments of ACM were observed on the surface of the site at Portion 1 and Portion 3. The ACM fragments appeared to be associated with dilapidated buildings within the near vicinity. During the investigation ACM was observed within fill at one sample location (SSO3). Large ACM sheets were observed approximately 0.4m below the surface. Building rubble was also observed within the test pit indicating that a previous site building may have been used as fill material at this location. Test pits completed within the vicinity of SSO3 did not identify the presence of ACM.

General rubbish was observed at some locations across the site, however it is considered unlikely that the general rubbish would have chemically impacted the site.

An inspection of the construction material for the causeway between Peat Island (Portion 3) and the Mainland (Portion 2) was completed. The material appeared to be predominantly sandstone. It is understood that the causeway was originally constructed circa 1900's and completed circa 1957. On the basis of the sandstone material observed, it was considered that the causeway was unlikely to present a significant risk and investigation of the causeway was not required.

Field works completed on Peat Island (Portion 3) where the USTs were previously indicated did not identify any evidence of USTs at these locations, which was considered consistent with the results of the GPR survey and site observations.

Selected locations were assessed within the field for the presence of acid sulfate soils or potential acid sulfate soils (ASS/PASS). The results of the field screening indicated that PASS may occur below the depth of groundwater in the northern and southern areas of Peat Island, however due to the collapsing material, representative samples could not be collected for laboratory analysis.

8.2 Soil Analytical Results

The soil sampling locations are shown in **Figure 3** and summarised laboratory results and assessment criteria are presented in **Table A** (**Appendix A**). The soil analytical results are discussed in the following sections.

8.2.1 Heavy Metals

8.2.1.1 Portion 1

Heavy metals were reported either below the laboratory LOR or the adopted site criteria (human health and ecological) in all samples selected for analysis.

8.2.1.2 Portion 2

Heavy metals were generally reported either below the laboratory LOR or the adopted site criteria (human health and ecological) in samples selected for analysis. Sample SS15 0-0.1 located within the surface soil identified a lead concentration of 380mg/kg, above the HSL of 300mg/kg for a residential land use. In addition, sample SS15 0-0.1 identified a zinc concentration of 260mg/kg above the EIL of 210mg/kg.

8.2.1.3 Portion 3

Heavy metals were reported either below the laboratory LOR or the adopted site criteria in all samples selected for analysis, with the exception of exceedances of ecological criteria by nickel (SS02 0-0.1 and SS02 0.5-0.6) and zinc (SS07 0-0.1 and SS30 0-0.1).

8.2.1.4 Portions 4 to 7

Heavy metals were reported either below the laboratory LOR or the adopted site criteria (human health and ecological) in all samples selected for analysis.

8.2.1.5 Portion 8

Heavy metals were reported either below the laboratory LOR or the adopted site criteria in all samples selected for analysis except one sample (SS64 0-0.1) with a nickel concentration of 36mg/kg marginally above the adopted ecological criteria of 35mg/kg.

8.2.1.6 Portion 9

Heavy metals were reported either below the laboratory LOR or the adopted site criteria in all samples selected for analysis, except as follows. One sample (SS44 0-0.1) identified a zinc concentration of 450mg/kg above the adopted ecological criteria of 210mg/kg.

8.2.1.7 Portion 10

Heavy metals were reported either below the laboratory LOR or the adopted site criteria (human health and ecological) in all samples selected for analysis.

8.2.1.8 Portion 11

Heavy metals were reported either below the laboratory LOR or the adopted site criteria (human health and ecological) in all samples selected for analysis.

8.2.1.9 Portion 12

Heavy metals were generally reported either below the laboratory LOR or the adopted site criteria in all samples selected for analysis, except as follows. A lead concentration of 530mg/kg was identified within sample SS50 0-0.1 above the adopted HSL of 300mg/kg. All reported concentrations were below the adopted ecological criteria.

8.2.1.10 Portion 13

Heavy metals were reported either below the laboratory LOR or the adopted site criteria (human health and ecological) in all samples selected for analysis.

8.2.1.11 Heavy Metal Statistical Analysis

Lead was identified within two samples above the adopted HSL, although no single lead concentration was reported above 250% of the adopted investigation level. A statistical assessment of the lead data was completed by the calculation of the 95% upper confidence limit of the mean concentration (95% UCL). The standard deviation of the lead samples was reported as 81.16. The 95% UCL was then compared to the adopted site criterion, i.e. residential land use.

The results of the statistical assessment identified that the 95% UCL value was 88.4mg/kg which is below the adopted lead HSL of 300mg/kg.

This approach is considered appropriate based on the scale of the redevelopment and the likely scope of the bulk earthworks to obtain development levels.

It is also noted that two samples exceeded the initial screening criteria for a residential land use, however, the two locations (SS15 and SS50) are within areas proposed to be used for open space and commercial/industrial respectively. Considering the locations of the samples, the proposed use of these areas and the statistical assessment of the site overall, the reported lead concentrations are not considered to pose a significant risk to the proposed development as provided in **Appendix B**.

8.2.2 Petroleum Hydrocarbons (TRH and BTEX)

Petroleum hydrocarbon concentrations were all reported below the laboratory LOR and the adopted site criteria in all samples selected for analysis.

8.2.3 PAHs

PAHs including carcinogenic PAHs (as benzo(a)pyrene TEQ), benzo(a)pyrene and naphthalene were reported below the laboratory LOR and the adopted site criteria in all samples selected for analysis, except for sample SS47 0-0.1 (located in Portion 9) with a benzo(a)pyrene concentration of 1.2mg/kg marginally above the EIL of 0.7mg/kg. It should be noted that NEPC 2013indicates that some PAHs including BaP are not readily available for plant uptake.

8.2.4 PCBs

PCBs were all reported below the laboratory LOR and the adopted site criteria in all samples selected for analysis.

8.2.5 OCPs

PCBs were all reported below the laboratory LOR and the adopted site criteria in all samples selected for analysis.

8.2.6 PFAS

All PFAS concentrations were below the laboratory LOR and the adopted site criteria for all samples submitted for analysis.

8.2.7 Asbestos

Fragments of ACM were observed on the site surface within Portion 1 and Portion 3 associated with adjacent buildings.

The fragments identified within Portion 1 appeared to be limited to a small area (approximately 5m²) and were associated with broken eaves from the former residence building. It was estimated that fragments consisted of a total of 2m².

Buried asbestos cement sheets were identified at location SS03 (northern part of Portion 3) at approximately 0.4 to 0.6m bgs. Due to the presence of building rubble within the test pit, it is believed that the ACM was associated with the historical use of an onsite building as fill material. Numerous ACM fragments were identified within the test pit and generally consisted of fragments approximately 10cm^2 .

Soil samples were collected across the site to assess the presence of asbestos fibres. One sample (SS03 0-5-0.6) which was associated with visual ACM as stated above, identified the presence of asbestos fibres within the soil sample. The asbestos fibres were reported above the adopted site criteria. All other samples analysed did not identify asbestos fibres above the laboratory LOR or adopted criteria.

8.3 Groundwater Observations

Three previously installed groundwater monitoring wells and five additional groundwater monitoring wells were sampled for this investigation. The location of the groundwater wells was considered appropriate to assess the groundwater for the COCs generally associated with or suspected underground infrastructure. It was noted that the groundwater was generally fresh within the exception of MW04 and MW05 located on Peat Island which were saline. The wells were slightly reducing to oxidising. A summary of the groundwater field parameter is provided in **Table 8.1**.

I UDIC U.1	Gi Gailawa	acci i icia i u	ii aiiictei 3			
	DO (ppm)	Temp (°C)	pH (units)	EC (μS/cm)	ORP (mV)	Comment
MW01	3.0	21.6	3.90	448	122	Turbid
MW02	0.26	21.2	4.05	415	42	Clear
MW03	0.59	19.0	3.54	398	126	Clear
GW01	1.28	19.7	5.58	760	-29	Clear
GW02	4.7	17.8	4.10	269	93	Slightly turbid
GW03	2.97	20.0	4.87	606	17.3	Slightly turbid
GW04	1.85	17.8	5.33	30869	-33	Clear
GW05	1.17	17.5	5.38	38491	-17	Turbid

Table 8.1. Groundwater Field Parameters

The SWL reported at the four groundwater wells sampled at the former service station was reported above the screen interval. During the installation of groundwater well MW03, it was noted that the groundwater strike was approximately 7m bgs. This was also reported on the three previously installed well logs. Considering this, it is considered that the screen intervals of the groundwater wells are appropriate to identify LNAPL and dissolved phase TRH potential present on or in the groundwater. Considering the measured depth to the SWL compared to the groundwater strike, the groundwater is considered to be semi-confined.

It is considered the screening depths of all groundwater wells at the site are appropriate to assess the COCs within groundwater and are acceptable for this investigation.

8.4 Groundwater Analytical Results

The groundwater monitoring well locations are shown in **Figure 3** and summarised laboratory results and assessment criteria are presented in **Table B** (**Appendix A**). The groundwater analytical results are discussed in the following sections.

8.4.1 Heavy Metals

Concentrations of copper (all samples), lead (MW_02), nickel (GW_01, GW_02, GW_03, GW_04 and MW_02) and zinc (all samples) were identified above the adopted ecological criteria. All other heavy metal concentrations were below the adopted ecological and primary contract recreational criteria.

As the heavy metal concentrations (excluding the lead concentration at MW_02) were generally consistent between all groundwater monitoring wells (which were located at various locations

across the site), and there were no widespread sources of these metals in soil identified by the investigation, it is considered that the elevated copper, nickel and zinc concentrations are consistent with background concentrations, and not a result of any specific contaminating activities at the site. Further evidence of this is that concentrations of copper, nickel and zinc within groundwater wells collected from Portion 7 (which field parameters indicate is freshwater) and concentrations collected from Peat Island (which field parameters indicate is saline water) were generally consistent indicating that the heavy metals concentrations are likely associated with the underlying geology rather than associated with specific source locations at the site.

8.4.2 Petroleum Hydrocarbons

Petroleum hydrocarbon concentrations were all reported below the laboratory LOR and the adopted site criteria in all samples selected for analysis.

8.4.3 PAHs

PAHs were all reported below the laboratory LOR and the adopted site criteria in all samples selected for analysis.

8.4.4 Volatile Organic Compounds

Volatile organic compounds (VOCs) were all reported below the laboratory LOR and the adopted site criteria in all samples selected for analysis.

9. Site Characterisation

Based on the decision-making process for assessing urban redevelopment sites detailed in NSW EPA (2017) and discussed in **Section 5.1.2**, the decisions required to be made are discussed below.

9.1 Potential Risks to Future Onsite Receptors

COPC concentrations for the site were generally below the adopted health based site criteria. The presence of ACM in bonded and friable form within the soil at one location exceeded the adopted health-based HSL criterion. In addition, ACM identified on the surface soils within Portion 1 and Portion 3 present a potential risk to human health.

Lead concentrations reported across the site are not considered to be statistically significant to human health and as such, is not considered to require remediation and/or management.

Nickel and zinc in a small number of samples were identified above the adopted ecological criteria. While no vegetation was observed to be under stress due to the presence of nickel and zinc, these concentrations may require to be remediated and/or managed during construction works to minimise future potential risk to ecological receptors.

While no soil or groundwater impact was identified directly associated with the underground storage tanks (USTs), the USTs will require removal and validation prior to the development of the site.

The results of the groundwater assessment did not identify any potential risk to the site users, provided that the extraction of the groundwater does not occur for drinking or primary contact recreation purposes.

9.2 Background Soil Concentrations

All samples collected from the natural soils were below the adopted site assessment criteria or the laboratory LOR, and consistent with published background concentrations reported by NEPC 2013.

9.3 Chemical Mixtures

There were no potential chemical mixtures identified during the investigation that may pose a contamination issue at the site.

9.4 Aesthetic Issues

No odours were identified at the site surface that may pose an aesthetic issue at the site.

Fragments of ACM were identified on the surface within Portion 1 and Portion 3. In addition, ACM was also observed within one test pit (northern portion of Portion 3) associated with the presence of fill material. These present an aesthetic risk to the proposed development which requires management and/or remediation.

9.5 Potential Migration of Contaminants

There is low potential for contaminants to migrate from the site based on the absence of significant contamination identified at the site. As the majority of the site was sealed or covered in grass, it is considered that migration through wind generated dust would be low. While some elevated heavy metals were identified within the groundwater, it is considered that the concentrations are likely background and do not present an increased risk via groundwater migration.

9.6 Site Management Strategy

Based on the current investigation, there are potential human health and ecological risks relating to typically isolated and minor soil contamination at the site requiring management prior or during redevelopment works.

It is considered that the ACM impacts on the ground and in surface soils will require remediation prior to use of the site for the proposed development. In addition, the presence of friable asbestos and ACM within the northern part of Portion 3 will require remediation and/or management. An Asbestos Management Plan should be prepared to include all asbestos present at the site.

Prior to the redevelopment of the site, the USTs identified should be removed and validated to ensure no potential risks to the proposed development.

10. Conclusions and Recommendations

Based on the findings of this investigation and subject to the limitations in **Section 11**, the following conclusions are made:

 The site can be readily made suitable for the proposed land use, subject to removal and validation of the USTs and remediation and/or management of the surficial ACM, buried asbestos and heavy metals identified above the ecological criteria.

The following recommendations are made:

- Prior to the demolition of the structures at the site, a destructive hazardous materials survey should be completed to ensure all hazardous materials are identified and appropriately managed prior to demolition to prevent soil impact during demolition works;
- Due to the presence of asbestos fines and ACM at the site, an Asbestos Management Plan is required to manage the presence of asbestos at the site prior to remediation/development;
- As per the *Protection of the Environment Operations (Underground Petroleum Storage System) Regulations 2019*, as the USTs are currently not in use, the USTs should be removed and the tank excavation appropriately validated;
- Following the approval of the proposed development plans, a remediation action plan (RAP) should be prepared for the removal of the USTs, ASTs and any remediation works associated with asbestos (if required) associated with the proposed land uses; and
- Prior to the redevelopment of the site, an Unexpected Finds Protocol should be prepared.
 This should include the potential for additional COCs to be identified including ACM and the potential for the USTs to be present on Peat Island.

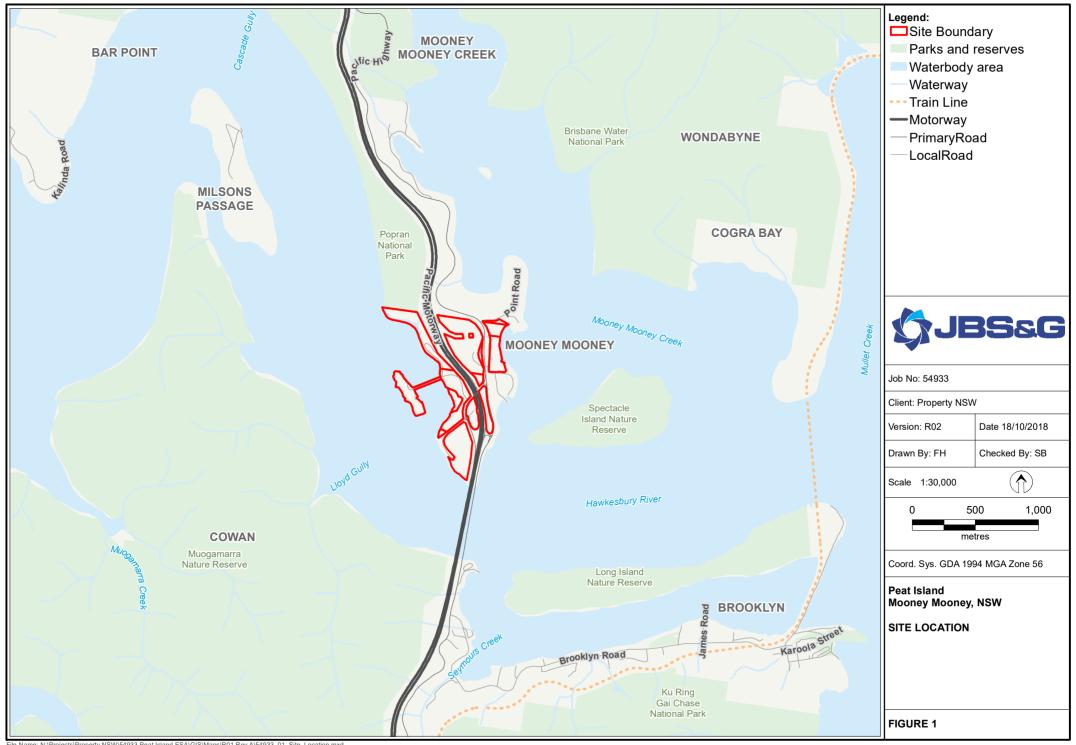
11. Limitations

This report has been prepared for use by the client who has commissioned the works in accordance with the project brief and nominated Site Auditor only and has been based in part on information obtained from the client and other parties.

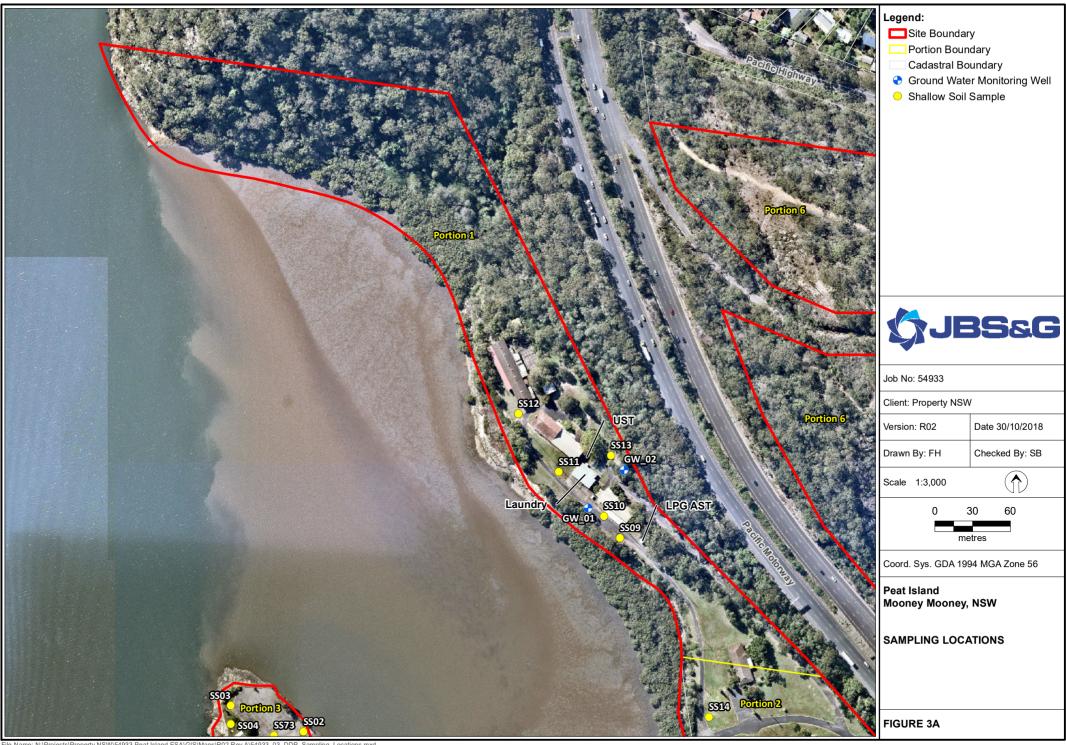
The advice herein relates only to this project and all results conclusions and recommendations made should be reviewed by a competent person with experience in environmental investigations, before being used for any other purpose.

JBS&G accepts no liability for use or interpretation by any person or body other than the client who commissioned the works. This report should not be reproduced without prior approval by the client or amended in any way without prior approval by JBS&G, and should not be relied upon by other parties, who should make their own enquiries.

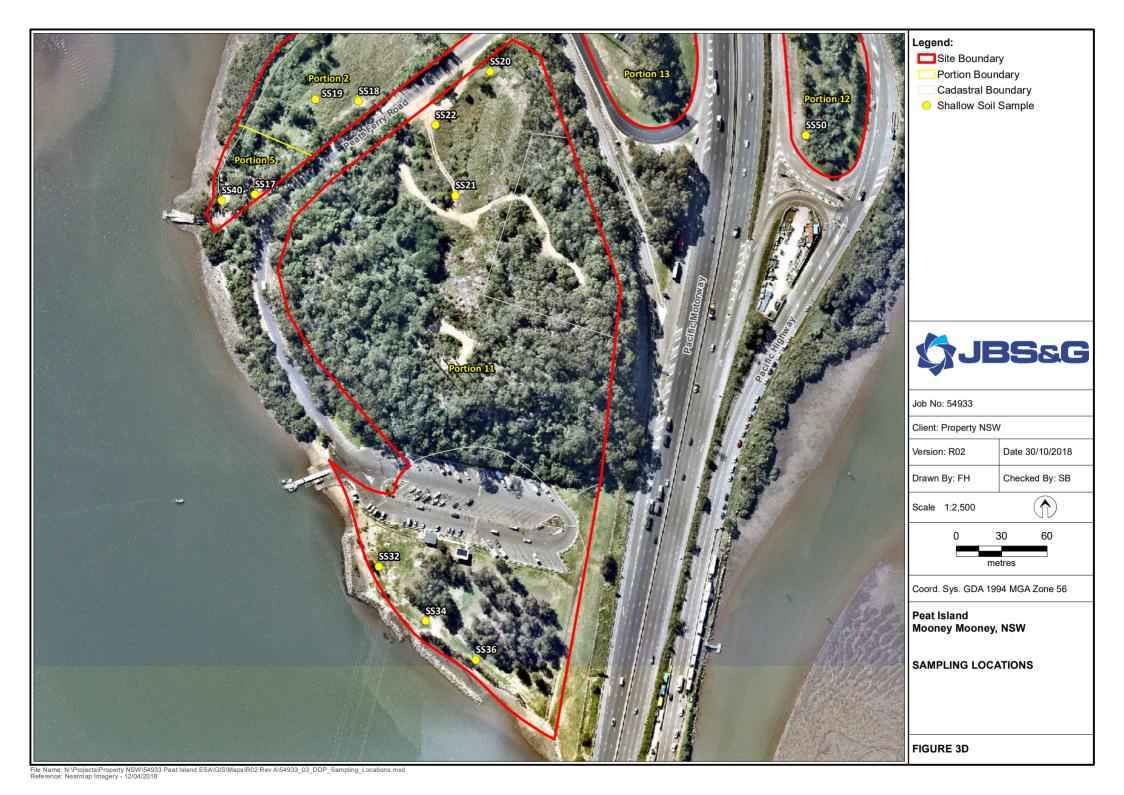
Sampling and chemical analysis of environmental media is based on appropriate guidance documents made and approved by the relevant regulatory authorities. Conclusions arising from the review and assessment of environmental data are based on the sampling and analysis considered appropriate based on the regulatory requirements.

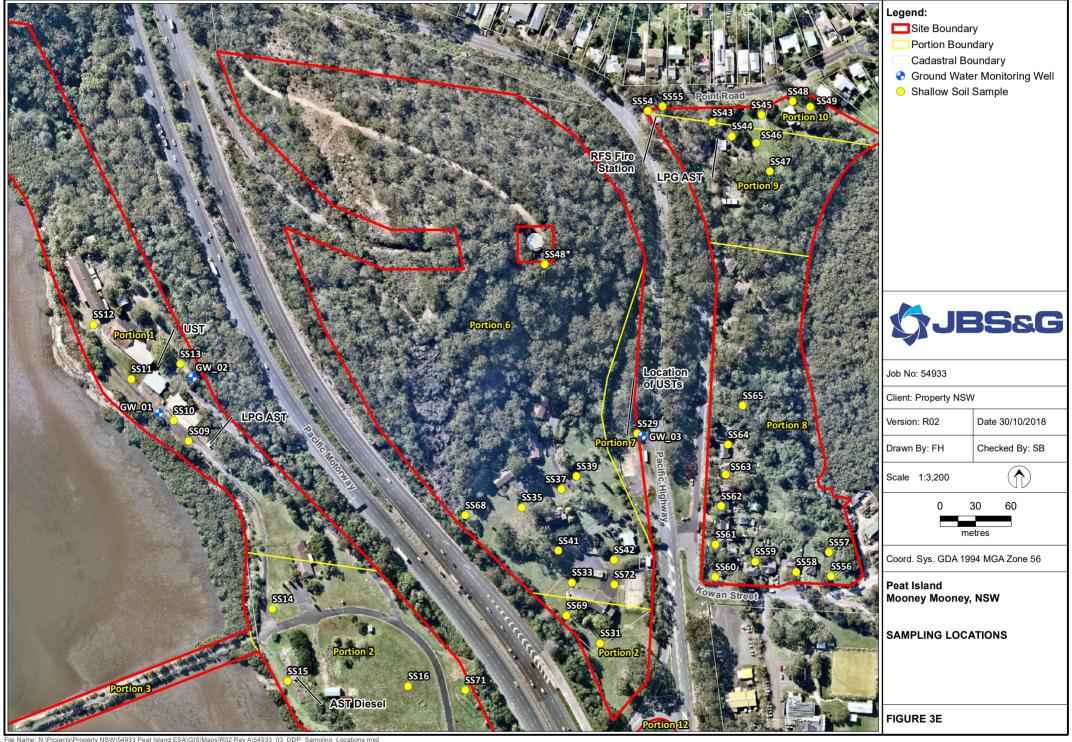

Limited sampling and laboratory analyses were undertaken as part of the investigations undertaken, as described herein. Ground conditions between sampling locations and media may vary, and this should be considered when extrapolating between sampling points. Chemical analytes are based on the information detailed in the site history. Further chemicals or categories of chemicals may exist at the site, which were not identified in the site history and which may not be expected at the site.

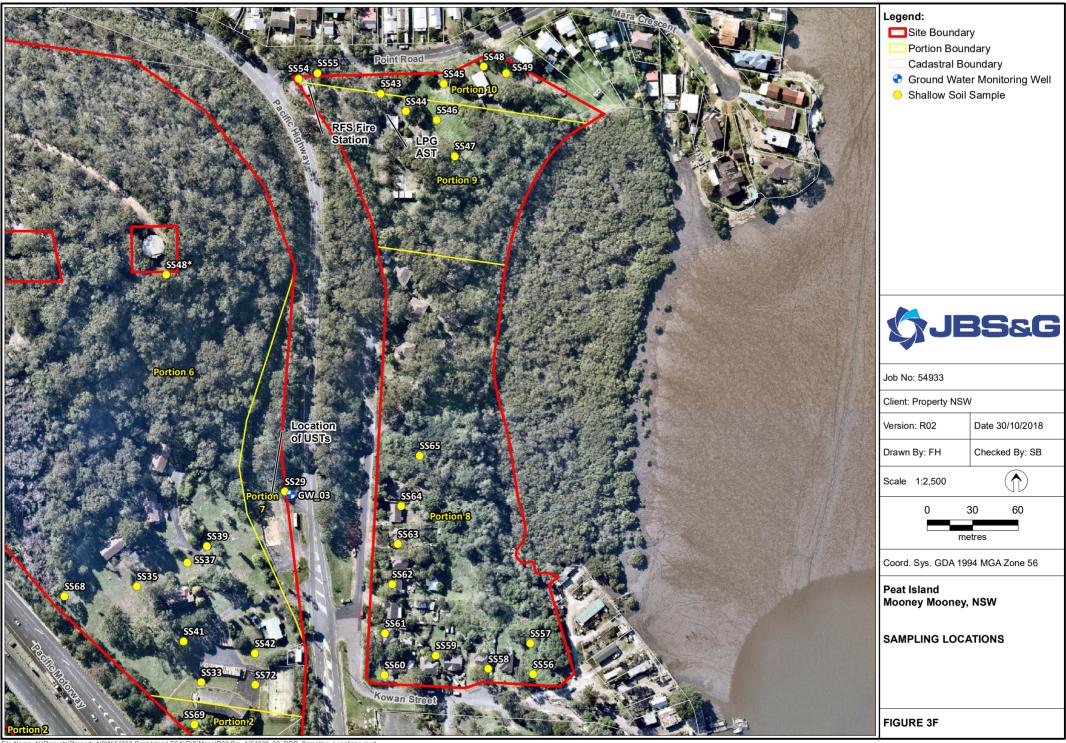
Changes to the subsurface conditions may occur subsequent to the investigations described herein, through natural processes or through the intentional or accidental addition of contaminants. The conclusions and recommendations reached in this report are based on the information obtained at the time of the investigations.

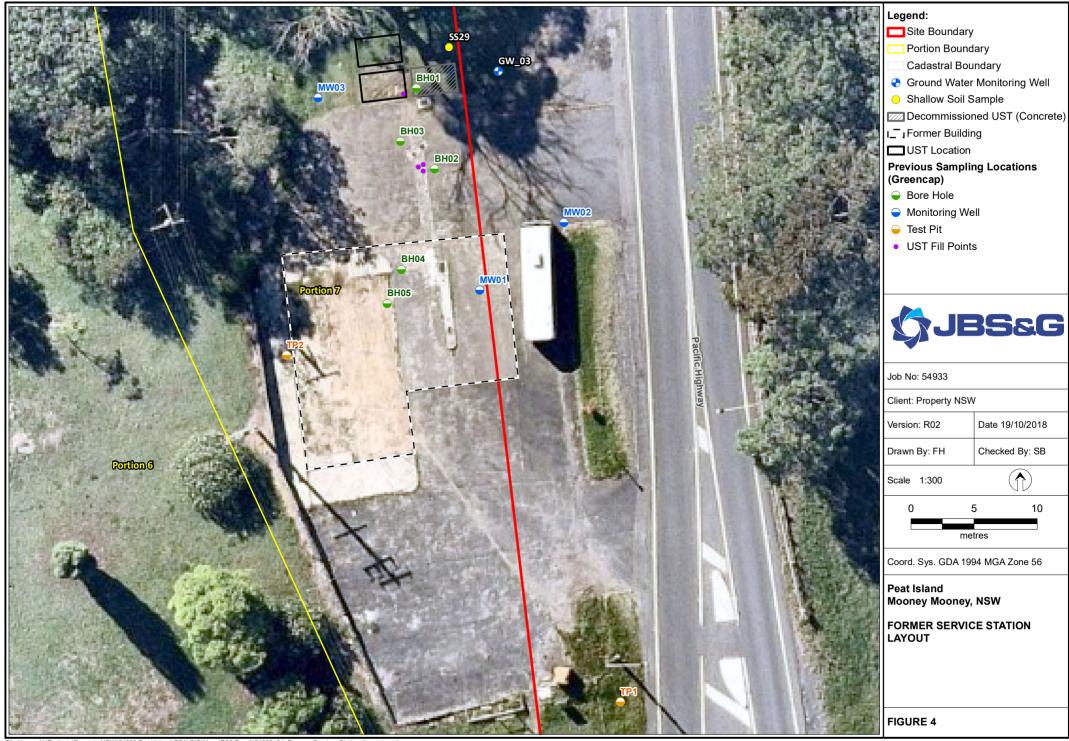

This report does not provide a complete assessment of the environmental status of the site, and it is limited to the scope defined herein. Should information become available regarding conditions at the site including previously unknown sources of contamination, JBS&G reserves the right to review the report in the context of the additional information.

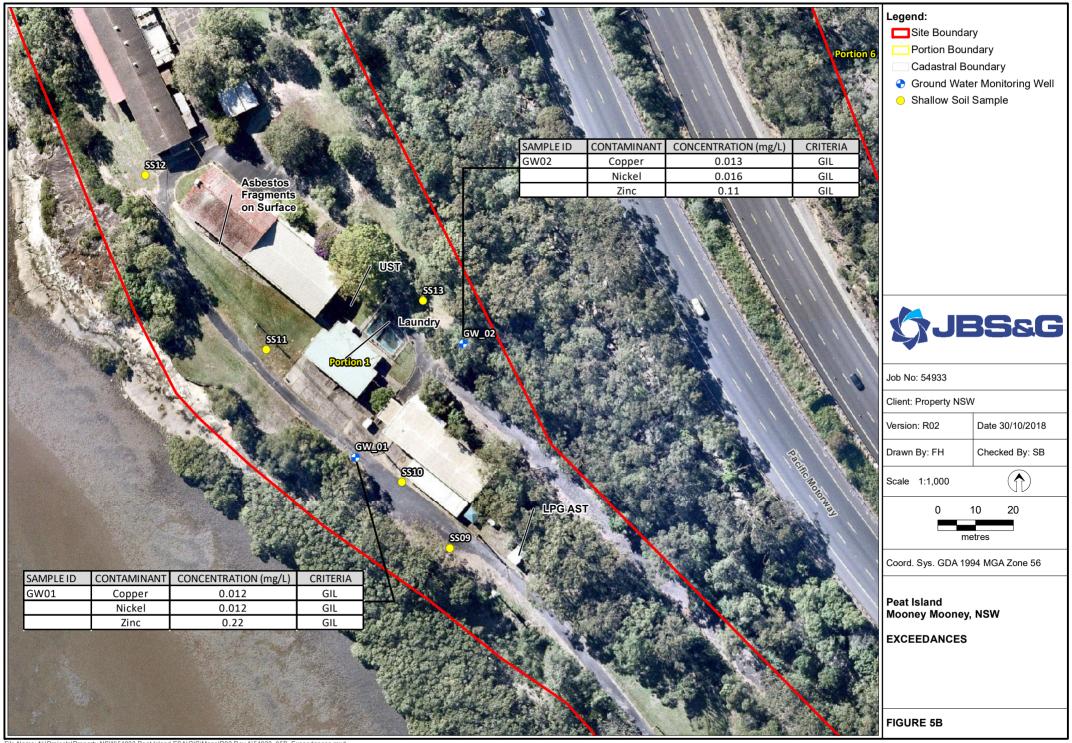
Figures

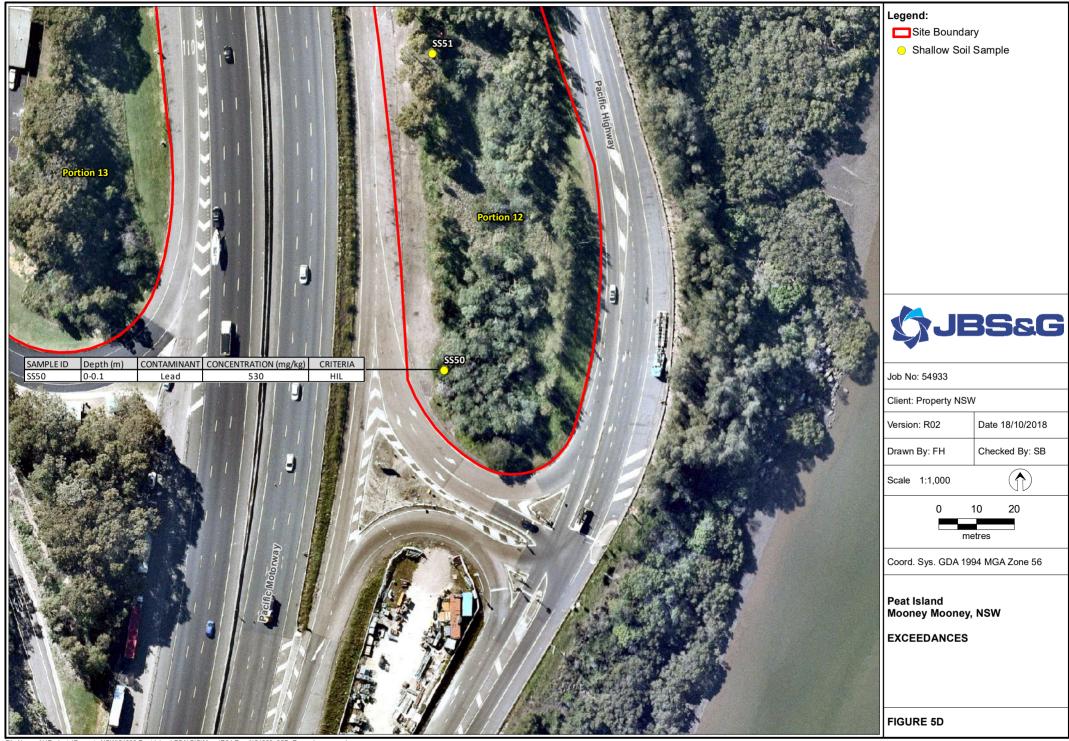


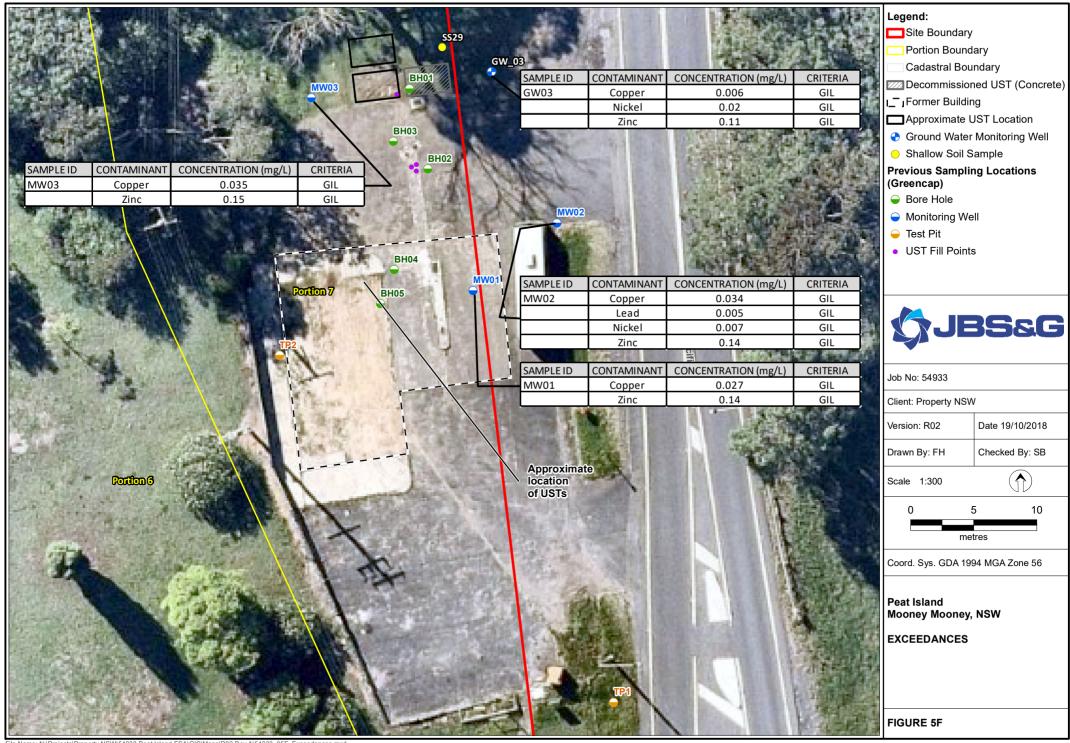






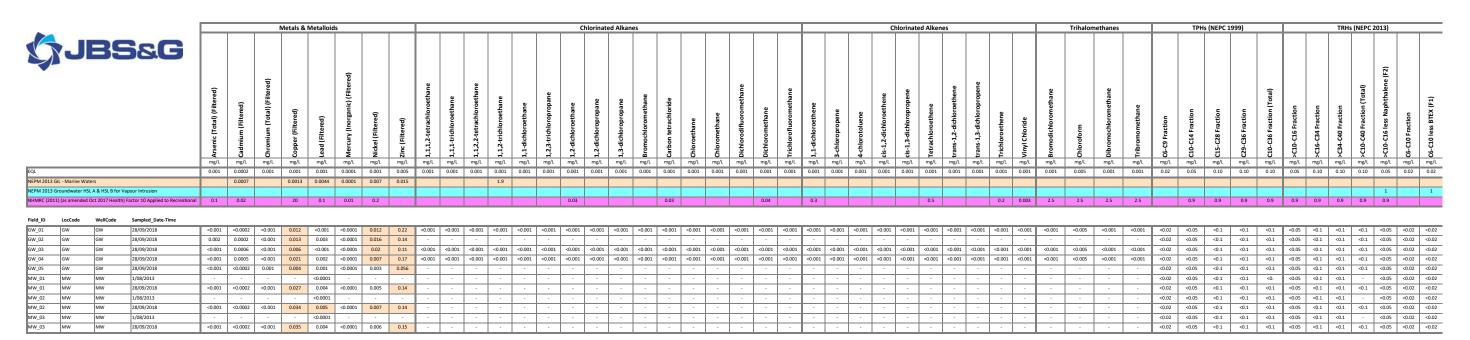


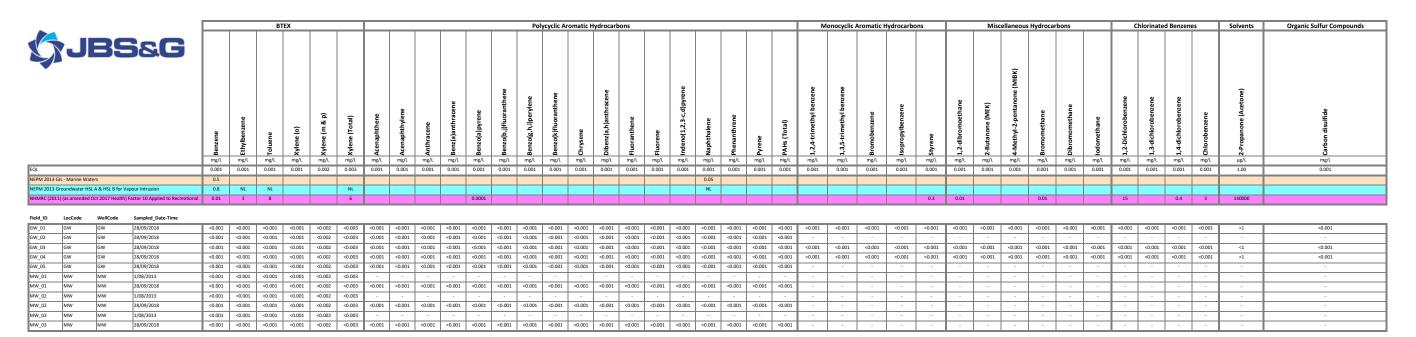




Appendix A Summary Tables

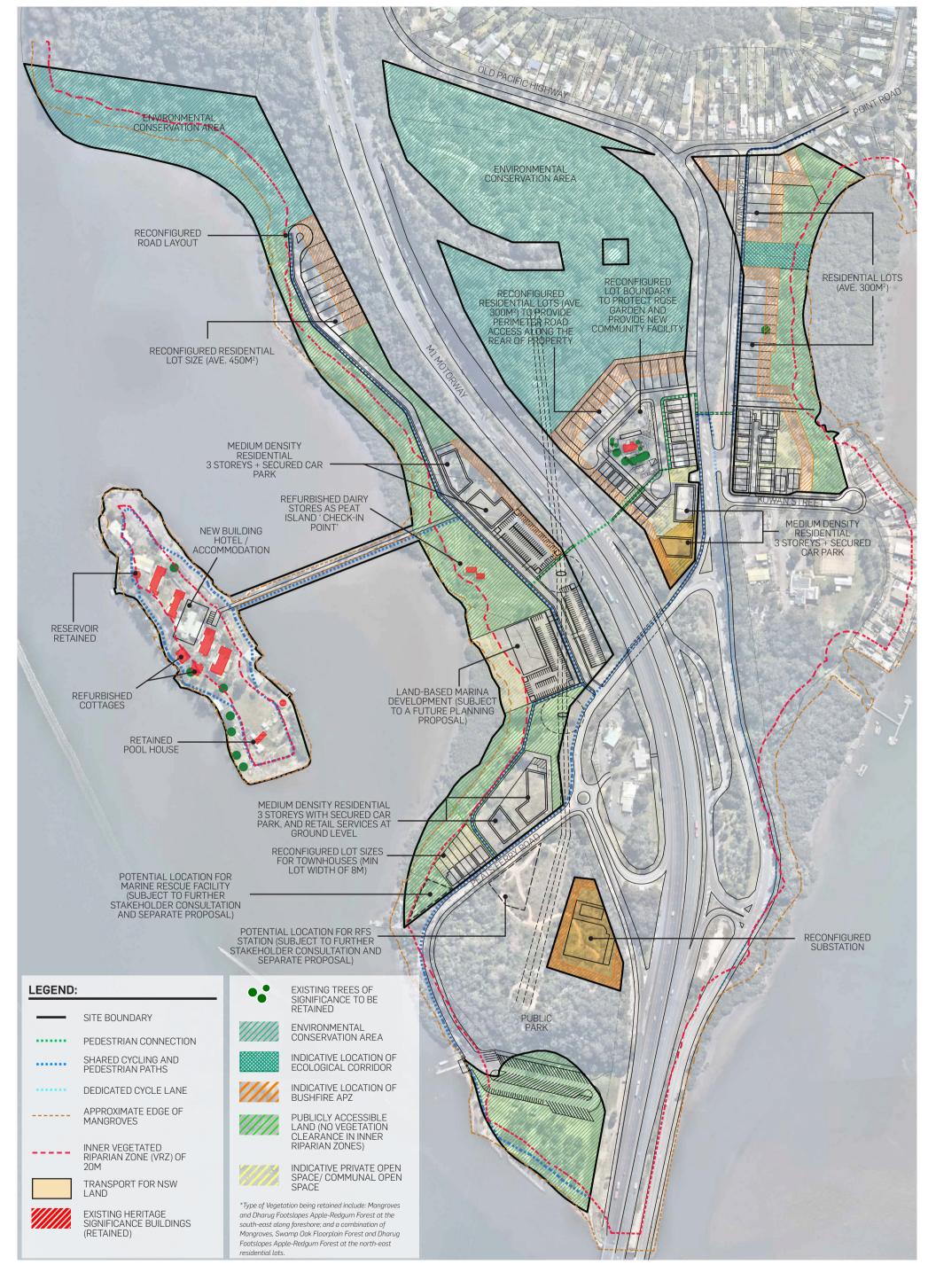
				_	Aetals & Metalloi	lds			-	TPHs (NE	PC 1999)			TROEs	(NEPC 2013)		\rightarrow		BTEX		-		_		_		Polycyclic	Aromatic	Nydrocarbo	ons			_		Chloris	nated Benzenes
ØJBS s G												l I																								
												l I																								
												l I																								
												l I													. 9											
															8										found)*	25						9	7			
												l I			_ 8	1										8						1 8				
								_				8			on o		_								ala jayvene TEQ (bwe ala jayvene TEQ (medi	, B	ê .			2	1 8	1 18				
			8		3		. 1 13	5					8 8	8	8 8		5					1 - 1	8		o(a)pyrene TEQ o(a)pyrene TEQ	Ę	4	1 6	8	ž	1 1	1				š
	3		(Lot a)		ge E	30		ž.	5	9 9	8	8	9 8	100	S N	, ž	E	2		6	9 2	era pht hykera	- 8	8	8 8	8	8	8 8	1	£ 2	1 3	2 2	1 2	Ι.	.	ž.
	1 &	5	5	.	10 A	Ę		8	l ax	4 8	1 6	5	9 8	8	8 8	Fa	ž ;	8 8	2 3	Ē,	rne (Total) rus pht hene	ŧ	dung.	Wd(e)	2 2	auto(e)	ucnji(řejo	8 8	ysene ysene	2 g	ne 17	hy o	ě		8	Si di
	1 8	ŧ	Chomium	8 8	2 g	9 E	She	٤ <u>۽</u>	9	0 0	1 0	C10 C3 6 Fraction	×10-C16 Fraction ×16-C34 Fraction	×34 C40 Fraction	>C10 C40 Fraction	C6-CLOFracion	C6-C10 less BTEX	1 4	2 g	8 .	\$ E	8	e p	2	5 5	8	5	1 1	1 1	200	9 0	1 1	8	8	š	ğ
	=6/4	-6%E	media m	0 S	Mercury (Inorganic Metypaterum	70 N NO			nete	-e/e -e	NE HONE	=6/4 =	refre meter					Tyles and	P &	Xylene (m & p)	Acers pht here	2 10/42 1	2 2	2 10/12	44 4	4 14/4	nete n	N MA	- 10 S	S E	E 5	ne mehe me	NE HEAR	mg/sg m	I/4	-6/4 -6/4
iq.	2.00	0.60	1.00				0 0.20 1	030 100	20.00	20:00 10	30 10:30	10:00 1	0.00 100.00	0 200:00	100.00 10.0	00.00	30.00 0.	30 0.30 1	0.30 0.30	0.30 0	0.50	0.50	0.50 0.50	0.50	030 03	0.50	030 0	10 0.10	0.50 0.1	150 0.50	0.50 0.1		0.50	0.50	50	0.09
NETC 2018 ES, DIL Right Sediment - Uthan Revoluntial Public Open Space NETM 2018 ISS Littles Revolunted and Public Open Space. Corne Sold	100		460 :	00 110		n		250	\blacksquare		_		900	7800	110		100	. 11			100	-		0.7	_		_					170				
NEPM 2013 HSL Asbetock is Soil - Bonded ACM - Repdential - HSL A	_							_		_	_						-		-				_	-	_		_	_								
NOTIFIC 2012 HOLD ADMINISTRATION OF PACE AND HOLD NOTIFIC 2012 Mont County - Proceedings Parking and Public Count Space County													2000 2000																							
NEPM 2018 MgHz Limitor - Recidential, Purkland and Public Open Space, Coanse NEPM 2018 foll MIL A	100	20	100 6	200 32	40	600 20	0	7800	\vdash	_	_		2900	10000	_	700	-	+	102	-	-		_	-	1 1	1	_	_		_		-			00	10
NEPM 2018 Soil HSL A & HSL B For Klapow Individual - Sand S Sa															330		45 0	5 55	163		40															
Field_ID LocCode Sample_Couple_Sample Sampled_Sate-Time Location Lab_Sapport_Number																																				
[0001_00-01 0001 0-01 16/06/0018 Notes 1 60071	a	40.6	16	R 7.6	48.1	27 -	1 - 1	- 19		420 KS	0 430	<30	-30 <300	<100	<100 <30	<20	421 d	11 40.1	41 41	40.2	0.1	1 - 1	- 1 -	1 - 1	- 1 -	1 - 1	- 1			- 1 -	1 - 1 -	42.5		- 1	- 1	
THE PARTY AND THE PARTY AND THE PARTY BEAUTY AND THE PARTY	- a	40.4	7.9	3 11	48.1	a .		- 63	<20	420 43	0 430	-30 ·	-30 -330	<300	<100 <10	- 48	GB 4	11 411	41 41	43.2 4	0.8	-			- 1 -		- 1			- 1		42.5	1	-		
\$250-0-0-1 \$250 0-0.1 \$2(0)(0.038 Notice 1 425000 \$250-0-1 \$250 0-0.1 \$2(0)(0.038 Notice 1 425000	a a		11	3 10	41 -	a -		- G	<20 <20	420 43	0 40		-30 -330 -30 -330	<300	<100 <50	- GS	GB 6	11 411 -	41 41 41 41		4.1	-										43 -	-	-		
0000-01 0000 0-0.1 18/08/0018 Perior 1 608000 00110-01 18/08/0018 Perior 1 608000			10	G 16	48.1	a -	+++	- E2	<20 <20	420 43 420 43			-30 -330 -30 -330	<300	<100 <30	48		11 411 -	41 41 41 41		43 43	48.5	48.5 48.5	48.5	12.5 0.6	13	40.5 40	13 42.5	43 4	83 483	43 4		21 42.5	-0.5	13	1005
1522-0-0 1553 0-0.1 18/09/0218 Parties 1 618500	- a	40.4	4.3	11 14	48.1	83 -		- 11			T.		- 1		- 1				- 1		1	-	- 1										T.			
NIS DO.1 NIS DO.1 18(0),0218 Public 1 62097 NI_89_6.00.1 NIS9 10.0.1 28(0),0218 Public 2 62068	4.1	40.6	15	G 13	41 .	a .	1.		1		1 -	· T		1 -		1 -	· [1 7				1.7		$+$ \Box		1 -	-					1.	1 -	· T		
0,90,0301 NM9 1001 38(0),0318 FMSH 2 80008 0,71,0301 NF1 1001 38(0),0318 FMSH 2 80008	+	+-	-	- 1	1 1 1		+++	- 1	1		++	-	++	1		++			++	+++	- 1	1		+++		++	-			++			++		-	
\$140-0.1 \$5.6 0-0.1 \$8/08/0218 Portion 2 \$18000	3.2	<0.4	79	G 18	41 -	a -	-	- 84				- 1				-				-		-				-							-	-		
035 0-0.1 8305 0-0.1 18/08/0238 Poilin 2 40800 035 0-0.1 8306 0-0.1 18/08/0238 Poilin 2 40800	2.8	<0.4	13	22 180	48.1 -	11 -	-	- 260	-			-				-				-		-		-		-								-		-
038 PG 1 9556 PG 1 38/08/0238 Perios 2 62800 038 PG 1 9556 PG 1 38/08/0238 Perios 2 62079	- a	- 40.4	4.5	- 22	411	a .		- 21	- 420	120 13	0 400	-30		1200	1200 130	- 422	40 4	11 481	41 41	42 4	41 41	10.5	18.5 18.5	12.5	12.5 0.6	1.2	40.5 40	13 123	41 4	23 423	43 4	s 43 4	21 12.5	42.5	13	1020
\$5-18_0-0.1 \$5-18 0-0.1 \$5(00,0018 Payson 2 \$409079	3.5	<0.4	17	3 10	41 4	a a	1 40.1 4	G0 43	-			- 1				-				-		-				-							-	-		
0:00,0-0.1	- a	<0.4	7.8	3 20	41 4	a a	1 40.1 4	30 3	<20 <20	-20 -S	10 430		d0 d00		<100 <30	<20	431 e	11 411 -	41 41	43.2 4	0.1	-		-		-						42.5		-		1025
0-24_0-24	9	40.6	4	9 9	41 4	a a	40.1 4	G0 43	- 420	- a		- 46		<100	<100 (10		- a -	11 42.1	a1 a1	41 4	41	-					-	-			1 1	di -		-		
\$6-81_02-0.5 \$6-95 \$2-0.5 \$2(05/0238 Partial 2 \$458883	- a	40.6	21	G 9.1	40.1	a -	-	· a				- 1				-				-		-				-							-	-		
0000 0.0-0.1 0000 0-0.1 10000018 Notice 8 600011 0000 0.0-0.5 0000 0.0-0.5 1000018 Notice 8 62258	2.4	<0.4	7.8	10 110	0.1 -	a -	-	- 170 - 100	<20	420 43 420 43	0.00	430	-30 -330 -30 -330	<300	<100 <30	<20	GB 6	11 411 -	41 41	43.2 4	0.1	-		-		-						42.5		-		-
0005 0.0-0.5 0005 1.0-0.5 15(00,0218 Person 8 52258 0.75(2.0-0.1 10.75(2.0-0.1 10.75) 1.0-0.1 10.0018 Person 8 00068	43	<0.4	11	10 74 1 20	-0.1 -	a -		- 100 - 78	<20 <20	420 43 420 43	0 40	430	-30 -330 -30 -330	<300	<100 <30	- 48	GE 4	11 411	41 41 41 41	43.2 4	as as	48.5	<0.5 <0.5 <0.5 <0.5	123	12.5 0.6	1.2	40.5 4	13 42.3	43 4	23 423 23 423	43 4	3 423 -	21 42.5	42.5	13	-com
NOCCO-GA INCO CO-GA INCO CO-GA INCOCCO PARAMENTA	-	104	14	0 10	41 .	a .	-	- 87	-20	120 13	0 130	-30	-00 -000	<100	<200 <30	1 122	422 4	11 481	41 41	42 4	4.1	-		-		-	-					41	-	-		
\$1002.0.3-0.6 \$1002 0.3-0.4 \$1606,0008 Purbus 8 \$10000	-	-	-				-		<20	-20 -S	0 110	110	<30 122	<100	120 <90	<20	G2 (11 -0.1 -	41 41	43.2 4	4.1	1 - 1		1 - 1		-	-					41.5	-	-	-	-
002 0.5-0.6 SM2 0.5-0.6 SA(00,0238 Purious S 62097 N02 0-0.1 SM2 0-0.1 SA(00,0238 Purious S 62800	a	<0.4	30	12 18	41 -	10 -	-	- 61				-				-				-	1 1	-	1 1	-		-	-							-		
000 0 0 1 100 0 10	- a	40.4	- 12	160	41 -		- 1		1					-					1 1	1	1 1		1 1	1 1			-		1 1		1 1	1 1	-	-	-	
												l I																								
0000-0-1 NSS 0-0.1 IN(0),0228 Portor S 620797	-	-	-				-		-					-		-	-			-		-		+ - +		-	-				-	-	-	-		
NICE PAGE 1921 0.5-0.6 SAIDS DOES PAGE 8 SOURCE	-	-	-				-		-			-		-		-	-			-		-		+ - +		-	-							-		
\$100 C.3-C.4 \$104 \$3.9-C.4 \$3(0),(0)238 Portion 3 \$458000	- 11	104			41 -	0 .		. 100	-	_				-	-	-	-				-	-		-		-	-	_							_	
5005 0.3-0.6 1825 0.3-0.6 18(55)/0228 Porton 8 620797	-	-	-				-									-	- 1			-		1 - 1		1 - 1		-	-						-	-	-	-
MEG 0-0.1 SMS 0-0.1 SA(N), 0.23K PARSAN X 628500	a	40.6	,	3 20	48.1	a -	-	- 24	<20	420 43	0 430	<30	-30 <320	<300	<100 <30	<20	<22 <	11 411	41 41	42.2 4	a.ı .	+-+		++		+-+	-+		H- H-		+	42.5	-	-	-	
000 0-0.1 1006 0-0.1 10(0),0328 Notion 3 42800	-d	<0.4		3 20	41 -	a -		- 87	<20	<20 <5	0 430	<30 ·	-30 <300	<300	<100 <50	<20	<20 <	11 -01 -	-0.1 -0.1	<0.2 <	4.1						-					-0.5		-		-
0070940 NS7 091 NS/00/038 Pursus 8 40097 0070-01 NS7 0-1 NS/00/038 Pursus 8 40800	23	<0.4	6.E	13 13	43.1	a -	1:1	- 180	- 20		p	-30		1200	1200	- 422	92 -	11 411	41 61	40.2	41 61	10.5	423 441	103	(2.3 0.4	12	10.1	13 42*	41 -	23 47	40.0	3 43 4	21 -01*	423 -		- com
N080-0.1 1928 0-0.1 18/09/0218 Purbur 8 62800	+-	1	-+	- 12			1-1			420 43					<100 <30	- 422		11 -0.1	41 41			17		+=+		+=+	- 1				-	41 41	- 1-	- '	-	
05-27_0.3-0.8 55-27 0.3-0.8 26/05/0528 Person 8 60/070	2.2	40.4	8.2	3 14	41 4	a a	1 40.2 4	10 21	<20	420 · 43	10 130	430	40 400	<300	<100 <30	420	GB - G	11 411	d1 d1	48.2 4	43 43	48.5	42.5 42.5	10.5	12.5 0.6	1.3	40.5 4	13 42.5	42.5 42	0.5	43 4	s 43 4	21 <2.5	42.5	1.5	-
89-27_0.9-1.0 89-27 0.9-1 28/08/0318 Pursus 8 609273	6.0	40.4	9.6	11 63	41 A	a a	1 403 4	150	1 - 1		- 1 -	1 - 1		-		1 - 1	- 1	1 - 1		1 - 1	- 1	1 -		1 - 1		1 - 1	-				1 - 1 -	1 - 1 -		-	-1	
528 C 2 C 3 S 20 S 2 C 2 C 3 S 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2		40.6				a -	1.1	- 83	<20	420 43	0 400	480	-30 -320	<300	<100 <50	- 481	GB 4	11 42.1	-0.1 -0.1	42.2 4	as as	<0.5	<2.5 <2.1	42.5	12.5 0.6	13	40.5 40	15 42.5	as a	25 425	43 d	s «2.5 ·	42.5	42.5	13	-
028 0-0.1 25/28 0-0.1 25/05/0228 PMSM S 62255	3.3	40.4	11			11 -	-	- 17	-					-		-						-		-		-	-							-	-	
832 0-01 8380 0-0.1 20(05/0228 Poison 8 820707 (0-00_00-0.1 59-30 0-0.1 20(05/0218 Poison 8 82882					48.1 -	a -	-	- 150	-20		0 40	-30		<300	<100 <30	- 48	- di - di	11 48.1	d1 d1	40.2 4	4.1	1 1		+++		1	-	1		1 1		42.5	-	-	-	
6-21_0-0.1 18-28 0-0.1 18/08/0238 Porton 4 40923	2.7		4	0 1	41 4	9 0	102 -	20 17	120	120 -0	B 430	-30	gg 0.m	1200	1200	- 422	92 -	11 -011	41 41	48.2 4	43 43	48.5	423 144	123	(2.3 0.4	12	10.1	13 42*	41 -	23 -0"	43.5 43	3 43 4	21 <0.5	423 1		vom
00-00 02-0.1 (00-00 02-0.3 (00)00/0228 Profess 6 (00)022	10	40.4		2 1	41 4	0 0		00 1	1.		+-			1		1	- 1	1.		1 .		1.		+ "		1		1		1	1 .		1			
09-07_0-0.1 (6-07 (0-0.1 (0))(0)(0.00 (0.0	22	40.4	82	3 14	41 4	a a	1 403 4	20 11	1		+	-	- 1	+		+ -	-	+ + +	- 1	1 -	- 1	1.		+++		+ -	-	+		+ +	1	1	+	-	-	
540 0-01 5500 0-01 20(5)(0218 Febbox 5 620797 55-00_50-01 55-00 0-01 20(5)(0218 Febbox 5 620880		<0.4	94	15 27		62 -		- 17	<20	<20 <5	0 430	<30 ·	-30 <300	<300	<100 <10	<20	<20 <	11 -0.1 -	<0.1 <0.1	<0.2 <	41 41	<0.5	<0.5 <0.1	<2.5	12.5 0.6	1.3	40.5 40	33 <2.5	41 4	25 <25	43.5 d	s 415 41	21 <2.5	<2.5	15	<0.05
0-40_0-0-1 15-60 0-1 20(00,0218 Notion 5 00882 0000 0-6-0 0000 1-6-0 10000 10000218 Notion 6 00021	2.0		18	14 19	0.1	a -	1:1	- 17	- 20		p	-30		1200	1200	- 422	92 -	11 411	41 61	40.2	41	1:1	1 7	+:I	1 7	+:T	- 1	1.5		45	1:1	48.5	15		1	
037 0-0.1 3387 0-0.1 20/08/0238 Poisso 6 600797	a	40.6	5.8	3 11	41.1	a -	1-1	- 67	<20	420 43	0 430	430	-30 <30	<300	<100 <30	- 422	GB 4	11 411	41 41	42.2	as as	<0.5	<2.5 <2.1	<2.5	12.5 0.6	13	40.5 40	13 <2.5	43 d	25 <25	43 d	s 415 (1.	21 <2.5	<2.5	15	10.05
00102-0.8 1001 0.2-0.8 20/00/0218 Perior 6 60097 00-41-02-0.8 10-61 0.2-0.8 20/00/0218 Perior 6 60099	-	-	-				-		<20	-20 ·3	0 40	<30	40 400	<100	<100 <30	<20	G2 G	11 <0.1	d1 d1	<0.2 <	43 43	<0.5	<0.5 <0.5	<0.5	12.5 O.6	1.3	40.5 4	13 42.5	43 4	0.5	43 4	3 d3 d	21 <2.5	43.5	2.5	-
0-41_0-0.5 10-41 1.7-0.5 12(00,0.018 Parties 6 40880 0-42_0-0.1 10-42 0-4.1 20(00,0.018 Parties 6 40880	- a	40.6	23	G 12	411 -	a .	1:1	- 3	₽: □	- 1	15		11	+:7	- 1	+:T	- 1	+:T	11	1: [11	1:1	1 7	+:I	1 7	+:T	- 1	1.5		45	1:1	1:1	15		1	
0568*0-0.3 1568 0-0.1 23/09/0228 Pullou 6 608909	a	40.6	11			81 -	1-1	- 17	1	- 1	+	-	÷	-	- 1	+-+	- 1	+++	÷	1 - 1	++	1-1	++	+++	- 1 -	+-+	- 1			++	1-1-	1 - 1 -	+	-	-	
0_6E_0.00.1 1568 1.00.1 28/04/0318 Notice 6 02008			-						1 .					-													-					1 2		-		-
N1,72,5:0:0.1 1872 5:0:0.1 28/08/0318 Piction 6 62068	- 1	40.6	18		48.1	25	1 - [- 110		420 43	10 76	76	-30 -320	<300	<100 <90	430	GB 4		-d.1 -d.1		4.1	1.	1 7	<u> </u>	. -	1 · T	.	. .	1 7	15	1 .	42.5	1.	. [
55-51_50-51 55-55 9-51 20(9)(0336 Portion 6 62880	a	<0.4			48.1	a .	1.	- 49	<20	420 43	0 40	-30	-30 <300	<300	<100 <90	420	GB (6	11 -0.1	d1 d1	<0.2	43 43	<0.5	483 483	<0.5	42.5 GA	1.3	40.5	33 <2.5	d) d	0.5	43 4	3 43 d.	21 <0.5	42.5	13	10.03
0-37_0-2-0.3	a a	40.4			48.1 -	a -		- 22						-			- 1			1	- 1	-							-			1 2	-	-		
00-07_0.2-0.8 No-07 0.2-0.8 20(00,0018 Fallow 6 0.00800 0.00800 0.00800 0.00800 0.00800 0.00800 0.00800 0.00800 0.00800 0.00800 0.00800 0.00800 0.00800 0.00800 0.00800 0.00800 0.00800 0.008000 0.008	- a	40.4		. 13	411	a -	+++		- 420		0 490	430		<300	<100 <90	- 48	GB 6	11 481 -	41 41	42.2 4	41 41	48.5	483 483	10.5	12.5 0.6	1.3	40.5 40	13 42.5	43 4	83 483	43 4	s 43 4	21 42.5	42.5	13	1005
DWDS 19-2.0 DWDS 19-2.0 DR/DR/DESS PAISM 7 M22555	2.8			.8 23		a .		- 23	<20	420 43	0 430	430	GD GDD	<300	<100 <10	<20	433 44	11 48.1	41 41	43.2	4.1	48.5	- 1									42.5		-	-	
0000 L-0.5 0002		<0.4				a -		- 15	<20	420 KB	0 430	-30 ·	GD GDD		<100 <30			11 48.1			G3 G3	<0.5	<0.5 <0.1									3 423 -	43.5		13	
PARSON PARSON 10-10-1 100000 100000 100000 1000000 1000000 1000000 10000000 10000000 10000000 10000000 100000000	1 63	40.6	40	. 18	41 -	a -	11	- 11	1 420	-20 -3	~ 40	-30	- CEE	4300	- 100 - 100	48	-a -	11 411	w. (41	43 4	41 43	<0.5	103 123	423	0 E	113	-0.5 d		as a	43	as a	a as a		43 4		


The state The				
Part		Metals & Metalloids	TPHs (NEPC 1999) TRHs (NEPC 2013)	BTEX Polycyclic Aromatic Mydrocarbons Chlorinated Benar
Paris Pari	☆JBS&G	9 1 2 5	action action rection rection rection data	and a sea service of the sea of t
Part		Total and	2	the section of the se
Part			west west mest mest mest mest mest mest mest m	
Part	ig.		100 2000 2000 1000 1000 1000 1000 1000	35.00 35.00 0.30 0.30 0.30 0.30 0.30 0.3
Part			800 2800 130	380 56 77 85 505 0.7
Part				
This important				
Part		100 20 100 6000 300 60 600 700	7800 7980 10800 708	30
			111	85 03 35 540 40
				G00 G00 G0.0 G0.0 G0.0 G0.0 G0.0 G0.0 G
			# · · · · · · · · · · · · · · · · · · ·	GE G
	00_90_0.00.1 1009 0.00.1 28/08/0038 Pullion 8 620668		M	
			20 420 420 430 430 430 430 430 430 430 430 43	GR G
			48 - 40 - 40 - 170 - 95 - 265 - 40 - 210 - 420 -	00 00 01 01 01 01 01 01 01 01 · · · · ·
			8	50
	1961 0.2-0.8 1961 0.2-0.8 28/08/0318 Pursur 8 62358			
			N	
		-2 -0.1 11 -81 -19 -0.1 82	B	
	85-42_00-61 85-68 0-61 (20)00/0338 (Au-Suit 9 163888)	3 43 10 10 10 41 - 10	400	
		18 68 10 21 18 61 51	20	
	\$5-45_0.0-0.1 \$5-45 0-0.1 20(06/0338 Person 30 63880		#	
		a at a a a at . a	a	
		32 64 23 25 84 63 - 33	200 -00 -00 76 200 278 -00 261 -020 200 -00 -00	## ## ## ## ## ## ## ## ## ## ## ## ##
				01 01 01 01 01 01 01 01 01 01 01 01 01 0
			a	
	10-21_0-0.1 10-25 0-0.1 20/00/0238 Physical 12 80/00/02	14 64 21 G 11 G1 G G G G1 G2	a	
54. 54 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
				Set
MATE OF STREET WATER STREET WAT				
ALTHOLOUS MATERIAN SALES AND SALES A	\$5-84_00-0.1 \$5-96 0-0.1 20(00(0000 Parison 11 \$100000			
H. M.				
HARM SALE MATERIAL SALE MATERI				
94.94 94 95 95 95 95 95 95 95 95 95 95 95 95 95				
5.4. 1 5.5. 1 5.				
\$\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
	03_60_0.0-0.0 1086 0.0-0.0 20(00,0228 Pulson 28 620028	0 01 0 0 11 01 - 0	E1 420 420 430 430 430 430 430 430 430 430 430 43	37
	N_87_0-0.1 NR7 0.0.1 28(98,0318 Person 18 62008	73 404 33 23 44 463 - 27		


	_																																									
M	_ H		Polychlorina	ated Diphen	yls	+		_		_		Orgo	anochlorine	Pesticides						П	+	т т	_	T T		_		П		Organophos	phorus Pes	iticides	\neg	\top	$\neg \neg$			П	\top	\rightarrow	Ionic Ba	lance
∯JBS €G																																				1						
																																				1						
																																				1						
							1					8																														
							1 8					15																								1					2	
												8																													200	
							8	ì				8	:	e se	5				9		E	8	1							1 _			ž		% 6	4			8		8 8	8 8
		12 1016	22 20	20	2 8	8	100	پ ا	، ا ،			9	, i	5 5	Han sulph	at the property of	69	8	20	l gg	8 E	8	ifos	8 9	2	- 8	3 5		10 M	100	8	. 8	fd of	8	_ E	8	2	-	. 8	8 8	ochar litwo	- A
		9 9	do do	8 .	de de	£ 8	4 4	2	1 1	i i		. 8	8 2	20 20	lu de	# #	a sign	to la	dans dans	8	the sta	a a	A do	Ber Se	8	May B	ulfo a	, 5	SU S	of the	160	od gray	8 8	16	8 8	ates (file	go a	op :	asch dun	No No	9 5	9
	- 1	\$ \$	S S	§ .	\$ \$	0 \$	2 3 2 3	ou nede	8 2 nete m	a more	8 :	8 8	- S	5 5	. S	\$ 8	S mehr	2 menter m	8 5	200	ê 2	5 100%	5 5	5 8	8	8 8	8 8	\$ £	8 3	§ §	2 2	soldways and	2 2 menu menu	5 /	8 8	2 X	2 8 menu menu	3 ,	i je	pena mena	S 2	MA DESCRIPTION OF THE PROPERTY AND THE P
EQ: https://dist.eu.its.neel.tediment-infon feodersia/Public Open Sacre	-	1.50 0.50	0.10 0.10	0.10 0	1.30 0.30	0.10 0.05	0.05 0.0	00 000	0.05 0.	0.05	0.00 0	05 0.03	0.03 0	0.05	0.05	0.03 0.0	0.05	0.05	103 0:03	0.05	100 030	0.20	0.20 0.20	2.00 0.1	0 0.20	0.20 0.20	0.20 0.20	0.20 0.20	0.20 0.1	0.20 0.2	0.20	0.20 0.20	2.00 0.30	2.00 0	030 030	0.32 0.32	030 030	0.33 0	30 030 0	0.30 0.30	0.09 121	00 0.10
NEPM 200 ESS Carbon Residential and Public Open Space, Course Soil	_	\rightarrow	_	-		_		-		-		80		-	\vdash	-			_		-	+	-		+						-		-	+	+	\vdash			+	+	_	
NEMA 2011 M.S. ALBEROULH Solf-Bonded ACM - Repolential - HSL A																																										
NEPM 2018 MgHz Limits - Recidential, Flinkland and Public Open Space, Coanse	_	_		-		_				-			-	-		-					-		-	-	+	_							_	+	_	+		-		_		-
NEWS 200 Figures A. NEWS 200 Figures A. & Milk & For Expour Indusport Stands Str 42m						1	- 1		- 3	0		200				10		4		930	20		160																			
																					_													_								
Field_SD LocCode Nample_Depth_Namp Nample_Date Time Location Lab_Report_Namber EMRCS_CO.D.1 SWW21 SxL0.1 1909R0218 Fourser 1 609R71	Ger	- 1 - 1	- 1 -	1 - 1							-		1 - 1		1 - 1	- 1 -	1 -			1 - 1	- 1 -	1 - 1	- 1 -	1 - 1 -	1 - 1	- 1 -		1 - 1 -	1 - 1 -	1 - 1 -	1 - 1		- 1 -	T-T				1 - 1				-
DW02_0.P-0.1 0W02 0-0.1 09/09/0318 Notion 1 409271				-							-		-		-		-	-				-			-						-			-				-				
	-+			+++		- 1		++		++			+++		+++		++			H	+ +	+++		+++	1:1		1 1	1:1:	+++	+:+:	+:-		-+-	+++		+++	1111	+++		+ +	- 1	+-
0010-01 001 0-01 0000001 Notes 1 00000 0027-01 002 0-01 0000001 Notes 1 00000		01 401	<0.1 <0.1	<0.1 <	81 481	40.1 40.05	<2.05 <2	05 40.05	<0.05 <0	1 40.05	<0.05 <	105 4035	40.05 40	105 <2.05	<0.03	<0.03 <0.	15 <2.05	<2.05	003 <003	<0.05	a .	-			-						-			-				-				
N12 PG1 N12 PG1 18/08/0218 PN/NN 1 42800 N18 PG1 N12 PG1 18/08/0218 PN/NN 1 42097	_			-		1 1		-		-	-				-			-		-	1 1	-												+++		+++		-				
01,99,3001 1889 2.001 28/09,0218 PNRSH 2 62068 03,71,3001 1871 2.001 28/09,0218 PNRSH 2 62068				-				-			-		-		-		-	-				-			-						-							-				
0240-01 024 0-01 2600328 Notes 2 62003	_			1				-		+	-		-		-		-	-		-	1 1	+++		111	-			1 1	-	1 1	++		++	+++		H						
\$25.0-0.1 \$55.5 0-0.1 \$2(00,0018 \$7.000 7 \$45800 \$155.0-0.1 \$150.0-0.1 \$150.0-0.1 \$7.00,0018 \$7.00.0-7 \$150.0-7				-		4 4					-		-		-		-	-		-		-									-			-				-	-			
038 0-0.1 1006 0-0.1 18/06/0238 Person 2 600797	-	03 403	401 401	483 4	01 401	40.0	<2.05 <2	05 <0.05	<0.05 <0	1 40.05	42.05 43	105 <0.05	<0.05 <0	2.05	<0.03	<0.03 <0.	15 <0.05	<2.05	pas <021	40.0s	a -	-		1 1	+ -			1 1	1 1	1	1			+++		H	1 1	1		+ +		++-
0-18_0-0.1				-							-				-		-	-				-														1 1		-				
65-21_0-0.3 55-21 0-0.1 38(08,0334 Notice 2 609379				-							-				-							-		1 - 1 -	-									1								-
				1:1									-		-		-	-		-		-			-						- :							-				#
SW04_0.0-0.1 SW04 0-0.1 SR/04/0318 Pinton 8 409273				-							-		-		-		-	-				-			-						-			-				-				
0005 0-0-0.5 0005 0-0-0.5 10/00/0218 Notion 8 622358 03,71,5-0-0.1 1075 0-0-1 20/00/0218 Notion 8 620068	-	01 401	40.1 40.1	- 481 4	 01 <01			05 4005		1 40.09	42.05 40				<0.03				003 4003	-0.05	a .	-							1	1	-			+-+		+++		-				++-
000 0.3-0.6 3301 0.3-0.6 38(0)(0018 Person 8 63800	_			-				-		-	-		-		-		-	-		-		-			-						-		-	+				-			7.5 31	10 22
1002 0.9-0.4 1532 0.9-0.4 (5)(0)(0218 PAYROW S 625000 1002 0.9-0.6 (5)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)				-		1 1					-		-		-		-	-			1 1	-													-			-	77			
902 0-0.1 952 0-0.1 18/08/0218 Purbor S 408000	_			-				-			-		-		-		-	-				-			-						1 -			+-+				-	-			-
M0803-0.6 NSS 0.5-0.6 Sa(08,0338 Pursur S 40800		- -		1 - 1							·				T - T	. .	1.			T . I	- [-	T 1	- -	1.1.	1 - 1	- -			1.1.	1.1.	1.1								TI			
M010-01 M01 0-01 M09/0218 Purber 1 60097	_			-									-		-			-				-			-						-			+		-		-				
000 PRAG 2022 0.3-0.6 (36/06/0218 Portion 2 62000	_			-			-	-		-	-		-		-		-	-		-		-			-						-			+				-	++			
100 0.3-0.4 100 0.3-0.4 18/08/0218 PurSuk 8 628000	_			-				-		-	-		-		-		-	-		-		-			-						-			+-+				-	++			
3009 0.5-0.6 3325 0.5-0.6 38(98)/0218 Portion 8 420797				-		- -												-			1 1	1.			-											F		-	-	7		
NOS 0-0 1 NOS 0-0 1 SA(SA,O218 Puriou 8 408000 NOS 0-0 1				-		1 1					-		-		-		-	-			1 1	-													-			-	77			
\$607.09-0.0 \$507 \$.9-1 \$8(00)\$218 Person 8 \$20097	_			-				-			-		-		-		-	-				-			-						1 -			+-+				-	-			-
00070-01 0007 0-01 05(00)0218 Portion 8 600000 00000-01 0008 0-01 05(00)0218 Portion 8 600000		01 401	401 401	<0.1	01 401	40.1 40.0s	<2.05 <2	03 <0.03	<0.05 <0	10.09	<2.05 <		<0.05 <0	0.09 <0.09	<0.03	<0.031 <0.	100	<2.03 <	031 4031	40.05	d -	-		1 1				1 1						1				-				
50-27_0.3-0.3 \$6-27 0.3-0.3 \$6(00).0038 Minlaw 8 600270				-		1 1												-				-			-																	_
50-27_0.0-1.0 50-27 0.0-1 39/39(0338 Notion 8 409275				-							-				-			-				-			-						-			-								
N2802-0.5 5528 5.2-0.5 58/08/0518 Portion S 622255				-									-		-		-	-				-			-						-			-				-				
NAME POL NAME POLI INFONOME AZZONE NAME NAME AZZONE NAME NAME AZZONE NAME NAME NAME NAME NAME NAME NAME NA	_					1 1		-		-	-		-		-		-	-		1		-									-		-	+++		+++		-				
19-80_0.0-0.1 19-80 0-0.1 20(0)(0018 Person 8 60880				-									-					-				-			-									-				-	-			
\$6-26_0-6.1 \$6-26 0-6.1 \$6(08)0218 Notice 6 609272				-		- 40.05	<2.05 <2.	03 <0.03	<0.05 <0	10.09	42.05	103 1033	<0.05 <0	0.05 <2.05	<0.03	<0.03 <0.	15 <2.05	<2.03	0.00	40.06	<1 <0.1	<0.2	40.3 40.2	4 40	2 <0.2	<03 <03	<02 <02	40.3 40.1	45.2 45	462 46.	2 <02	<02 <02	<2 <62	0 0	(0.2 <0.2	<d2 <d2<="" th=""><th><0.2 <0.2</th><th>43.2 4</th><th>12 43.2 4</th><th>d3 -d3</th><th></th><th></th></d2>	<0.2 <0.2	43.2 4	12 43.2 4	d3 -d3		
\$15-00_02-0.5 \$15-28 \$2-0.5 \$26(00,0218 Noview 6 400020 \$15-0.5 \$15-0.				-		1 1					-		-		-			-		-		-		1 1				1 1		1 1				1				-				
0x40-0x1 0x40 0x1 20(0x)0x18 Noview 5 420097 0x40_0x0-1 0x40 0x1 20(0x)0x18 Noview 5 420097	-	03 <03	<01 <01	<0.1 <	01 <01	40.1 40.05	<2.05 <2	03 <0.03	<0.05 <0	1 10.09	<2.05 <	103 <0.03	<0.05 <0	0.09 <2.09	<0.03	<0.031 <0.	05 <2.05	<2.03	003 4003	10.05	a .	-			-						-		- 1-					-				
2005 0.403 9003 5.403 15(05/0328 Notion 6 62927	_			-		1 1		-		-	-		-		-			-		-		-												+++		+++		-	++			
0077-0-1 007 0-1 20(00,0218 Notion 6 600797 00510-2-0-5 0051 0-2-0-5 00000218 Notion 6 600797	-	03 <03	<01 <01	<0.1 <	01 <01	<0.1 <0.0s	<0.05 <0.	05 <0.05	<0.05 <0	10.09	<2.05 <	103 <0.03	<0.05 <0	0.09 <0.09	<0.03	<0.03 <0.	100	<2.05	003 <003	<0.05	a -	-			-						-							-				
19-61_0.2-0.8 19-61 0.2-0.8 20(9)(0.018 Pursus 6 62880	\rightarrow		- 1	+++		+ +		+		+		-	+++		+++	- 1	++	H	++	H	+	+++		+++	+++	- 1	1	++++	+++	+-+-	+ -		++	+++	++	H	1 1 1	+++	++	++		++-
01-02_00-01 10-02 0-01 20[00]0218 Puriou 6 628823 0047'0-01 1058 0-01 22/00/0218 Puriou 6 628823	\rightarrow					1 1					-		1			-		-			1 1		1 1					1 1									1 1		##	44		#
03_68_0.0-0.1 1568 1.0-0.1 28/09/0218 Purisus 6 620668	-	-1-1	- 1-	+++	- 1	+ 1		++	H	÷		- 1 -	+++	- 1 -	+++	- 1	+	H	- 1 -	H	+ 1	+++	- 1	+++	+++	- 1-	1	++++	+++	1:1:	+++	- -	++	+++	+++	H	1 1 1	+++	+	+++		++-
10_72_0.00.1 1072 0.00.1 28(00,0318 Purson 6 020008			· L								-					- 1		-	· L		1		- 1 -			- 1						1 1	-1-				1					1
55-81_60-61 55-85 0-61 20(8)(0216 Purson 6 608883		07 407	40.1	40.1	01 (01	40.1 40.05	<0.05 <0.	05 <0.05	<0.05 <0	10.05	<2.05	103 4033	<0.05 <0	-2.05	<0.03	<0.03 <0.	05 <0.05	<2.05	003	10.05	a .	1.7		1 - 1						1 - 1 -	1 -			1.1				1.	- -	1 1	- 7	1 -
10-31_0-2-0.1 10-31 2-0.1 20/01/0218 Purbol 6 428802 10-31_0-2-0.1 10-31	-+			1:		- 1		++		++					1		++	-		1	+ +	+++		1:1:	1:1			1: :	1:1:	1:1:	1:		-+-	+++		+++	1	1:1		+ +	2.5 6	
0389-01 5399 0-11 20(05/0218 Points 6 020197 040819-20 04028 19-20 25(05/0218 Points 7 02258		01 401	<01 <01	40.1	81 481	40.1 40.05	<2.05 <2	os <0.0s	<0.05 <0	1 40.09	42.05 4	105 <0.05	<0.05 <0	1.05	<0.03	<0.03 <0.	15 <2.05	<2.05	DOS 4003	40.ES	a -	-			-						-			-				-		4 4		
1990 19-20 0991 19-20 1990 0218 Poison 7 92251 2901 19-25 0991 19-25 19/90 0218 Poison 7 92251	\rightarrow			+++		1 1		-		+	-		1		1		1	-		H	1 1	+++		++++	+ -			1111	+++	1:1:	+ : -		++	+++		H	1 1 1	+++	++	++		++-
0000 8.0-0.5 00021 E.0-0.5 18/09/0218 Person 7 42203 0000 8.6-0.4 00028 E.0-0.4 18/09/0218 Notion 7 409071				-		4 4				- 1	-					- -	-	-	- -		- 1 -				-						1 - 1			-								-

	_		forinated Bloh		_					-	nochlorine I																	Irganophos												Ionic Balanc	
M		Polycni	ioninated bigs	enya						Orga	socreorine i	restrictors		т				\vdash						Т		Т		rganopnos	priorus Pest	ODES			\neg				$\overline{}$	\Box	+-	IONIC BAILBIN	Ce .
∯JBS €G																																					.				
																																					.				
																																					.				
																																					.				
																																					.				
						1	.			8																											.				
						1 5				2 2																											.		<u>₹</u>		
										5			8			- 4				3	.													1 .	.				8	:	
						1				8	j	£ 8	5	·		8			£ 8	18											ž		6	1			. 6	11.	. š	1 8	8
	1 8 1	2 2	22 22	8 8	ଛ	1 3	ψ .	. 2		9	v 1	5 5	š	5	ğ ğ	8	ž	8	g g	ifos ifos	8	2 2	- 8	3 3	5		No.	ŝ .	8	. 8	gc	8	- E	1 13	8 2		8	8 8	£ 8	1	2
	ě	å å	ch ch	g g	ĕ 8	5 3	8	# # F	5	. 9	8 3	8 8	in in	- E	å å	8	8 8	8	<u> </u>	8 8	8	8 8	9 4	1 4	2 _	8	8 8	of the	15	ough laby	8 8	8 8	8 8	80 1	8	a of	ach ach	2 2	ž š		ŝ
	§ .	§ §	3 3	3 3	2 3	3 3	2	8 2	8 8 602 m602 m	8 8	8 1	5 5	5 5	š	5 8	1	5 8	ê	2 5	5 5	5	8 8	8 8	8	8 8	ž	£ £	5 5	2	ž ž	8 2	- 5	8 8	2 3		2 3	2 2	2 2	4 8	- 8	- E
idi	0.10 0.	130 0.33	0.10 0.10	0.10 0.10	133 0.05	0.09 0.0	0.00 0	03 0.10	100 0.00	1.05 0.05	0.03 0.	ES 0.05	0.05 0.05	0.03	0.05 0.05	1 201 1	0.05	100 0				0.30 0.30	0.30 0.3	0.20	0.30 0.30	0.20	1.20 0.20	0.20 0.20	0.30	1.30 0.30	2.00 0.3	10 2.00	030 030	0.33 0.	33 033	033 033	0.30 0.30	030 0.	20 0.0	11.00	0.10
NEPC 2018 EX, ISLA Ryed Sediment - Lisban Recolorisat/Public Open Space NERM 2018 EX, United Recolorisal and Public Open Space. Cooking Stat										180																															
NEMA 2011 ESC Disparities and Public Open Space, Coarse bad NEMA 2011 NS. Asbetock in Sod - Bondrid ACM - Neodensial - Mill A														+										_		+		_	+								_	+	_	\perp	
NEPM 200 E MSL Auberduciu Sod - PA & AF - MSL						_		_		_		_	_	+ +	_		_		_		_	_			_	+ +		_	+		_	_	_	_	_	_				_	
NEPM 2015 MgH Limits - Residential, Parkland and Public Open Space, Coanse NEPM 2015 tool HILLA																	800																								
NEWS 2011 NO. A & MOLE for Yappar Housen - Sand of Sa < Sin						-		10		243			10				933	~		160																					
																																									_
Field_ID LockSide Sample_Depth_Range Sample_Debth_Time Location Lab_Report 00-29_C0-0.1 50-29 0-4.1 20(b),0218 Notion 7 0.0882	Utunber						1 . 1							1 . 1		1 . 1					1 . 1			1 . 1					1 . 1					1 . 1							_
10-29_2-0-27							-									-		-			-			-		-			-			-		-						-	-
00_56_0.001 5556 0.001 26/05/0318 Pulson 8 620668	40.1 40	07 407	401 401	401 401	D1 40.06	<2.05 <2	s con o	3.05 <0.1	3.05 <2.05	2.05 <0.05	40.05 40	1.05 <2.05	<025 <025	40.0s	<2.05 <2.0	s <02s <	0.05	a			-			-		-			-			-		-						-	-
0.56,3.70.8 556 5.70.8 38(98,0318 Notice 8 62068 51.37.0.90.1 38(98,0318 Notice 8 62068 51.37.0.0.90.1 38(98,0318 Notice 8 62068 51.37.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.							-							-		-		-			-			-		-			-			-		-				1 -	-	-	
0_37_0.001 1887 1.001 28/08/0218 Notion 8 42008 03_88_0.001 1888 1.001 28/08/0218 Notion 8 420088			1 1	1 1	1 1									1	1 1		1 1	-		1 1			1 1		1 1	1 1						1 1	1 1			1 1		+:+:	++	42	
10_10_0.00.1 1009 0.00.1 28/08/0018 Pursui 8 600088							-									-		-			-			-		1 - 1			-					-				1 - 1 -	-	-	-
01,60,50.0.1 \$360 \$0.0.1 \$260,0218 Policies \$40068 01,61,50.0.1 \$361 \$0.0.1 \$260,0218 Policies \$40068		01 401	401 401	401 401		12.00 12	-	101 101		101 103			1 1	10.05		-	001 1001	-			-	-		-		-			-					-		1 1				-	
0_61_001 (861 1001 300)0318 Notice 8 62008 0_61_0203 (862 0.203 30)05(0318 Notice 8 62008	40.1 4					<0.05 <0.	n con o				- CO.DS - CO			40.06	<0.05 <0.0	n «con «		- a						-	- 1 -				-								÷	+	+-	+	+
N_6E_0.00.1 SMS 0.00.1 28/08/0218 Pursui 8 60008							-									-					-			-		-			-			-		-				1 - 1 -	_	-	_
N_64_2.2-0.3 NM 0.2-0.3 26/08/2018 Person X 020068 Nn 91 0.0-0.1 NM 0.0-0.1 28/08/2018 Person X 020068		0.1 10.1							0.09 <0.09							n <000 <					-			-		-						-		-					7	I	_
08102-03 381 02-03 28/08/0218 Pulson 8 62258														-				-			-			-		-			-			-		-			_	+++	- 2.1	25	6.9
\$1-00_00-01 \$1-00 0-01 20(00,0218 Porton 9 0.0882 \$1-00_00-01 \$1-01 0-01 20(00,0218 Porton 9 0.0882						- -								1 - 1		-		-	- -		- 1			-		-			-					-	- -						
0-41,0-0.1 \$1-01 0-0.1 20(0),0218 Purbus 9 0.0882 0440-0.1 \$164 0-0.1 20(0),0218 Purbus 9 0.00797		0.1 10.1	401 401		01 100	12.00 12	9 4009 4	101 101	100 100 1	101 103	10.05 10		100 100	10.05	12.00 12.0	9 400 4	0.03 10.03	- a																				+++	4	44	-
\$5-64_0.0-0.1 \$5-66 0-0.1 20/08/0338 Pursus 9 608883							-									-								-		-			-											-	-
047 0-01 1847 0-01 20/08/0318 Polision 9 400797 0-47_0-0-01 18-07 0-01 20/08/0318 Polision 9 408882	40.1 4	01 <01	401 401	401 401	0.05	<2.05 <2	n <025 <	0.05 <0.1	105 -105 -	2.03 <0.03	<0.05 <0	1.05 <2.05	<0.03 <0.03	10.05	<2.05 <2.0	n <0m <	0.05	a a			-			-		-			-					-		1 1				-	
\$5-65_0.0-0.1 \$5-65 0-0.1 20(95,0.018 Notice 10 618880														+ - +				-						-	- 1 -				-								÷	+	+-	+	+
\$5-6K_02-0.1 \$5-6K 0.3-0.1 20(0K/001K Purbut 10 60KM0							-									-					-			-		-			-			-		-				1 - 1 -	_	-	_
89-89,02-0.3 \$19-89 \$2-0.3 \$2(90,0218 Person 22 608802 \$100,0218 \$100,021 \$							-							-		-		-			-			-		-			-					-					7	70	
NSS 0-0.1 NSS 0-0.1 21/09/0018 Pursus 10 618909							-				-			+ - +		-		-			-			-		-			-			-		-			_	+++	+-	+	-
042 0-0.1 1482 0-0.1 20/08/0318 Purbor 13 400797 8044 0-0.1 1484 0-0.1 20/08/0318 Purbor 13 400797	40.1 4	01 <01	401 401	40.1 40.1	0.05	<2.05 <2	n <035 <	3.05 <0.1	0.05 <0.05	2.03 <0.03	40.85 40	1.05 <2.05	<0.03 <0.03	<0.05	<2.05 <2.0	n <001 <	0.03	a			-			-		-			-					-							
0360-01 036 0-01 20(0)(328 Perior 11 620797 0-20 02-01 15-22 02-03 15-070/2218 Perior 11 609272			1 1	1 1	1 1									1	1 1		1 1	-		1 1			1 1		1 1							1 1	1 1			1 1		+++	++	42	
80-22 D-0.1 18-21 D-0.1 26/08/0228 Purbor 11 60/0272														-							-			-		-			-					-			_	+	+-	4	-
M22 PG 1 1022 S G 1 1000/0018 PG 601 62201				401 401					3.09 <2.09 ·													_		\perp	_	\perp	\perp	_	\perp	_	_		_	+	-	_	_	+	-	+	—
10-22_0.2-0.5 10-22 0.2-0.5 10(00)0018 Pursus 11 609070														-				-			-			-		-			-			-		-						-	-
NHZ_00-0.1 NH30 0-0.1 20(08/0018 PMSHH 10 408880							-							-		-		-			-			-		-			-			-		-				1 -	- 17	140	6.0
0-94_0-0-0.1 10-96 0-0.1 20(M/D218 Notion 11 0.08882 00-96_0-0-0.1 10-96 0-0.1 20(M/D218 Notion 11 0.08882			1 1	1 1	1 1		1 1						1 1	+:-		1 1	1 1				1:	1 1	1 1	1 -	1 1	1:			1:			1 2		1 1		1 1		+++	++	$+$ \pm $+$	
N_70_0.00.1 N70 0.00.1 28/08/0018 PM-9H 12 620088							-					- -		1 - 1		1 - 1		-			1 - 1			-		1 - 1			-					1 - 1				1 - 1 -	1	-	-
0:40,00:41							-									-		-			-			-		-			-			-		-							_
0-13_00-01 10-01 0-01 20(M)3218 Notice 12 02000 0-13_00-01 10-02 0-01 20(M)3218 Notice 12 02000	40.1 4	01 401	401 401	 	D1 40.05	42.05 42	n 4000 4	105 401	109 42.09	2.05 <0.05	40.05 40	105 <0.05	- < 0.03	10.05		n <025 <	0.03 40.05			-	+ + +			1		+++		- 1	+++			-		+++				+++	+	+	+
\$5-51_0.0-0.1 \$5-56 0-0.1 20(08/0018 Pursus 12 608880					- 1			- -	- -									-	- -		1 - 1			-		-			1 - 1					1 - 1	- -						
0,66,500.1 3566 5.00.1 26/06/0218 Portor 13 60068 01,66,500.6 3566 5.00.6 28/06/0218 Portor 13 60068		01 401				400 40	n 400 4	101 101	100 1000	100 4000				10.05		n «con «		-			17			1		ΗŦ			1.7					1:1				$+$ \pm \pm	40	$+\Box$	+
01,82,3.0.0 188 1.5.0.0 28/08/0218 Person 18 62008 01,67,0.0.0 1887 0.0.0 28/08/0218 Person 18 62008	40.1 4		w. 01	w. di	-0.05	12.00		401	42.05	400	10000 100	42.05	1000 (00)		12.00		40.08	"			1.			1.		1.			1.			1.		1.		- -			1	لنه	<u> </u>
Paris	1.1	1.					1 1	1 1	1 1			1 .		1 -		1 1			1 .		1 1	- 1 -	1 . 1 .	1 .	- 1 -	1 -	1.	- 1 -	1 .		. 1 .	1.		1 1	1 .		نــــــــــــــــــــــــــــــــــــــ	تللنب		لنب	

						Ash	estos		Asbestos	_			Ashest	s - Trace Analysis															PFAS										
∯JBS s G				rpik Mass am ACM is Soil		Dos in ACM	M 255 M 25 M 25 M 25 M 25 M 25 M 25 M 2	SOSI IN AL	rated health	myle Dimensions	ment	14	Abbett	s - Trace Analysis	Three - Comment	bres - Comment	perfuses Loctare sulforarrido) ethanol effuses Loctare sulforarrido) ethanol	refluoroheranes difonic acid (4.2	erf Laro octan essiboric a	H perfluorodecan esulfonic acid (8.2 FTS) H per fluorododecan esulfonic acid	this maid and dip FIBA)	ant anok a did (PPPe A)		tanok add (MOA)	manok add (MMAA)	Kanok add (MOA)	secanos acid (PFDaA)	(W)	trad ecanolic add (PFTeGA) Takes sulformeride (PGGA)	efluoro-Loctans sufferiarride (H-Me FGSA)	horo-Lodane suforantie (N-ESOSA)	fluor oo da merufion arrido aar lic add effuoroo d amerufionarrido acelic acid	ta nesufonic a dd (PFB.S)	systemes ufformic acid (PPPleps) common Palfornic acid (PPPleck)	8	tansistiforic acid (PEOS)	SandPFOS Se (m28)		DA WAS (WINGS + PFOA)* MAITH WAS (WINGS + PFOA)*
				nox. Sa	stos fr	s ACM	R 8 1	Mass Aber	8025	S sops	8	E S	E S	alc 75	Single	She tic	y rhem y	S AC AC AC	142424	H2H2	90	dough 1	6 6	80.00	1000	po con	9 9	luorotr	luorote luoros	dyle	padyle	ad-yub edy.yb	900	6 6	ge an	to roa	44 do	of WA	of G
				4 No/e	2 70/4	2 Z	8 8 8 1	3 3	Comment	Comment	S Comment C	ž annest	<u>≰</u> Comment	Comment	Comment	Comment		A -04	E ==6/42 = 4	2 2 2 2	4 76/12	- 1 m	B B	1004	-12/4z	mert m	in and	1004	2 E	보 제4	10/4 r	호 토	mg/sg m	\$ \$ 04 ~04	200	- E E	2 70'4 70'	4 10/4 1	3 3
TQL NEPC 2018 EL, ELL Aged Sediment - LYban Residents/(FWS)X Open Space																	6-21 0.0	0.00	0.00	0.55 0.03	0.31	0.00 E	23 0.00	0.01	23.0	0.00 E	0.00	6.31	0.00 23.0	0.31	0.00	20.0	22.0	23.0 10.1	0.00	0.01 0.00	0.01 0.00	631 6	100 001
NEPM 301 I Sti. Urban Residential and Public Open Space, Coarse Soll NEPM 301 I MS. Asbestock Soll - Bonded ACM - Residential - MS. A				0.00																																		_	
NEPM 2015 HSL Asbestock to Sod - PA & AP - HSL NEPM 2015 Mgrt Circle - Recidential, Parkland and Public Open Space, Coan					0.001																																	=	
NEPM 301 E Suit HELA NEPM 301 E Suit HELA E HELE für Expour Heludon - Namé d Su «Sin																																							
Field_ID LocCade Sample_Depth_Stange	Sampled_Date Time	Location	Lab_Report_Number																																				
DW01_0.01 0W21 0-0.1	26/06/0228	Forbor 1 Forbor 1	609071 609071		-						-	-	-		-				-					1		-		-			-		-		-				##
N080-0.1 N09 0-0.1	18/08/0018	Portion 1 Portion 1	618500 618500 618500		-					-	-	-	-	-	-				-		-			-		-		-		-	-				-			-	
N110-03 N01 0-0.1	18/08/0218 18/08/0218	Portion 1 Portion 1	60,8500							-	-	-	- :						-							-		-			-				-			-	
M110-01 M11 0-01	28/08/0218	Portion 1	620797		-					-	-	-	-		-						-			-	-	-		-		-	-		-		-		n 42.005 40.0	-	
10,71,500.1 1071 500.1	28/08/0218	Portion 2	620008		-				1	-	-	-	-			-										<1003 <0	005 <0.005	<2.005	-0.005 -0.0	25 <0.005 25 <0.005	-0.005 ·	1.00 <1.01	<0.005 <	1005 <0.005	<2.005	40.005 <0.00	B <2.005 <0.0	A 4001 4	4.003 40.005
531 0 0 1 531 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18/08/0018	Portion 2 Portion 2	608500 608500						- :	-	-	-	-		-			-						++		-		-					-		1 : 1			$+ \div +$	
N35003 N35 043	18/09/0018	Portion 2 Portion 2	608900 620797							-	-	-		-	-				-		-					-		-		-	-		-		-				
0-18,0-0.1 00-18 0-0.1	18/08/0218	Portion 2	609070 609070									-			-		1 1		-					1					-		-		-		-	1 1		+ -	
9-10,0-01 10-10 0-0.1 10-21,0-0.1 10-21 0-0.1	19/09/0018	Portion 2 Portion 2	609070						- :	-	-	-	-		-			-						++		-		-					-		1 : 1			$+ \div +$	
000,0243 000 0243 000,0243 000 0243	26/08/0218 20/08/0218	Portion 2 Portion 2	609070 609070							-	-	-		-	-				-		-					-		-		-	-		-		-				
8W04_0.0-0.1 9W04 0-0.1	18/08/0218	Portion 3	609071		-				-	-	-	-	-		-				-		-			H	-	-				-	-		-		1			+	
0W05 0.0-0.5 0W05 0.0-0.5 01_75_0.0-0.1 0078 0.0-0.1	28/08/0228	Portion 3 Portion 3	622353 620668	679 G		a o	0 0	0 0	No adventor detected at the reporting limit of 0.000% w/m.*	-	NI NI	NI NI	NI NI	Organic filtres detected.	No respective fibres detected.	- MI		-						++		-		-					-		1 : 1			$+ \div +$	
NCC 0.5-0.6 1821 0.5-0.6	18/08/0018	Portion I	90,8500		-				0.000N w/w.*		-	-	-	-	-				-		-	- -		-	-	-		-		-	- 1		-		-			+	
M0203-0.6 M02 0.5-0.6	18/08/0218	Portion 3	40000		+:-				- :	-	-	-			-	H		-	+					+-	-	-		-					-		1:1			+ $+$ $+$	++-
10020-0.1 1502 0-0.1 10020-3-0.0 1503 0.3-0.0	18/08/0018	Portion 5	60800	796 0	- 0.0398		1007 01130		T Startbooking and considerate absolute description	-	-	-	FR Chrysotile and crocolide adjectic	Dyanic films detected.	No recorded fibres detected.	·	1 1		- 1		- 1			1:		-				- 1			-				1 1		
									weathered fibre-cement fragments.		-		detected is weathered fibre cement. fragments.			_																							
10010-0.1 1503 0-0.1	18/08/0218	Portion 5	620797	256 0	0	0 0	0 0	0 0	No adjector, detected at the reporting limit of		NI	Net	NI	Organic filtris distincted.	No respirable fibres detected.	No			1 - 1					-	- 1	-		-			-		-		- 1			+-+	
MOS PRAG SSES 0.5-0.6	18/08/0218	Portion 8	608000	183 0	0	0 0	0 0	0 0	6.005N w/w.* ACM Chrycotile; amoute and croodotte ade-do- detected.	20049045	NI	NI	N	NI	M	Nel	1 .		1 - 1			-		1				-			- 1		-		- 1		1 .	1-1	
1000.3-0.4 1504 0.9-0.4 1005.0-3-0.6 1505 0.5-0.6	18/08/0218	Portion II	608500 620797	298 G	- 0	a o	0 0	0 0	No adjector detected at the reporting limit of	-	NI NI	No.	NI NI	Organic filtres detected.	No respective fibres detected.	- No	1 1		-					1	-	-		-					-		-				
NOS 0-0.1 NNS 0-0.1	18/08/0218	Portion 5	61800		-				0.000N w/w.*	-	-	-		-		-	-		-		-	-		-	-	-		-		-			-		-			+++	
NDS D-0.1 NDS D-0.1 NDC D-0.4.0 NDT 1.9-1	18/08/0218	Portion 5 Portion 5	608500 620797		- 1				1	- 1	-	-			-	-			-		-			1		1		-			-:-	1 1	-						-
M070-01 M07 0-01 M080-01 M08 0-01	18/08/0018 18/08/0018	Portion 3 Portion 3	608500 608500								-		-		-				-		-				-	-		-		-	•		-		-				
1027_02-0.5 10-27 0.2-0.5	19/09/0018	Porton I	609070 609070	662 0	0	0 0	0 0	0 0	No advertor detected at the reporting limit of		NI	Nel	NI	Diganic filtres detected.	No respirable fibres detected.	MI		- 1	1		11	- 1	- 1 -	H		-	- 1 -		- 1	10		- 1		- 1			1 2 1 2	+++	- + -
19-27_0.9-1.0 19-27 0.9-1	19/09/0018	Portion 3	609070	687 0	0	0 0	0 0	0 0	0.000% w/w.* No advence detected at the reporting limit of 0.000% w/w.*	-	NI	Nel	NI	Organic filtres detected.	No respirable fibres detected.	NI	1 1	- 1	1 -		1 - 1		- -	1		-	- -	1		1 -	-		-		-			+++	
N280243 N28 0243 N28061 N28 041	16/06/0218	Portion II	62251									-	- :													-												1	
N800-01 8800 0-0.1	20/08/0018	Portion 3	620797					1 2 2			-	-											- -	1		-	- 1							- 1			1 2	+	
0-10_00-0.1 10-30 0-0.1	20/08/0228	Portion 1	628883	601 d		0 0	0 0	0 0	No adventor detected at the reporting limit of 0.000% w/w.* No adventor detected at the reporting limit of	1	NI	No.	NI W	Organic filters detected.	No respirable fibres detected. No respirable fibres detected.	No.			1 .		1 1			1:	1	-		1:		1 1	-	1 1	1		1 :		1 1 1	+:-	
19-20_02-03 19-20 0.2-03	18/08/0218	Portion 6	609070		+++			+ + + +	0.000N w/w.	-	-	-	-			F		+	+++	- 1	+-+		- 1	+-		-	- 1	-	- 1 -	+-1	-	+	-	- 1	+-+	- 1	+++	+++	
50-27_0-0.1 St-17 0-0.1 55620-0.1 SSS2 0-0.1	20/08/0218 20/08/0218	Forbox 5	609070	-									-													-								- 1			1.1	1	
10-80_00-0.1 NI-80 0-0.1	20/08/0218	Portion 5	60 MRR 2		-					-	-	-			-	1	1 1		-					-	-	-		-					-		-			+	+++
0W05_0.6-0.5 0W05 0.6-0.5 0827-0-0.1 0887 0-0.1	20/08/0218	Portion 6 Portion 6	629271		+:-				- :	-	-	-			-	H		-						+-	-	-		-					-		1:1			+	++-
6610243 561 4243 6541,6243 5541 4243	20/08/0218 20/08/0218	Portion 6 Portion 6	620797	1 1								-	-	-						1 1																1 1	1 1	##	
0-42,00-41 0-42 0-41 0-42,00-41 0-42 0-41	20/08/0218	Portion 6	60.0000 60.0000		-			1 1 1		-	-	-			-	-			-			- 1		-		-	- 1	-		-	-		-		-		1 1 1	+++	
N_8E_0.001 NSS 0.001	29/09/0218	Portion 6 Portion 6	620068		+				1 - 1	-	-	-	-		-	H	-0.005 -0.0	005 <0.00	1 48.00 4	-0.005 -0.00	15 <0.005		005 40.005	-0.00s	<0.005		009 10.009	-0.00s	-0.005 -0.0	25 <0.005	10.003	1.00 42.01	-0.005 -0	1005 40.005	<2.003		B 40.005 40.0	B <001 <	-0.003 -0.009
10,72,200.1 1072 200.1	28/08/0018	Portion 6	620008	687 0	0	0 0	0 0	0 0	No adjector detected at the reporting limit of 0.0000 w/m.*		No	Nell	NI	Organic filtres detected.	No recordate fibres detected.	No			-			-		1		-		-			- 1				-				
9-H_00-01 19-H 0-01	20/08/0218	Porton 6 Porton 6	618882	585 0	0	a 0	0 0	0 0	No advector detected at the reporting limit of 0.000% w/m.*	<u> </u>	NI	NI	NI	Organic filtres detected.	No respirable fibres detected.	NI	1	1 -	1.		∔ :T	.	. -	1.		-	. -	1 7	- -	1 7	- [- -		- -	1 · T			11	
19-17_02-0.1 19-17 0.2-0.1	20/08/0018	Portion 6	40,000					111	 						-	Ė		1					1	E		-	1										1111	+++	++
MM80G1 MM9 0G1 MM81920 WWN 1920	20/08/0018	Portion 6 Portion 7	62258						1		-	-				1		-	-					-		-					-							+=	##
0W011-0-13 0W01 1-0-13	19/09/0018	Portion 7	62333								-	-	-		-			- 1	-		1.0			-		-		-		1 -	-				-			1	
months and least	hw/08/0228	pueblic 7	post?3	-1-		-1-1	-1-1	1 - 1 -	1 .		-	- 1				<u> </u>	1 - 1 -		1 - 1	- 1 -	1 - 1	- 1 -	- 1 -	1.			- 1 -		- 1 -		-	. .		- -	1 - 1	- 1 -	1 - 1 -	1	-1-


	Asbestos	Asbestos Aub	Abbettos - Torce Analysis PRAS
PA	Albeitos	Albeitos	ABSENCE - IDEC AND PLES
©JBS2G	Approx. Ser Asbestos fin Asbestos fin Mass Acha Mass Abas Mass Abas Mass Abas	ă B B B B	Special fair Comment replace fair Comment replace fair Comment for the properties of the Comment for the Comment fo
106	g Naja Naja g g g g g g	g Connect Connect Connect Connect Connect	Connect Connect Confere (Fig. 1) and 10 and
NEPC 2018 ES, ELL Aged Sediment - LYban Recidential/Public Open Space			
NEPM 200 ESU Urban Residential and Public Open Space, Coarse Soll			
NEPM 2013 MS. Aderbock Soil - Bonded ACM - Repdensoil - HSLA	0.00		
NEMM 2003 MSL AND COLON SOIT - FA & AF - MSL NEMM 2003 Mg/mt Livinitis - Revolutedal, Funktional and Fullish Capen Space, Colonia	0.001		
NEMM 2013 Mg/s Linick - Recidential, Purkland and Public Open Space, Coanse NEMM 2013 Sold HIL A			
NEPM 2015 for ML A & ML 8 for the our House - Send Star Com			
Fold_D LocCode Sample_Depth_Mange Samples_Date-Time Location Lab_Report_Number			
09-29_00-0.1 19-29 0-0.1 20 09 0238 Ministr 10-2880			
\$1-29_2.6-2.7 \$1-28 2.6-2.7 \$2(05,0228 Purson 7 608882			
N_M_0.001 1899 0.001 28/08/028 Portor 8 62068	668 0 0 0 0 0 0 0	No adjectic detected at the reporting limit of No.	Opposit Generalisel. This requirable Blass defecteds. This is a second of the second o
00_56_5.2-0.3 1856 5.2-0.3 28/09/0228 Ministri 620008			
00_37_0.0-0.1 1037 0.0-0.1 28(00,0.018 Portion R 400008 103.00.0.0.1 103.00.0.0.1 Portion R 400008 103.00.0.0.1 103.00.0.0.1 103.00.0.0.1 Portion R 400008			
00,36,0.00.01 MINE 0.00.1 Sp(00,0.01.0 Parks of 0.000.00.00.00.00.00.00.00.00.00.00.00.			
N_90_0001 NN9 1001 200000 NN9 10000 NN NO 1001 NNO 1001 20000000 NNS 100000			
03_61_0.00.1 (681 0.00.1 (860)0.00.18 Pursui 8 (600)08			
N_62_5.2-0.3 SN2 5.2-0.3 28/08/0518 Pursui 8 62068			
01_61_0.001 5568 0.001 28/09/0018 Pursus 60008			
10_60_0.20.3 1866 0.20.5 28(05)0238 Pullium N 60068			
No. 60, 2.001 NNS 0.001 28(00,0218 Portion X 0.0008 NNS.02.02.0.3 NNS.02.0.2.0.3 NNS.02.0.3 NNS.02.			
0610243 1561 0.243 36000218 Porton R 62255 85-66_0241 155-66 041 20(05)3218 Porton 9 65882			
0-61_0-0-1 10-68 0-0.1 20 00,0218 NYSOL9 618882			
064 D G 1 1864 D G 1 20/09/2018 Pursus 9 620/97			
69-60_00-0.1 69-60 0-0.1 20(00)/2018 Pursus 9 608880			
1567 D-G 1 1567 D-G 1 20(05,0338 Pursus 9 600797			
0-07_00-01 10-07 0-01 20(00,0218 Portion 9 0.08882 0-0_00-01 10-01 0-01 20(00,0218 Portion 12 0.0882			
[0-40,0-0.1 10-50 0-0.1 20 00,0334 Foreign 20 6.08882 10-40,00-0.2 10-60,00-0.2			
\$1-01_02-03 \$1-01 \$2.03 \$20(0),0238 Pullion 32 \$63882			
0064 PG			
2005 D-G.1 3005 D-G.1 23/05/0238 Pursus 32 608869			
0012 0-0.1 0002 0-0.1 00(00)0318 Portion 11 000707			
000 0-0.1 (000 0-0.1 (000)0000 Notes 11 (000)00 00-00 0-0.0 (000)00 (000)00 (000)00 (000)00 (000)00		D To adequa detected at the reporting limit of NI NI NI NI	Ogast first decord. So requisit first decord. Sid
	706 0 0 0 0 0 0 0		
07-21_0-0.1 \$5-21 0-0.1 \$5(00,0224 Person 12 609279	ans 0 0 0 0 0 0	D No adversion detection with a sporting limit of No. 1961 No. 196	Ogast flors detailed. No requisit flores detailed. No requisit flores detailed.
N32 0-0.1 N32 0-0.1 18/08/0218 Pursus 11 622518			
89-22_0.2-0.1 19-22 0.2-0.1 19(09,0018 Moles 11 609070			
00-82_00-0.1 10-92 0-0.1 20[00]0218 PAVSAN 11 0.08802 00-82_00-0.1 10-98 0-0.1 20[00]0218 PAVSAN 11 0.08802			
0-00_00-01			
0,70,0001 920 0001 2001 Miles Nelso 12 62068			405 405 405 405 405 405 405 405 405 405
\$1.50_0.0-0.1 \$1.50 0-0.1 20 00 0018 Pulson 12 60880			
69-51_0-0-6.1 89-50 0-6.1 20 09/0-238 Morbon 12 618880			
69-52_60-6.1 50-52 0-6.1 20(05/0338 Person 12 638883			
09-13_00-0.1 19-51 0-0.1 20[05]0218 Pursius 12 02882 05_86_0.0.0.1 1886 0.0.0.1 28[05]0218 Pursius 13 02008			
N_66_2-0-0.3 1866 1.0-0.1 26(0)(0228 Notion 15 600008 N_66_2-0.0 1860 1.0-0.6 26(0)(0228 Notion 15 600008		D No address detected at the reporting limit of NII NII NII NII	Oppose flave detected. No expensive flavor detected. Mil.
	891 0 0 0 0 0 0 0		
N_87_0.001 INST 0.001 28(08)0218 Pursus 18 62008			

Appendix B Concept Plan

Appendix C Previous Site History Information

Our Ref: D13/008322 Your Ref: Tom Harding

5 February 2013

Attention: Tom Harding JBS Environmental Level 1, 50 Margaret St Sydney NSW 2000

Dear Mr Harding,

RE SITE: Pacific Hwy Moonee Moonee NSW

I refer to your site search request received by WorkCover NSW on 23 January 2013 requesting information on licences to keep dangerous goods for the above site.

A search of the Stored Chemical Information Database (SCID) and the microfiche records held by WorkCover NSW has not located any records pertaining to the above mentioned premises.

If you have any further queries please contact the Dangerous Goods Licensing Team on (02) 4321 5500.

Yours Sincerely

Brent Jones Senior Licensing Officer Dangerous Goods Team

WorkCover. Watching out for you.

Our Ref: D13/008322 Your Ref: Tom Harding

05 February 2013

Attention: Tom Harding JBS Environmental Level 1, 50 Margaret St Sydney NSW 2000

Dear Mr Harding,

RE SITE: Point Rd Moonee Moonee NSW

I refer to your site search request received by WorkCover NSW on 21 January 2012 requesting information on licences to keep dangerous goods for the above site.

Enclosed are copies of the documents that WorkCover NSW holds on Dangerous Goods Licences 35/005283 relating to the storage of dangerous goods at the above-mentioned premises, as listed on the Stored Chemical Information Database (SCID).

If you have any further queries please contact the Dangerous Goods Licensing Team on (02) 4321 5500.

Yours Sincerely

Brent Jones

Senior Licensing Officer

Dangerous Goods Notification Team

WorkCover. Watching out for you.

Reference

DX 13067, MARKET ST. SYDNEY

APPLICATION FOR RENEWAL

OF LICENCE TO KEEP DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREUNDER

DECLARATION:

Please renew licence number 35/005283 to 1998. I confirm that all the licence details shown below are correct (amend if necessary).

∦Signature)

ANCE (Please print name)

for: SCHOOL EDUCATION DEPARTMENT

(Date signed)

THIS SIGNED DECLARATION SHOULD BE RETURNED TO:

WorkCover New South Wales Dangerous Goods Licensing Section (Level 3) Locked Bag 10 P O CLARENCE STREET 2000

Enquiries: ph (02) 9370 5187 fax (02) 9370 6105

Details of licence on 27 June 1997

Licence Number 35/005283

Expiry Date 07/08/97

Licensee

SCHOOL EDUCATION DEPARTMENT MOONEY MOONEY PUBLIC SCHOOL

Postal Address POINT RD, MOONEY MOONEY 2083

LANCE COOPER Licensee Contact Dem Pirlo Ph. 9985 9078 Fax. 9985 9326

Premises Licensed to Keep Dangerous Goods

POINT RD Public School MOONEY MOONEY 2083

Nature of Site PRIMARY SCHOOLS Major Supplier of Dangerous Goods ELGAS LANCE COOPER

Emergency Contact for this Site Dom Pirlo ph. 9985 9078

Site staffing 7.5hrs 5days

Details of Depots

Depot No. Depot Type

Goods Stored in Depot

Qty

1

ABOVE-GROUND TANK

Class 2.1

1000 L

UN 1075 Petroleum Gases, Liqui

1000 L

LICENCE TO KEEP DANGEROUS GOODS

(Dangerous Goods Act 1975)

3. Previous licence number (if known) 005283 4. Nature of site SCHOOL 5. Emergency contact on site:	ACN de O83 SCIENTIFIC SERVICES BRANCH FISEP 1993 DANGEROUS GOODS PRINCIPAL)
2. Site to be licensed No Street POINT ROAD Suburb/Town Postcoo MOONEY MOONEY 2 3. Previous licence number (if known) 005283 4. Nature of site SCHOOL 5. Emergency contact on site:	SCIENTIFIC SERVICES BRANCH - SEP 1993 DANGEROUS GOODS
Suburb/Town Postcoo MOONEY MOONEY 3. Previous licence number (if known) OO 5283 I. Nature of site SCHOOL S. Emergency contact on site:	SCIENTIFIC SERVICES BRANCH - SEP 1993 DANGEROUS GOODS
MOONEY MOONEY 2 3. Previous licence number (if known) 005283 4. Nature of site SCHOOL 5. Emergency contact on site:	SCIENTIFIC SERVICES BRANCH - SEP 1993 DANGEROUS GOODS
3. Previous licence number (if known) 005283 4. Nature of site SCHOOL 5. Emergency contact on site:	SCIENTIFIC SERVICES BRANCH - SEP 1993 DANGEROUS GOODS
4. Nature of site SCHOOL 5. Emergency contact on site:	BRANCH -78 SEP 1993 DANGEROUS GOODS
5. Emergency contact on site:	DANGEROUS GOODS
를 하는 하는 하는 마음이 모든 이번 하나 없는 사람들이 되었다. 그는 사람들은 사람들이 되었다는 사람들이 되었다. 그는 사람들이 되었다는 사람들이 되었다면 하는 것이 되었다. 그는 사람들이 되었다.	GOODS
Phone Name	PRINCIPAL)
02, 9859078 IVAN CALDWELL (
5. Site staffing: Hours per day 7/2 Days per v	week 5 (M+oF)
7. Major supplier of dangerous goods ELGAS DURF	} ~
If new site or significant modification Plan stamped by:	Date stamped
	A A STATE OF THE S
0. Number of dangerous goods depots at site	14 SEP 1993
0.Trading name or occupier's name	
MOONEY MOONEY PUBLIC SCHO	De la
1.Postal address of applicant Suburb/Towl	n Postcode
Point Road Moone	Mooney 2083
2.Contact for licence enquiries: Phone Fax Name	
9859078 9859326 MR. IVAN	CALDWELL
I certify that the details contained in this application (or the accompanying	
3. Signature of applicant Islaldwell	Date

Please complete attached site sketch, depot listing and check sheet (if required) and return to WorkCover Authority in envelope provided.

SITE PLAN

(not to scale) Mooney P.S. Infants Rm Library

Primary School 4 admin.

GAS TANK

RD.

PHIOP

driveway

gates always

open

FIRE BRIGADE

PACIFIC

エスサメカイ

KOWAN

ST

PACIFIC

TEAT.

Q Q SARAGE

1 NORTH

Note: Pacific H'way closed

If you have more depots than the space provided, photocopy sufficient sheets first.

*				
Depot number	Type of depot	Class	Licensed maxii storage capa	
[2]	PRESSURE VESSELL Registered Number:	2:1	1,000 litres	
UN number	Shipping name CI	Pkg. ass Group EPG	Product or common name	Typical Uniteg. quantity L,kg,m³
	LPG			
Depot number	Type of depot	Class	Licensed maxii storage capa	
	Type or depor	Viass	Siorage capa	Jily
UN number	Shipping name CI	Pkg. ass Group EPG	Product or common name	Typical Uniteg. quantity L,kg,m³
Depot	Type of depot	Class	Licensed maxii storage capa	
UN		Pkg.	Product or	Typical Uniteg.
number	Shipping name CI	ass Group EPG	common name	quantity L, kg, m³
				a e e e e e e e e e e e e e e e e e e e
Depot number	Type of depot	Class	Licensed maxin storage capa	
UN number	Shipping name CI	Pkg. ass Group EPG	Product or common name	Typical Uniteg. quantity L, kg, m³

name of U	ccupier	VEPT. O (Surname MOON E	f L1	DUCAT	10N		·	(First	Names))		
Γrading Na	me (if any)	MOONE	FJ MO	DON E	j £	UBL	10 S	CHO	01			
Postal Add	ress	POINT	ROA	D No	on 6	J M	00 N	EY	Pos	tcode	22.	SZ
Address of premises in lepot or de ituated	which the		ABON		/					stcode		
Occupation	1											
√ature of F	Premises S	CHOOL X	BU 12 D1	NGS								
	of construct	ion of depots	And the same of th		ities of in	ıflamm	able liq	uid and	/or dan	gerous	goods	to be kept
		PLE.	ASE SKETC	H SITE O	N BACK	OR AT	TACH	PLAN				
Construction of depots *		Inflamma	ble Liquid			Dan	gerous Go	ods				
Depot No.	Walis	Roof	Floor	Mineral spirit litres	Mineral oil litres	Class 1 litres	Class 2 litres	Class 3 kg	Class 4 m ³	Class 5A# litres	Class 5B# litres	Class 9 litres
1	ABOUE	GROUND	TANK							1-10 KL		
2												<u> </u>
3												
5				<u> </u>								
6												
7												
8												
9										N	O FE	E
10											10.80	76
		TOTAL		1						dec No	1. 25	<u> </u>
# I	nsert water c Company su	ks describe de apacity of tan applying inflar usly been licer	ks or cylind nmable liqui	ers.	r abovegr RT/4			P/	(10			
If knowr	ı, state name	of previous o	ccupier		tor							
		Signature of	applicant_		res Det k	3 a M	' O a		Da	te <u>2</u> .	10.	75'
						XX	uon					
requirem	ents of that	Act, 1915, d Act and regu ous goods in qu	o hereby ce lations with	regard to	the pren	nises o	r store	describe ruction	ed abov	ve does	compl	r under the ly with the nflammable
					Signature	of Ins	pector_ Date_	12-	<u> </u>	ook))	

. . .

INSPECTION RECORD

Licence No. 5283 Licensee: Defractment of Education Public works bett. Address: Point. RD. MOONEY. MOONEY.

Storage licensed: L-P. yes. Tenb. 1/1-10. K.L. Sketch of Premises (Dimensions of depot and distance of same from adjoining "protected works" to be shown). School. Charl Pacifico Highway. Inspected Initials 30.3.76. 1. Com Red diamend Sign required

Our Ref: D13/008322 Your Ref: Tom Harding

05 February 2013

Attention: Tom Harding JBS Environmental Level 1, 50 Margaret St Sydney NSW 2000

Dear Mr Harding,

RE SITE: Peat Island NSW

I refer to your site search request received by WorkCover NSW on 21 January 2012 requesting information on licences to keep dangerous goods for the above site.

Enclosed are copies of the documents that WorkCover NSW holds on Dangerous Goods Licences 35/002836 & 35/009142 relating to the storage of dangerous goods at the above-mentioned premises, as listed on the Stored Chemical Information Database (SCID).

If you have any further queries please contact the Dangerous Goods Licensing Team on (02) 4321 5500.

Yours Sincerely

Brent Jones

Senior Licensing Officer

Dangerous Goods Notification Team

WorkCover. Watching out for you.

र्वावाधि विकास

(K)
,cation for: New Licence Amendment Transfer Renewal of expired licence
RT A - Applicant and site information (See page 2 of Guidance Notes) Name of applicant ACN
DEPARTMENT OF AGEING, DISABILITY AND HOME CARE
Postal Address of Applicant Suburb/Town Postcode
PEAT IS CENTRE; C/- POST OFFICE; BROOKLYN USW 2083
PEAT ISLAND CENTRE
Contact for Licence Inquiries Phone Fax Name
99850111 99850133 RON MCKELVIE (DIRECTOR OF NURSING)
Previous Licence Number (if known) 35/09/42 & 35/002836
Previous Occupier (if known)
Site to be Licensed Unit / No Street Suburb / Town
Bacific Highway MOONEY MOONEY
learest Cross Street KONAN ST
Main Business of Site DISABILITY ACCOMODATION SERVICE
ite staffing: Hours per day 24 Days per week 7
ite Emergency Contact hone Name
99850109 DUTY ASSIST'T DIRECTOR OF NURSING
ajor Supplier of Dangerous Goods
a new site or for amendments to depots - see page 4 of Guidance Notes. ans Stamped by: Signature of Competent Person Printed Name Date stamped
P. N. McKengie R. W. McKEN21E 21/12/2003
fy that the details in this application (including any accompanying computer disk) are correct and cover all able quantities of dangerous goods kept on the premises.
gnature of Applicant Printed Name
ROW MOKETVIE

Please Said Month Sport for the Real Confidential So. Dangerous Goods Libensing.
WorkCover NSW, Locked Bag 2906, LISAROW NSW 2252

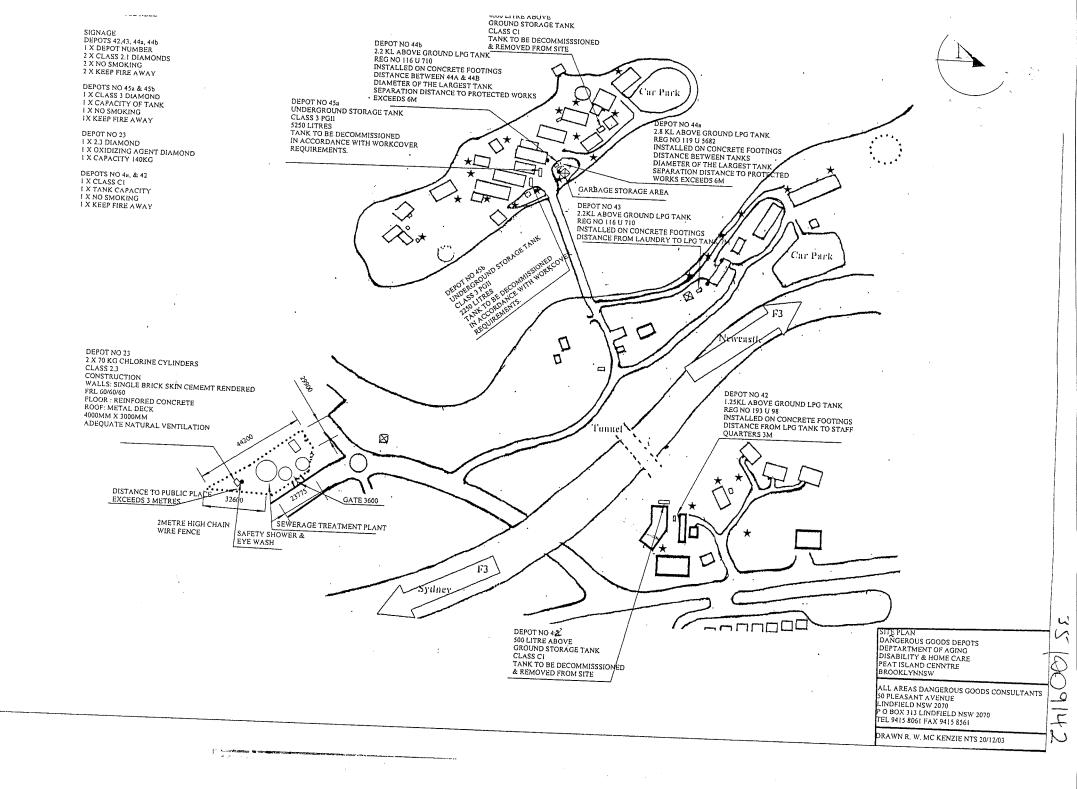
ATC DANGEROUS GOODS STORAGE

DEPOT NO	Type of Depot		D	epot Class	Maximum Stor	age Capacity	
42	Above Ground	Tank		2		1250 Litres	
UN Number	Proper Shipping Name	Class	PG (I,II,III)	The state of the s	or Common Name	Typical Quantity	Unit. Eg. L,kg,m³
1075	Petroleum Gases Liquified	2.1			LPG	1000	L
Depot No	Type of Depo			epot Class		Maximum Storage Capa 2200 Litres	acity
	7 100 10 0104110	Tank				LLOG LINGS	
UN Number	Proper Shipping Name	Class	PG (I,II,III)	Section of State of the State o	or Common Name	Typical Quantity	Unit. Eg. L,kg,m³
1075	Petroleum Gases Liquified	2.1			LPG	2000	L
Depot No	Type of Depo		and and	epot Class	The contract of the contract o	Javimum Storesa Can	ag a laszan element ras
-	Above Ground		T	epot Ciass		Maximum Storage Capa 2800 Litres	auity
/ ++4	Above Ground	TUIN				ZOOU LINES	
Ð							
UN Number	Proper Shipping Name	Class	PG (I,II,III)	And the second second second	or Common Vame	Typical Quantity	Unit. Eg. L,kg,m³
1075	Petroleum Gases Liquified	2.1			LPG	/ 2200	L
UN Number	Proper Shipping Name	Class	PG (I,II,III)		or Common	Typical Quantity	Unit. Eg. L,kg,m³
1075	Petroleum Gases Liquified	2.1			LPG	2000	L
	ations (WashCarry bashes		15 177	-			
requirements. Depot No	Type of Depo	t		for quotations		ne tank in accordance with laximum Storage Capa	
requirements.		t					39
requirements. Depot No	Type of Depo Underground Ta Proper Shipping Name	t		epot Class 3		laximum Storage Capa	39
equirements. Depot No 45a UN	Type of Depo Underground Ta	t nk	PG	epot Class 3 Product	or Common	laximum Storage Capa 5250 Litres	city Unit.Eg.
equirements. Depot No 45a UN Number 1203 Depot 45b is nequirements.	Type of Depo Underground Ta Proper Shipping Name Motor spirit ot in use. (WorkCover has bee	t nk Class 3	PG (I,II,III) II I) Waiting	Product Product F for quotations	or Common lame etrol	Storage Capa 5250 Litres Typical Quantity 2250 Te tank in accordance with	Unit. Eg. L,kg,m³ L
equirements. Depot No 45a UN Number 1203 Depot 45b is nequirements. Depot No	Type of Depo Underground Ta Proper Shipping Name Motor spirit ot in use. (WorkCover has bee	t nk Class 3 n informed	PG (I,II,III) II I) Waiting	Product Product for quotations pot Class	or Common lame etrol	Storage Capa 5250 Litres Typical Quantity 2250 The tank in accordance with aximum Storage Capa	Unit. Eg, L,kg,m³ L
Depot No 45a UN Number 1203 Depot 45b is nequirements.	Type of Depo Underground Ta Proper Shipping Name Motor spirit ot in use. (WorkCover has bee	t nk Class 3 n informed	PG (I,II,III) II I) Waiting	Product Product F for quotations	or Common lame etrol	Storage Capa 5250 Litres Typical Quantity 2250 Te tank in accordance with	Unit. Eg. L,kg,m³ L
UN Number 1203 Depot 45b is nequirements. Depot No	Type of Depo Underground Ta Proper Shipping Name Motor spirit ot in use. (WorkCover has bee	t nk Class 3 n informed	PG (I,II,III) II I) Waiting PG	Product for quotations pot Class 3 Product Froduct Product Product	or Common lame etrol to decommission the	Storage Capa 5250 Litres Typical Quantity 2250 The tank in accordance with aximum Storage Capa	Unit. Eg. Likgim? L h WorkCover city Unit: Eg.
equirements. Depot No 45a UN Number 1203 Depot 45b is nequirements. Depot No 45b UN	Type of Depo Underground Ta Proper Shipping Name Motor spirit ot in use. (WorkCover has bee Type of Depot Underground Ta	t nk Class 3 n informed	PG (I,II,III) II I) Waiting	Product for quotations pot Class 3 Product N Product N	or Common lame etrol to decommission the Moor Common ame	laximum Storage Capa 5250 Litres Typical Quantity 2250 te tank in accordance with aximum Storage Capa 2250 Litres Typical Quantity	Unit. Eg. L,kg,m ³ L h WorkCover city Unit. Eg. L,kg,m ³
UN Number 1203 Depot No 45b is nequirements. Depot No 45b UN Number	Type of Depo Underground Ta Proper Shipping Name Motor spirit ot in use. (WorkCover has bee Type of Depot Underground Ta Proper Shipping Name	Class nk Class Class Class	PG (I,II,III) II I) Waiting PG (I,II,III)	Product for quotations pot Class 3 Product N Product N	or Common lame etrol to decommission the	Iaximum Storage Capa 5250 Litres Typical Quantity 2250 te tank in accordance with aximum Storage Capa 2250 Litres	Unit. Eg. Likg;m³ L h WorkCover city Unit: Eg.
Depot No 45a UN Number 1203 Depot 45b is nequirements. Depot No 45b UN Number 1203	Type of Depo Underground Ta Proper Shipping Name Motor spirit ot in use. (WorkCover has bee Type of Depot Underground Ta Proper Shipping Name Motor spirit	class nk Class 3 n informed nk Class 3	PG (I,II,III) II I) Waiting PG (I,II,III) II	Product For quotations pot Class 3 Product N Product N Product N	or Common lame etrol M	laximum Storage Capa 5250 Litres Typical Quantity 2250 te tank in accordance with aximum Storage Capa 2250 Litres Typical Quantity 2250	Unit. Eg. L;kg;m³ L h WorkCover city Unit: Eg. L;kg;m³ L
UN Number 1203 Depot No 45b Seport No 45b UN Number 1203 Depot No 45b UN Number	Type of Depo Underground Ta Proper Shipping Name Motor spirit ot in use. (WorkCover has bee Type of Depot Underground Ta Proper Shipping Name	Class ni informed Class 3 n Class 3	PG (I,II,III) II I) Waiting PG (I,II,III) II	Product for quotations pot Class 3 Product N Product N	or Common lame etrol M	laximum Storage Capa 5250 Litres Typical Quantity 2250 te tank in accordance with aximum Storage Capa 2250 Litres Typical Quantity	Unit. Eg. L;kg;m³ L n WorkCover city Unit. Eg. L;kg;m³ L

UN Number	Proper Shipping Name	Class	PG (I,II,III)	Product or Common Name	Typical Quantity	Unit, Eg. L.ka.m³
1017	Chlorine	2.3		Compressed Chlorine Gas	140	kg

ARTC DANGEROUS GOODS STORAGE

Scid Reference only. Tank is to be decommissioned & removed from site


DEPOT NO	Type of Depot	Depot Class	Maximum Storage Capacity	7
4a	Above Ground tank	C1	4000 L	

, is	UN Number	Proper Shipping Name	Class	PG (I,II,III)	Product or Common Name	Typical Quantity	Unit, Eg. Č L,kg,m³
4	1202	Diesel fuel	C1		Diesel Fuel	2000	L

Scid Reference only. Tank is to be decommissioned & removed from site

DEPOT NO	Type of Depot	Depot Class	Maximum Storage Capacity
A2 44	Above Ground tank	C1	500L

UN Number	Proper Shipping Name	Class	PG (I,II,III)	Product or Common Name	Typical Quantity	Unit. Eg. L,kg,m³
1202	Above Ground Tank	C1		Heating Oil	500	L

Department of Ageing, Disability & Home Care

WorkCover NSW Dangerous Goods Licencing

30th September 2003

Dear Sir/Madam.

Re: Peat Island Centre, Brooklyn; Application for Storage of Dangerous Goods on Site [lic. No. 35/002836].

Please find enclosed application as above.

The Centre has had an existing licence for the storage of LPG and petrol on site to date. However the underground petrol storage tanks are in the process of being decommissioned and the storage of liquid chlorine has not previously been identified.

This being the case, I am seeking to include the Liquid Chlorine Gas and maintain the LPG licence as previously. I have been guided through this process by Mr Graeme Aldred [A WorkCover Snr. Safety Inspector], who inspected the site and recommended all goods be identified under the licence No. 35/0028361 and delete 35/002836.

I trust this application meets the necessary requirements and look forward to your response. 4921. 2922

Sincerely,

Ron McKelvie

[Acting] Director of Nursing

Peat Island Centre

ordered 35/002836/009142 /29/do3 330pm.

4)10/03

Licence No. 35/009142

APPLICATION FOR RENEWAL

OF LICENCE TO KEEP DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION **THEREUNDER**

DECLARATION: Please renew licence number 35/009142 to 16/08/2004. I confirm that all the licence details shown below are correct (amend if necessary).

LOHHEEN JUPP (Please print name)

for: COMMUNITY SERVICES DEPT

(Date signed)

THIS SIGNED DECLARATION SHOULD BE RETURNED TO:

WorkCover New South Wales

Enquiries:ph (02) 43215500

Dangerous Goods Licensing Section

fax (02) 92875500

LOCKED BAG 2906 LISAROW NSW 2252

Details of licence on 4 July 2003

Licence Number 35/009142

Expiry Date 16/08/2003

Licensee COMMUNITY SERVICES DEPT

PEAT ISLAND CTR

Postal Address: PEAT ISLAND CTR C/ POST OFFICE BROOKLYN NSW 2083

Licensee Contact COLLEEN JUPP Ph. 9985 0111 Fax. 9985 0133

Premises Licensed to Keep Dangerous Goods NURSES QUARTERS - EASTERN SIDE

COMMUNITY SERVICES DEPT PEAT ISLAND CTR

PACIFIC HWY MOONEY MOONEY 2083

Nature of Site PSYCHIATRIC HOSPITALS

Major Supplier of Dangerous Goods VARIOUS

Emergency Contact for this Site DIRECTOR OF NURSING Ph. 985 0111

Site staffing 24HRS 7DAYS

Details of Depots

Depot No. Depot Type

Goods Stored in Depot

Qty

41

EXEMPT - STORAGE AREA

Class 3

205 L

42

UN 1300 TURPENTINE SUBSTITUTE

Class 2.1

1250 L

205 L

ABOVE-GROUND TANK

1000 L

UN 1075 PETROLEUM GASES, LIQUEFIED

Reference

35/009142

DX 13067, MARKET ST. SYDNEY

APPLICATION FOR RENEWAL

OF LICENCE TO KEEP DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREUNDER

DECLARATION:

Please renew licence number 35/009142 to 1997/98. I confirm that all the licence details shown below are correct (amend if necessary).

Coelleen Juff

COMMEEN JUHN (Please print name) 20 - 8 - 9) (Date signed)

for: COMMUNITY SERVICES DEPT

THIS SIGNED DECLARATION SHOULD BE RETURNED TO:

WorkCover New South Wales

Dangerous Goods Licensing Section (Level 3)

Locked Bag 10

P O CLARENCE STREET 2000

Enquiries: ph (02) 9370 5187 fax (02) 9370 6105

Details of licence on 7 August 1997

Licence Number 35/009142

Expiry Date 17/08/96

Licensee

COMMUNITY SERVICES DEPT

PEAT ISLAND CTR

Postal Address C/ POST OFFICE, BROOKLYN 2083

Licensee Contact Lance-Cox Ph. 985 0111 Fax 985 0133

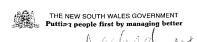
Premises Licensed to Keep Dangerous Goods

PACIFIC HWY Nurses Quarters - Eastern Side

MOONEY MOONEY 2083

Nature of Site PSYCHIATRIC HOSPITALS Major Supplier of Dangerous Goods VARIOUS

Emergency Contact for this Site Director of Nursing ph. 985 0111

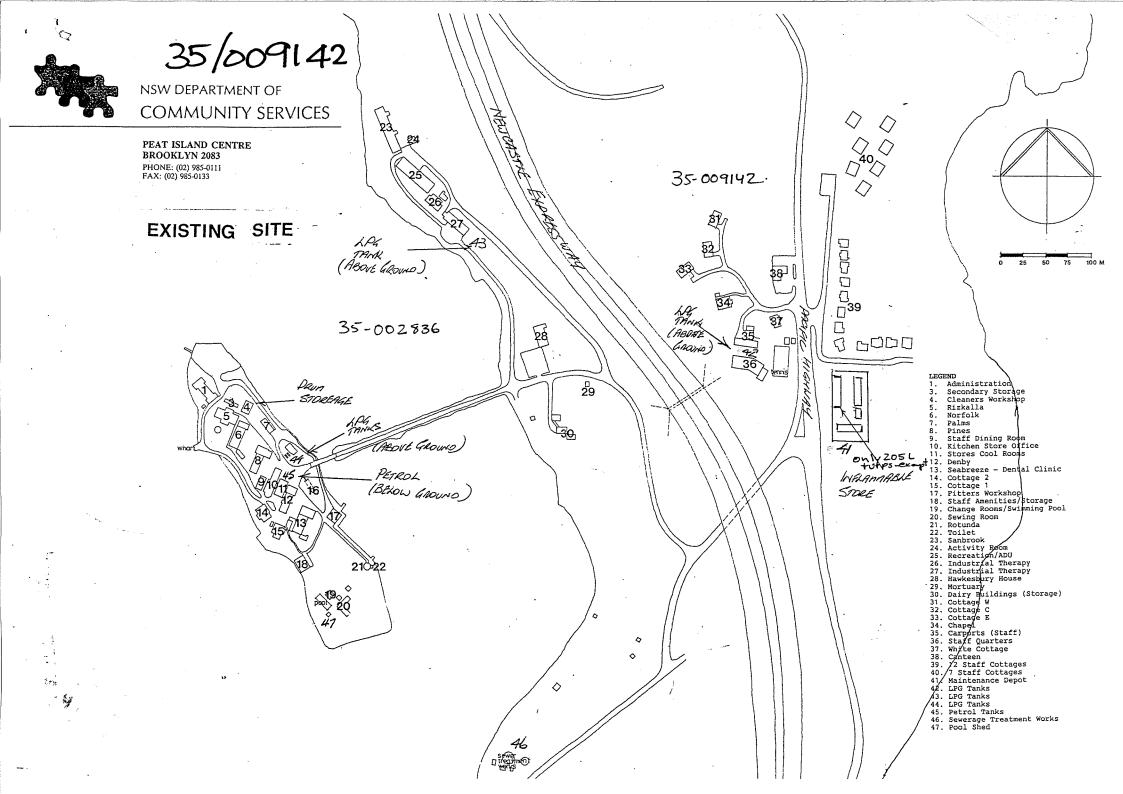

Site staffing 24hrs 7days

Details of Depots

Depot No. Depot Type Goods Stored in Depot Qty

41 Exempt - Storage area Class 3
UN 1300 MINERAL TURPENTINE [AU 205 L
UN 1075 PETROLEUM GASES, LIQUE 1000 L

WORKCOVER AUTHORITY


LICENCE TO KEEP DANGEROUS GOODS

OUICN HE SEE WHICH

(Dangerous Goods Act 1975)

Form OG1

Name of applicant		ACN	
PEAT ISLAND CENTRE (DE	ips 0% lannun irg	Secures)	N/A
Site to be licensed			
No Street			, , , , , , , , , , , , , , , , , , ,
PACINE MIGH		······································	
Suburb/Town Manual Man		ostcode 2083	
Mooney Moo			
Previous licence number (if known)	V/K. 35/00911	12 for no.	41442 Y
Nature of site PESIOFNIAZ M	ACILITY KAL WIT		
Emergency contact on site: Name		(35-00	2836 Por
	TOR OF NURSING	OR DUTY ASSIST.	Victoria OK
		NURSING	·
Site staffing: Hours per day	264 Day	s per week 2	
Major aumplier of democracy goods	Inn.		
Major supplier of dangerous goods	ALIOUS MANAGEMENT	DA IA	
If new site or significant modification Plan stamped by: Accredited cor	nsultant's name:		e stamped
		17 101 1995	
Number of dangerous goods depots at sit	e		
Trading name or occupier's name			
As ABOVE	7444		
Postal address of applicant	Subu	rb/Town	Postcode
Post Office		COOKIYN	208=
		CONTA	
Contact for licence enquiries: Phone Fax	Name		
0-		Ox (Steren	20-1
985. 0111 985 01.		CX (DECRESS	

Name of U	ccupier \subset	(Surname)						(First	Names`		s ca	· .
Trading Na	me (if any)	Teal	Sol	làmet	l N	lu	0 ec	a	1/00	つと		
Postal Add	ress	Post	100K	lice					Pos	tcode	220	53
Address of premises in depot or desituated	which the	Pa elloo.	cific	Noc	wa.				Pos	tcode		
Occupation	ı				-							
Nature of P	Premises	you?	V 260	at)	om.							
Particulars at any one	of construct time.	ion of depots a	ınd maximu	m quant	ities of in	ıflamm	able lic	luid and	/or dan	gerous	goods t	o be kept
		PLEAS	SE SKETCH	I SITE O	N BACK	OR AT	ТАСН	PLAN				
_	Cor	nstruction of depots	*	Inflamma	ble Liquid			Dan	gerous Go	ods		
Depot No.	Walls	Roof	Floor	Mineral spirit litres	Mineral oil litres	Class 1 litres	Class 2 litres	Class 3 kg	Class 4 m ³	Class 5 A# litres	Class 5B# litres	Class 9 litres
1	1160	regieno	1 Just							1250		***************************************
2		4										
3												
4												
5												
<u>6</u> 7					1							
8												
9												
10									enti it	A G		
:		TOTAL				PUE	LIC	REVE				
# In Name of Have pres	nsert water concerns su mises previou	cs describe deposite apacity of tanks pplying inflamr usly been license of previous occosignature of a	s or cylinder nable liquid ed?	rs.		(Dati	e) pë No.		Dat	e	0.7	7. 1L
			CERTII	FICATE	OF INSP	ECTIO	N					,
requireme	ents of that	Act, 1915, do Act and regulat us goods in qua	hereby cert	ify that egard to	the pren	nises or	store	describe	ed abov	e does	comply	under the with the flammable
				9	Signature	of Insp	ector_			au	- 2	
							Date_		25	5	70	

WorkCover New South Wales, 400 Kent Street, Sydney 2000. Tel: 9370 5000 Fax: 9370 5999 ALL MAIL TO G.P.O. BOX 5364 SYDNEY 2001 Licence No. 35/002836

APPLICATION FOR RENEWAL

OF LICENCE TO KEEP DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREUNDER

DECLARATION: Please renew licence number 35/002836 to 16/08/2001 . I confirm that all the licence details shown below are correct (amend if necessary).

(Signature)

W. LEARMOUTH 19/8/
(Please print name) (Date s

Enguiries: ph (02) 9370 5187

fax (02) 9370 6104

for: COMMUNITY SERVICES DEPT

THIS SIGNED DECLARATION SHOULD BE RETURNED TO: (please do not fax)

WorkCover New South Wales

Dangerous Goods Licensing Section

GPO BOX 5364 SYDNEY 2001

Details of licence on 27 June 2000

Licence Number 35/002836

Expiry Date 16/08/2000

Licensee

COMMUNITY SERVICES DEPT

PEAT ISLAND CTR

Postal Address: PEAT ISLAND CTR C/ POST OFFICE BROOKLYN NSW 2083

Licensee Contact COLLEEN JUPP Ph. 9985 0111 Fax. 9985 0133

Premises Licensed to Keep Dangerous Goods PEAT ISLAND OFF HWY

COMMUNITY SERVICES DEPT PEAT ISLAND CTR

PACIFIC HWY BROOKLYN 2083

Nature of Site PSYCHIATRIC HOSPITALS

Major Supplier of Dangerous Goods NOT APPLICABLE

Emergency Contact for this Site DIRECTOR OF NURSING OR ASSIST. Ph. 985 0111

Site staffing 24HRS 7DAYS

Details of Depot No.		Goods Stored in Depot	Qty
44a 44b 45a	ABOVE-GROUND TANK	Class 2.1 UM GASES, LIQUEFIED Class 2.1 UM GASES, LIQUEFIED Class 3	2450 L 1000 L 3125 L 1500 L 5250 L
45b 4a	UN 1203 PETROL UNDERGROUND TANK UN 1203 PETROL ROOFED STORE UN 1791 HYPOCH UN 1824 SODIUM	Class 3 Class 8 LORITE SOLUTION HYDROXIDE SOLUTION	5250 L 2250 L 2250 L 500 L 250 L 250 L

Form DG10

DX 13067, MARKET ST. SYDNEY

Reference

APPLICATION FOR RENEWAL

OF LICENCE TO KEEP DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREUNDER

DECLARATION:

Please renew licence number 35/002836 to 1998. I confirm that all the licence details shown below are correct (amend if necessary).

(Please print name)

for: COMMUNITY SERVICES DEPT

THIS SIGNED DECLARATION SHOULD BE RETURNED TO:

WorkCover New South Wales Dangerous Goods Licensing Section (Level 3) Locked Bag 10 P O CLARENCE STREET 2000

Enquiries: ph (02) 9370 5187 fax (02) 9370 6105

Details of licence on 11 July 1997

Licence Number 35/002836

Expiry Date 17/08/97

Licensee

COMMUNITY SERVICES DEPT

PEAT ISLAND CTR

Postal Address C/POST OFFICE, BROOKLYN 2083

74pp 998-0111 Ph. 985 0111 Fax. 985 0133 Licensee Contact Lance Cox

9985-0133

Premises Licensed to Keep Dangerous Goods

PACIFIC HWY Peat Island off Hwy **BROOKLYN 2083**

Nature of Site PSYCHIATRIC HOSPITALS Major Supplier of Dangerous Goods NOT APPLICABLE

Emergency Contact for this Site Director of Nursing or Assist. ph. 985 0111

Site staffing 24hrs 7days

Details of Depots

Depot No.	Depot Type	Goods Stored in Depot	Qty
44a	ABOVE-GROUND TANK	Class 2.1 UN 1075 PETROLEUM GASES, LIQUE	2450 L 1000 L
44b	ABOVE-GROUND TANK	Class 2.1 UN 1075 PETROLEUM GASES, LIQUE	3125 L 1500 L
45a	UNDERGROUND TANK	Class 3 UN 1203 PETROL	5250 L 5250 L
45b	UNDERGROUND TANK	Class 3 UN 1203 PETROL	2250 L 2250 L
4a	ROOFED STORE	Class 8 UN 1824 SODIUM HYDROXIDE SOLUT UN 1791 Sodium hypochlorite so	500 L 250 L 250 L

Application is	hereby made for-	*a licence (or an	nendment of the lice	nce) for the keeping of dangerous	s goods in or on the premises
described belo	ow.			FEE: \$10.00 per Depot f	or new licence.
ę .		(*delete whiche	ver is not required)	\$10.00 for amendm	ent or transfer.
Name of Appl (see over)	licant in full	HEA	ALTH DE	-PT.	
Trading name name (if ar				4 444	·
Postal address	3	PEAT	I SLAND BROOKLY	HOSPITAL 4	Postcode 225
	e premises including ber (if any)				Postcode
Nature of pres	mises (see over)				
Telephone nu	mber of applicant	STD Code	02 N	Tumber 4552211	
Particulars of	type of depots and m	aximum quantiti		s to be kept at any one time.	
				Dangerous goods	
Depot number	Type of de (see ove		Storage capacity	Product being stored	C & C Office use only
1	Roofed lock	ope Prove		3.1 3.2 3.3	
2	Undergroun	d TONK	5450	3-1 PETROL	
3	10	ć c	2500	3.1	
4	Abovernoc	nd rank	3125	a.i L.P.C	
5	G J	Ci	2450	2.1 "	
6	Chusar S.	3	140K&	2.3 Chlorine GBS	
7	Phooeprocur	od York	2566	21 L.P.6	
8	A50-66-00	NEW	~2×9~	2+ 2 PG	
9		/			
10		and the second s	*.		0000
11				he aren	
12				-	1/6
Has site plan b	peen approved?	Yes Ma	If yes, no plans: If no, please atta		19/189
Have premises	previously been licen	sed? Yes	If yes, state nam	ne of previous occupier.	
Name of comp	pany supplying flamm	able liquid (if any			
		Signature			D. 21 /2 / 20ch
For external e	xplosives magazine(s)	•	of applicant		Date
FOR OFFICE	USE ONLY	CE	RTIFICATE OF INS	SPECTION	3
I, do hereby cer Dangerous Go the quantity s	ods Regulation with:	s described abov	e do comply with the tuation and construc	being an Inspector under the D ne requirements of the Dangerous tion for the keeping of dangerous	Goods Act. 1975, and the
Signature of In	rspector DV	ooko	***************************************	Date	
Licence No.	35-002836	4			

IN CHARGOLL OF FITO TOACHOO

(*delete whichever is not required)

FEE: \$10.00 per Depot

er No		•			mer China (alian Terpanya ang China ang Agus Tepanya ang Sana ang Sana ang Sana ang Sana ang Sana ang Sana ang
Vaine of Applic	cant in full	Surname	Mil Com	iven Names	S. W.
Frading name of name (if any)		Tean	Soland	Mospilal	
Postal address	2000e2071125725	PO	13:00 Klyn		tcode 2253
Telephone num	ber of applicant	ł		Number	
which the de	premises in or on pot or depots are ncluding street ny)		Island vancy allow		teode
Nuture of prem	nises (sce over)	2	mhe Val		
		ene	ASE ATTACK SITE	RLAN	
Particulars of t	vpe of depots an	d muximum quan	tities of dangerous goo	ods to be kept at any one tim	C.
		1		Dangerous go	
Depot numb e r	Type (of depot over)	Storage capacity	Product being stored	C & C Office use only
1	Package	e Stele	650	2.63.	6.020.72
2			5450		2.020.53
3	Carlo Charles James	Market Schildermann	2500	6	2.020.33
4	Hower	Ci c da maria de la companya del companya de la companya del companya de la compa	3125	L.P.G	1.100.33
5	12000	Salara salara an ancienta antica a comercia	2450	1	1. 100.23
6	a Line	1010	140 Kc	Chlaine	7.040.12
7		and the same of th	en e		
8		表现的创新的现在分词 \$P\$ 4. 1897年 1997年 1897年 1897年 1997年 1998年 1998年 1997年 1998年 1998年 1998年 1998年 1998年 1998年 1998年 19			
9					
10		THE WORLD CONTINUES HE WAS THE STRANGED			
11		Timble of N involved			
12		necessis a reversional probes propheropy allocated interest entire commences interest.	Barris Company (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994) (1994)		
Name of com	pany supplying f	lammable liquid (if any)	7	
	es previously been		and the second s		
· ····································			and the second s	Lacence	No. 2836
II KNOWD, STA	te name of previ	ons occubici	heel heine kon saksil hulline iinn sicol (h. 1905) heel made al late eelsta heele and in die heel eelsta		
For external	exnlosives magaz	Signatu ine(s), please fill in	ite or approant	1. Sudoch	
1975, do hen	eby certify that is	Dr. Ma	FOR OFFICE USE OF INSE		: Dangerous Googs A

3.5.79. Signature of Inspector (4

		mairine) ((First	Name	s)		
rading N	Name (if any)	Peart	Islan	d H	ospi	terl	•					
ostal Ad	dress	Brook	lyn						Po	stcode	22	5 3
	of the in which the depots are	Peat	1 slav	nd t	Brool	Lly	'n		Po	estcode	20	253
ccupatio	on	Ment	al Re	tourd	Ho	spit	al	<u>-</u> -,	10	sicoue		***************************************
iture of	Premises		rital.									
rticulars any one	s of constructies time.	on of depots	and maxim	um quant	ities of in	nflamm	able liq	uid and	l/or dar	ngerous	goods	to be kept
		RLE	ASE SKETC	H SITE O	N BACK	OR AT	TACH-	PLAN				
ank or	Con	struction of depor	ts *	Inflamma	ble Liquid			Dan	gerous Go	oods		
epat umber	Walls	Roof	Floor	Mineral spirit litres	Mineral oil litres	Class 1 litres	Class 2 litres	Class 3 kg	Class 4 m ³	Class 5A# litres	Class 5B# litres	Class 9 litres
1 2 3	Brick	Gondele	Concrete Tank	5450 2500	65	o						
<u>4</u> <u>5</u> 6	Aboveo	round	V							3125 2450		
7 8	V		V							เม็รง		15/63)9/42
9										0	FF	
10		TOTAL							De	-te	2/	///)
# In	f kept in tanks nsert water cap Company sup	pacity of tank	s or cylinder	·s.	abovegro	ound ta	nks.		Re	ceipt	No	. 1711
lave prei	mises previous	ly been licens	ed?	5		Li	cence	No.	28	36-	P	
: Known	, state name o	f previous occ		MAIN	a. L. T. Sur	UN.	P. B.		Date	e 31	-10-	77
^ 	allia	m < c	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	FICATE O	α ill	£			hoina	an Turi		
	ble Liquid Acents of that Acents of that Acents of the Ace					ses or on and	store de constru			_		under the with the lammable
				Si	gnature c	of Inspe	ctor_C	21	Mo	che	≥ √	/
	es Branch, Kent Street,					I	Date	·)(-	10	17	/	
Box R.	216, P.O., Ro N.S.W. 2000)	oyal Exchang	е,									

Spot	And the second s	nstruction of Depo	d maximum quantities ts,		ole Liquid.		Dangerou	entro de la como de la La como de la como de	
vo. U	Walls.	Roof.	Floor.	Mineral Spirit. Gallons.	Mineral Oil. Gallons.	Class I. Gallons.	Class 2. Gallons.	Class 3. lb,	Class 4. cub. ft.
1	Sonovole	- Farth	<u>Concrete</u>	500					
°2. 7	rd farily		and earth						
3	H	9-500gh	r: Steel						
X	1 total		raround.)			1.4 - 1.57	780.	
2	ron	Suon/	Concerce	-	650				
6						· ruvisaumanimamimimi			
7									
8	yeers	grade om ettiderene krije et e	girlanda a sana iliyadda.		difficultion global	in the constitution was summer		and the second s	
9									
10						0	/,		
The second line with the secon	7	5 Huly		Signature of	Applicant	W	hauft	/	Chan
te of App	lication	a july	194Kf		Address	Peal or	11/50n 1	Slands	Mental
							Han	Keshur	& Rive
			CERTIFICATE	OF INSPEC	ΓΙΟΝ.				
经付款 化二十二十二	THE	meran	eor		heing a	ın İnspeci	or under	· the In	flammah
	医高层乳质性高层乳肿 医自治性 医二氏管炎 化二氯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基								

T. H. TENNANT, GOVERNMENT PRINTER.

Make Rough Sketches showing-

showing position of depot or depots Sketch of depot or depots showing provision made for ventilation also inside dimensions (length, width, and depth) of or lower portion, designed to prevent outflow. This sketch is not required for underground tanks.

Petrol Pump (Bensel) at end of Wharf for Filling Launches

An Year

TABLES SHOWING DISTANCES WHICH UNDER LICENSE MUST SEPARATE PROTECTED WORKS FROM DEPOTS.

Table I.—Where Mineral Spirit and/or Dangerous Goods of Class I (with or without Mineral Oil and/or Dangerous Goods of Class 2) are kept or to be kept :—

In an underground Tank Depot, in quantity exceeding 500 gallons, but not exceeding—	In an aboveground Tank Depot or other Depot, separated from protected works by a screen wall, in quantity exceeding 100 gallons, but not exceeding—	In an aboveground Tank Depot or other Depot not separated from protected works by a screen wall, in quantity exceeding 100 gallons, but not exceeding—	Distance not less than—
Gallons. 2,000 2,400 2,400 3,200 3,600 4,000 7,200 10,400 13,600 16,800 90,000	Gallons. 1,000 1,200 1,400 1,400 1,600 1,800 2,000 3,600 5,200 6,800 8,400 10,000	Gallons. 250 300 300 355 400 450 500 900 1,300 1,700 2,100 660	Feet, 10 11 12 13 14 15 16 17 18 19

INFLAMMABLE LIQUID ACT, 1915-1931.

Applications for Registration of Premises or Store License under Division
for the keeping of Inflammable Liquid and/or Dangerous Goods, in accordance with the provisions of the Inflammable Liquid Act, 1915–31, for the year ending 30th June, 19

Inflammable Liquid— EXPLANATORY

Mineral Oil—includes kerosene, mineral turpentine and white spirit (for cleaning), and compositions containing same.

Mineral Spirit—includes petrol, benzine, benzolene, benzol and naphtha, and compositions containing same. Dangerous Goods—

Class I.—Acetone, amylacetate, butylacetate, carbon bi-sulphide; any combination of substances of an inflammable character, other than ether alcohol, used as a solvent for nitro-cellulose or other cellulose compound, having a true flashing point of less than 73 degrees Fahrenheit.

Class II.—Nitro-cellulose, moistened with an alcohol, methylated spirits, vegetable turpentine and turpentine substitutes (other than inflammable liquid); any liquid or solid containing methylated spirits, having a true flashing point of less than 150 degrees Fahrenheit.

Class III.—Nitro-cellulose product and celluloid.

Class IV.—Compressed or dissolved acetylene contained in a porous substance.

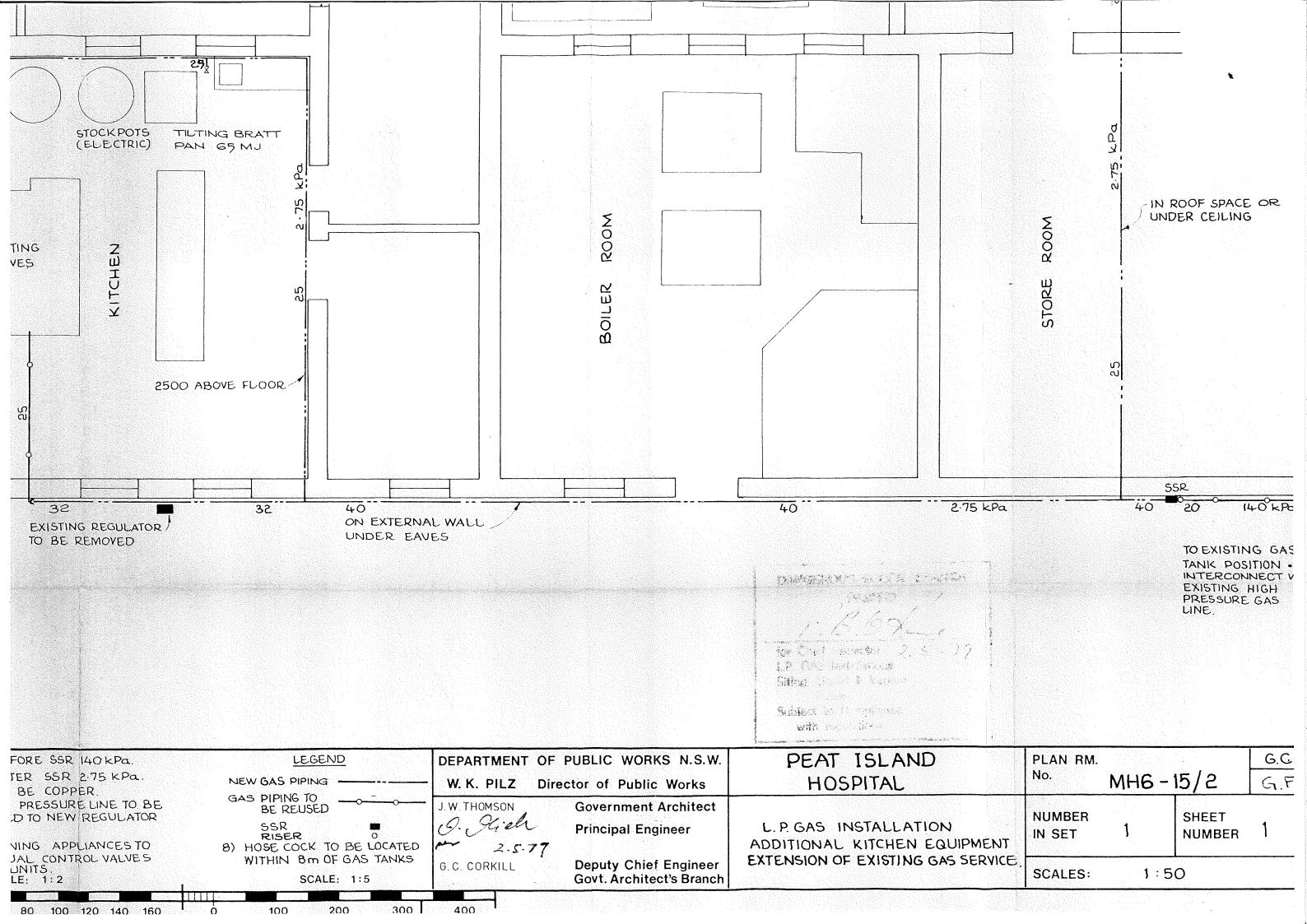
DIRECTIONS.

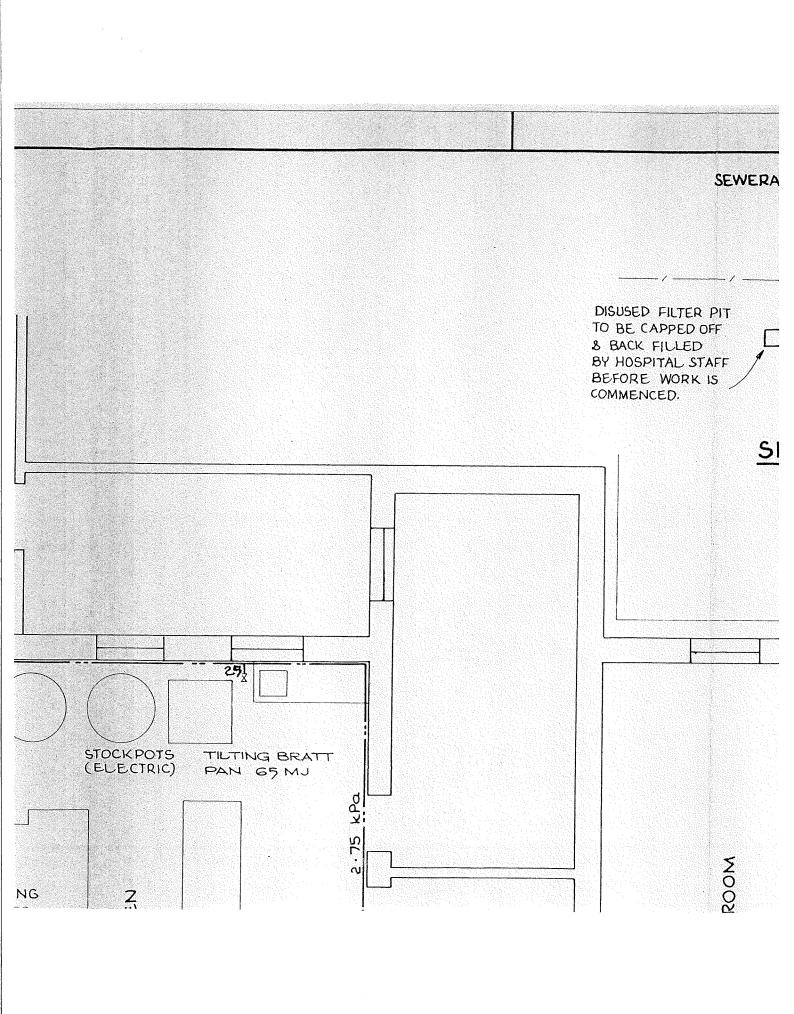
1. Applications must be forwarded to the Chief Inspector of Inflammable Liquid, Explosives Department, Department of Mines, Bridge-street, Sydney, and must be accompanied by the statutory fee, as set out hereunder:—

REGISTRATION OF PREMISES (FEE, 10s.).—For quantities not exceeding 300 gallons of mineral oil and 100 gallons of mineral spirit, if kept together; or 800 gallons of mineral oil and 100 gallons of mineral spirit, if kept in separate depots; or 500 gallons of mineral spirit, if kept in an underground tank depot; or 800 gallons of mineral oil and 500 gallons of mineral spirit, if mineral spirit is kept in an underground tank depot.

In addition to, or in lieu of the above, similar quantities of Dangerous Goods of Classes 1 and 2 may be kept; reading Dangerous Goods of Class 1 for the words Mineral Spirit and Dangerous Goods of Class 2 for the words Mineral Oil

STORE LICENSE, Div. A (Fee, £1).—For quantities in excess of those stated above, but not exceeding 4,000 gallons mineral oil and/or mineral spirit, and/or Dangerous Goods of Classes 1 and 2.


STORE LICENSE, Div. B (FEE, £2).—For quantities exceeding 4,000 gallons of mineral oil and/or mineral spirit, and/or dangerous goods of Classes 1 and 2, and/or dangerous goods of Classes 3.


For the keeping of Dangerous Goods of Classes 3 and/or 4.

2. The certificate of inspection at foot hereof must be signed by an Inspector under the Inflammable Liquid Act, 1915–1931, or Police Officer, or other officer duly authorised in that behalf, and where the premises are situated outside the Metropolitan Area it is requested that such certificate be obtained prior to forwarding application.

1. Name in full of occupier	William J. F. McCoy On behalf of Montal Hospital Rabbit Island
2. Occupation	Mental Hospital
3. Locality of the premises in which the depot or depots are situated	No. or Nambeal Habbit Island
Hankesburg Bur	Street Hown
4. Nature of premises (Dwelling, Garage, Store, etc.)	Mental Hospital
5. Will mineral spirit be kept in a prescribed underground tank depot?	No
6. Will mineral spirit in quantities exceeding 3 gallons be kept or used for any industrial purpose? (State nature of industry.)	No

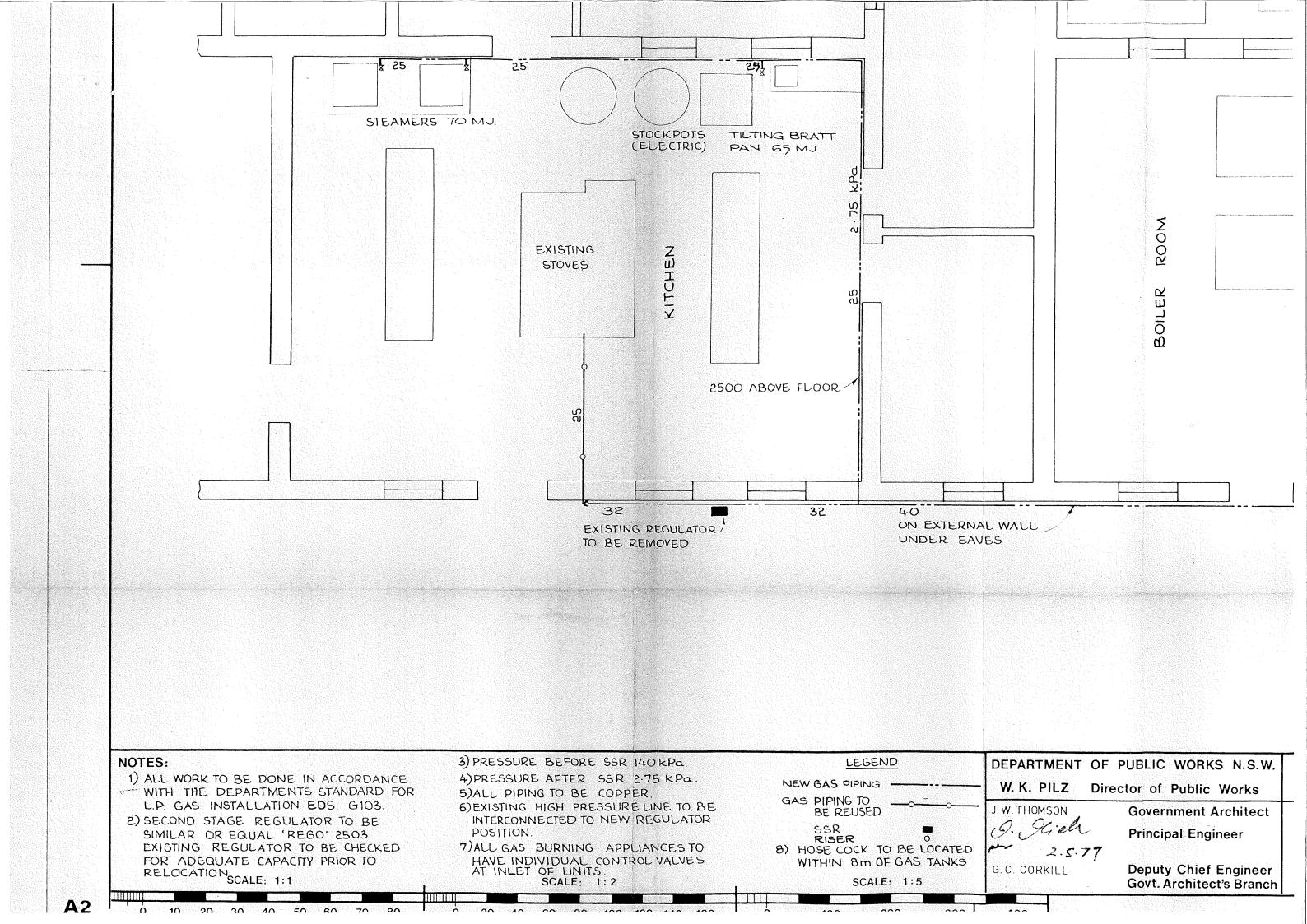
^{7.} Particulars of construction of depots and maximum quantities of inflammable liquid and/or Dangerous Goods

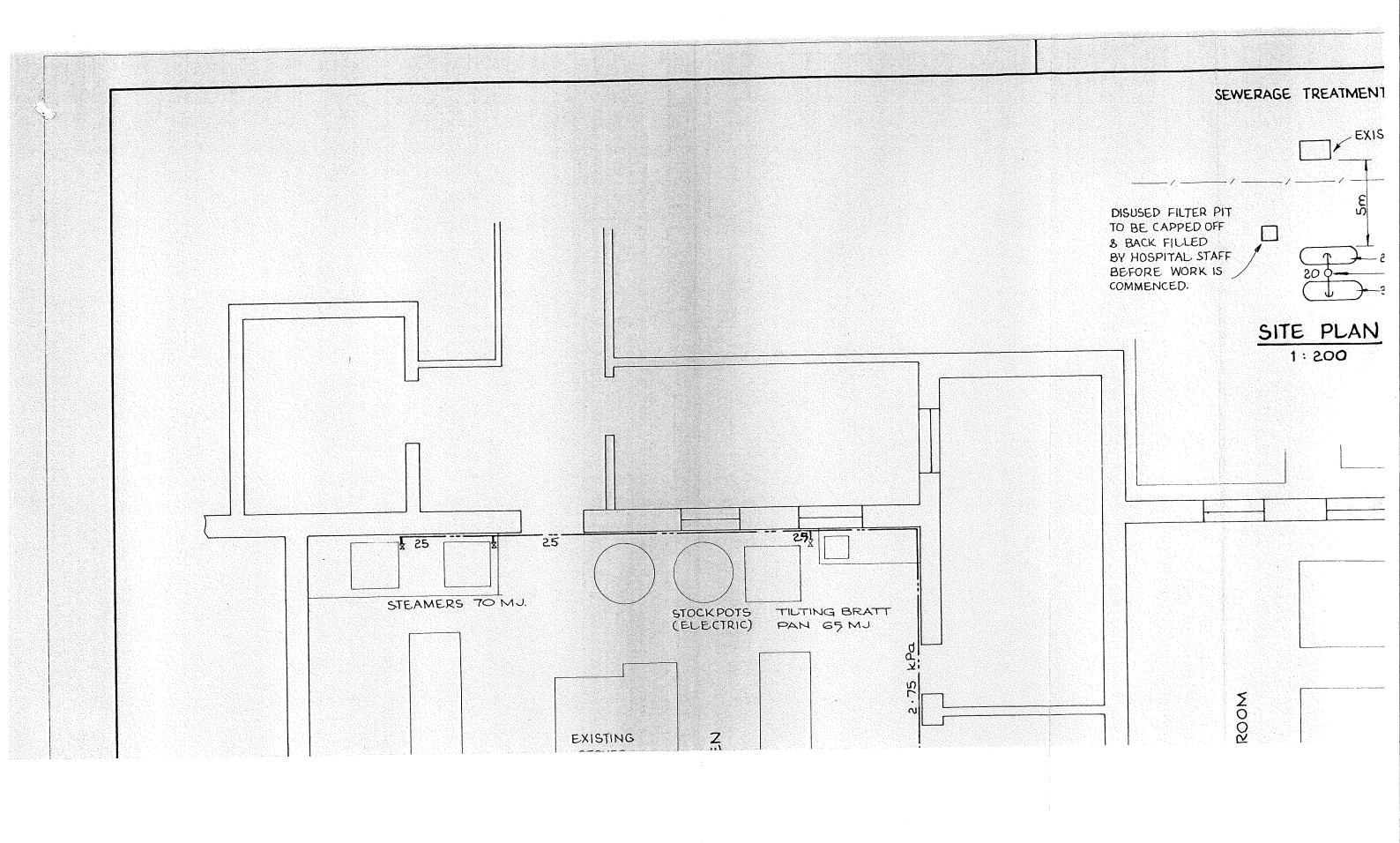
Ground plans of premises showing position of depot or depots and adjacent buildings, also distances separating depots and buildings.

Sketch of depot or depots showing provision made for ventilation, also inside dimensions (length, width, and depth) of the pit or lower portion, designed to prevent outflow.

This sketch is not required for underground tanks.

Ventilato


6 Conencte Pan 9:6 x 9:0"


Am 12:11:51

TABLES SHOWING DISTANCES WHICH UNDER LICENSE MUST SEPARATE PROTECTED WORKS FROM DEPOTS.

Table I.—Where Mineral Spirit and/or Dangerous Goods of Class I (with or without Mineral Oil and/or Dangerous Goods of Class 2) are kept or to be kept:—

In an underground Tank Depot, in quantity exceeding 500 gallons, but not exceeding—	In an aboveground Tank Depot or other Depot wholly surrounded by a screen wall, in quantity exceeding 100 gallons, but not exceeding—	In an aboveground Tank Depot or other Depot not wholly surrounded by a screen wall, in quantity exceeding 100 gallons, but not exceeding—	Distance not less than—
Gallons.	Gallons,	Gallons.	Feet.
2,000	1,000	250	10
2,400	1,200	300	11
2,800	1,400	350	12
3,200	1,600	400	13
3,600	1,800	450	14
4,000	$\bar{2,000}$	500	15
$\frac{1}{7,200}$	3,600	900	16
10,400	5,200	1,300	17
13,600	6,800	1.700	18
16.800	8.400	$2,\!100$	19

Appendix D Site Photographs

PHOTOGRAPH 1: PORTION 1 – VACANT BUILDINGS INCLUDING FORMER LAUNDRY AND STAFF QUARTERS

PHOTOGRAPH 2: PORTION 1 – AST NORTH OF LAUNDRY BUILDING

PHOTOGRAPH 3: PORTION 1 - ACM IDENTIFIED ON SURFACE ADJACENT TO VACANT BUILDINGS

PHOTOGRAPH 4: PORTION 1- LPG AST

Job No: 54933

Client: Property NSW

Version: R02 Rev A

Date:06/09/2018

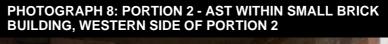
Drawn By: CB

Checked By:SB

Not to Scale

Coord. Sys n/a

Peat Island, Mooney Mooney, NSW



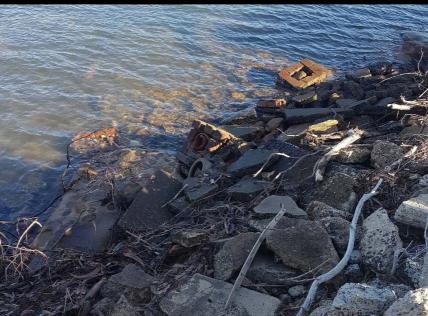
PHOTOGRAPH 7: PORTION 2 – NATURAL SOIL ENCOUNTERED

Job No: 54933

Client: Property NSW

Version: R02 Rev A Date: 06/09/2018

Drawn By: CB Checked By: SB


Not to Scale

Coord. Sys n/a

Peat Island, Mooney Mooney, NSW

PHOTOGRAPH 10: PORTION 3 - SEA WALLS ON THE WESTERN BOUNDARY OF PEAT ISLAND

PHOTOGRAPH 11: POTION 3 – CONCRETE USED AS FILL MATERIAL WITHIN SEA WALLS

PHOTOGRAPH 12: PORTION 3 – FILL MATERIAL IDENTIFIED WITHIN SOUTHERN PORTION OF PEAT ISLAND

Job No: 54933

Client: Property NSW

Version: R02 Rev A Date: 06/09/2018

Drawn By: CB Checked By: SB

Not to Scale

Coord. Sys n/a

Peat Island, Mooney Mooney, NSW



PHOTOGRAPH 10: PORTION 3 - CHEMICAL STORAGE

PHOTOGRAPH 11: PORTION 3 – BURIED ASBESTOS IN THE NORTHERN PORTION OF PEAT ISLAND

Job No: 54933

Client: Property NSW

Version: R02 Rev A Date: 06/09/2018

Drawn By: CB Checked By: SB

Not to Scale

Coord. Sys n/a

Peat Island, Mooney Mooney, NSW

PHOTOGRAPH 13: PORTION 5 – VACATED CHURCH

PHOTOGRAPH 14: PORTION 5 - VACANT BUILDING ADJACENT CHURCH

PHOTOGRAPH 15: PORTION 5 - LPG TANK

PHOTOGRAPH 16: PORTION 7 – FORMER SERVICE STATION

Job No: 54933

Client: Property NSW

Version: R02 Rev A

Date:06/09/2018

Checked By:SB

Drawn By: CB

Not to Scale

Coord. Sys n/a

Peat Island, Mooney Mooney, NSW

Job No: 54933	
Client: Property NSW	
Version:R02 Rev A	Date:06/09/2018
Drawn By: CB	Checked By:SB
Not to Scale	

Coord. Sys n/a

Peat Island, Mooney Mooney, NSW

PHOTOGRAPH 22: PORTION 7 – LOCATION OF THREE USTS AT THE FORMER SERVICE STATION

PHOTOGRAPH 23: PORTION 9/10 – FORMER RURAL FIRE SERVICES BUILDING

PHOTOGRAPH 24: PORTION 9/10 – ABOVE GROUND LPG TANK WITHIN FORMER SCHOOL

Job No: 54933

Client: Property NSW

Version: R02 Rev A Date: 06/09/2018

Drawn By: CB Checked By: SB

Not to Scale

Coord. Sys n/a

Peat Island, Mooney Mooney, NSW

Appendix E Borelogs

Project Number: 54933
Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:18-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.8 Reference Level: Ground Surface

			er (mm		Elevation (m):	<u> </u>	
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Sandy SILT - brown, heterogeneous, dry, soft, non-plastic, inclusions of shells, roots, fine sandstone gravels.	SS_01 0.0-0.1 PID = 4.8 ppm	No odours, stains or ACM noted
	0.5	0.30	××	SP	SAND - brown, yellow, grey, heterogeneous, dry, medium grained, angular - sub-angular, inclusions of large sandstone rocks and shells.		No odours, stains or ACM noted
	-					SS_01 0.5-0.6 PID = 4.1 ppm	
	1 <u>.0</u>					SS_01 0.9-1.0 PID = 2.4 ppm	
	1.5	1.50		SC	Clavev SAND - vellow, brown, heterogeneous, damp, medium grained, sub-angular -	SS 0115-16	
	_				Clayey SAND - yellow, brown, heterogeneous, damp, medium grained, sub-angular sub rounded, inclusions of large sandstone boulders	SS_01 1.5-1.6 PID = 2.6 ppm	No odours, stains or ACM noted
	2.0	1.80			Borehole SS_01 terminated at 1.8m		End of hole at program depth
	_ _ 2 <u>.5</u> _						
	3.0						
	3.5						
	-						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA
Site Address: Peat Island, Mooney Mooney, NSW

Date:18-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.7 Reference Level: Ground Surface

ВО	re Di	amete	er (mm	1):	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				Fill	Gravelly SAND - yellow, dark brown, heterogeneous, dry, loose, medium grained, sub-angular, inclusions of black gravels (road base).	SS_02 0.0-0.1 PID = 3.6 ppm	No odours, stains or ACM noted
Τe	_	0.10		Fill	GRAVELS - black, heterogeneous, dry, fine to medium gravels, coarse, angular, inclusions of trace sandstone fragments.		No odours, stains or ACM noted
	_					SS_02 0.3-0.4 PID = 2.4 ppm	
	0 <u>.5</u>					00.000506	
	_	0.60		Fill	Sandy Gravelly CLAY - vellow, red, brown, heterogeneous, damp to wet, soft, low to	SS_02 0.5-0.6 PID = 2 ppm	
	_	0.00			Sandy Gravelly CLAY - yellow, red, brown, heterogeneous, damp to wet, soft, low to medium plasticity. Inclusions of concrete pylons, brick fragments, black gravel (road base) and large sandstone boulders (increasing with depth).		No odours, stains or ACM noted
	1.0					SS_02 0.9-1.0 PID = 1.9 ppm	
	_						
	_						
	_						
	1.5						
	_					SS_02 1.5-1.6 PID = 2.4 ppm	1
		1.70			Borehole SS_02 terminated at 1.7m		End of hole due to collapsing sand a sandstone
	_						
	2.0						
	-						
	-						
	2.5						
	_						
	_						
	_						
	3.0						
	_						
	-						
	_						
	3 <u>.5</u>						
	_						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:18-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.1 Reference Level: Ground Surface

			`				
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Sandy SILT - brown, heterogeneous, dry, soft, medium grained, sub angular - sub rounded. Inclusions of shells and rootlets.	SS_03 0.0-0.1 PID = 2.6 ppm	No odours, stains or ACM noted
-	- - 0 <u>.5</u>	0.15		Fill	Gravelly Sitty SAND; brown, heterogeneous, dry, loose, fine to medium grained, coarse sub angular - sub rounded. Inclusions of ACM fragments, bricks, tiles, gravels (road base), concrete and large sandstone boulders (increasing with depth).		ACM fragments observed throughout subsoil. No odours or stains noted.
	-					SS_03 0.5-0.6 PID = 2.8 ppm	
	1 <u>.0</u>	1.10			Borehole SS_03 terminated at 1.1m		End of hole at refusal on sandstone
BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 12-10-18	1.5 - - 2.0 - - 2.5 - - - 3.0						
BOREHOLE JBSG BOR	3 <u>.5</u>						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:18-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface

Method Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit			Fill	Sandy SILT - brown, yellow, heterogeneous, dry to damp, soft. Inclusions of trace plastic, porcelain tile and rootlets.	SS_04 0.0-0.1 PID = 1.6 ppm	No odours, stains or ACM noted
-	0.30		SANDSTONE	SANDSTONE (Weathered) - yellow, grey, heterogeneous, increasing boulders with depth	SS_04 0.3-0.4 PID = 1.4 ppm	No odours, stains or ACM noted
0.5	0.50			Borehole SS_04 terminated at 0.5m		End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA **Site Address:** Peat Island, Mooney Mooney, NSW

Date:18-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.3 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Sandy SILT - brown, heterogeneous, dry to damp, non-plastic, soft. Inclusions of weathered sandstone gravels and rootlets.	SS_05 0.0-0.1 PID = 1.6 ppm	No odours, stains or ACM noted
	0.5	0.20		SG-GC	Gravelly Clayey SAND - orange, red, grey, brown, heterogeneous, damp to wet (increasing moisture with depth), loose, fine to coarse, sub angular. Inclusions of fine to medium sandstone gravels.	SS_05 0.5-0.6 PID = 2 ppm	No odours, stains or ACM noted
	1 <u>.0</u>	1.30			Borehole SS_05 terminated at 1.3m	SS_05 0.9-1.0 PID = 1.4 ppm	-
	1.5 - 2.0 - 2.5 - 3.0 - 3.5						End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:18-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.1 Reference Level: Ground Surface

			`	•			
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Sandy SILT - brown, heterogeneous, dry, soft, non-plastic, inclusions of rootlets and trace fine sandstone gravels.	SS_06 0.0-0.1 PID = 1.4 ppm	No odours, stains or ACM noted
	- -	0.15		SP	SAND - yellow, grey, heterogeneous, damp to wet (increasing moisture with depth), loose, medium grained, sub-angular to sub-rounded. Inclusions of large weathered sandstone boulders.		No odours, stains or ACM noted
	0 <u>.5</u>					SS_06 0.5-0.6 PID = 0.8 ppm	
	1 <u>.0</u>					SS_06 0.9-1.0 PID = 0.7 ppm	
BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 12-10-18	1.5 - - 1.5 - - 2.0 - - - 3.0 - - - - - - - - - - - - - - - - - - -	1.10			Borehole SS_06 terminated at 1.1m		End of hole due to collapsing sand and sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:18-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1 Reference Level: Ground Surface

БО	ie Di	amete	er (mm	i):	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Sandy SILT - brown, heterogeneous, dry, soft. Inclusions of fine rootlets and trace fine sandstone gravels.	SS_07 0.0-0.1 PID = 0.6 ppm	No odours, stains or ACM noted
	-	0.25		SP	SAND - yellow, white, heterogeneous, dry to damp, loose, medium grained, sub angular to sub rounded with inclusions of large sandstone boulders.		No odours, stains or ACM noted
	0 <u>.5</u>					SS_07 0.5-0.6 PID = 0.4 ppm	-
	-	0.70		SC	Clayey SAND; brown, yellow, heterogeneous, damp to wet, loose, medium grained, sub angular to sub rounded with inclusions of large weathered sandstone boulders.		No odours, stains or ACM noted
	1.0	1.00			Borehole SS_07 terminated at 1m	SS_07 0.9-1.0 PID = 0.4 ppm	End of hole due to collapsing sand a sandstone
	_						
	1 <u>.5</u>						
	- -						
	- -						
	2 <u>.0</u> _						
	_						
	2.5						
	-						
	3 <u>.0</u>						
	- -						
	-						
	3 <u>.5</u>						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:18-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1 Reference Level: Ground Surface

			er (mm	.,.	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Sandy SILT - brown, heterogeneous, dry, soft. Inclusions of fine rootlets.	SS_08 0.0-0.1 PID = 1.2 ppm	No odours, stains or ACM noted
		0.25		SP	SAND - red, yellow, white, heterogeneous, dry to damp, loose, medium grained, sub-angualr to sub rounded. Inclusions of large sandstone boulders.		No odours, stains or ACM noted
	0 <u>.5</u>					SS_08 0.5-0.6 PID = 1 ppm	
	_	0.70		SC	Clayey SAND - brown, red, yellow, white, heterogeneous, wet, loose, medium grained, sub angular to sub rounded. Inclusions of large weathered sandstone boulders.		No odours, stains or ACM noted
	1.0	1.00			Borehole SS_08 terminated at 1m	SS_08 0.9-1.0 PID = 1 ppm	End of hole due to collapsing sand sandstone
	_						
	1 <u>.5</u>						
	1.5						
	_						
	2.0						
	_						
	- 2 <u>.5</u>						
	_						
	_						
	3.0						
	-						
	3 <u>.5</u>						
	_						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:18-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1 Reference Level: Ground Surface

D 0.	ie Di	amete	(11111	·).	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Silty SAND - light brown, heterogeneous, dry, loose, sub angular to sub rounded with inclusions of roots and sandstone gravels.	SS_09 0.0-0.1 PID = 1 ppm	No odours, stains or ACM noted
	_	0.20		SM	Silty SAND - brown, yellow, red, heterogeneous, damp, loose, sub angular to sub rounded with large sandstone boulders.	SS 09 0.4-0.5 PID = 1 ppm	No odours, stains or ACM noted
	0.5					PID = 1 ppm	
	1.0	1.00			Borehole SS_09 terminated at 1m		End of hole at program depth
	1.5						
	-						
	2 <u>.0</u>						
	-						
	2 <u>.5</u>						
	_						
	3 <u>.0</u>						
	-						
	3 <u>.5</u>						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA
Site Address: Peat Island, Mooney Mooney, NSW

Date: 18-Sep-18 Eastings (GDA 94):
Logged By: C Bennett Northings (GDA 94):
Contractor: Ken Coles Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.9 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit			\boxtimes	Fill	Silty SAND; light brown, heterogeneous, dry, loose - medium dense, fine - medium grained. Inclusions of roots, sandstone and trace road base gravels.	SS_10 0.0-0.1 PID = 0.8 ppm	No odours, stains or ACM noted
Tes	-	0.10		SM	Silty SAND; light brown, yellow, heterogeneous, dry to damp, loose - medium dense, fine - medium grained, sub angular to sub rounded. Inclusions of large sandstone boulders.	SS_10 0.4-0.5 PID= 0.9 ppm	No odours, stains or ACM noted
	0 <u>.5</u>					PID – 0.9 ppin	
	1 <u>.0</u>	0.90			Borehole SS_10 terminated at 0.9m		End of hole at program depth
	3.0						

Project Number: 54933
Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:18-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.6 Reference Level: Ground Surface

Method	Depth (mbgs) Contact (mbgs) Graphic Log Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	- Fill	Clayey SAND - brown, orange, yellow, heterogeneous, dry to damp, medium dense. Inclusions of sandstone gravels and rootlets.	SS_11 0.0-0.1 PID = 0.6 ppm	No odours, stains or ACM noted
	0.40 SP	SAND - black, heterogeneous, damp, loose, fine to medium grained, sub rounded. Inclusions of fine sandstone gravels	SS_11 0.4-0.5 PID = 0.5 ppm	No odours, stains or ACM noted
	1.0 1.0 1.5 - 2.0 - 2.5 - - 3.0 - 3.5	Borehole SS_111 terminated at 0.6m		End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:18-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.25 Reference Level: Ground Surface

Method	Depth (mbgs) Contact (mbgs) Graphic Log Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	- Fill	Silty SAND - brown, yellow, red, heterogeneous, dry, medium dense, fine to medium grained. Inclusions of weathered sandstone boulders	SS_12 0.0-0.1 PID = 3.9 ppm	No odours, stains or ACM noted
Test F	- 0.25 - 0.5 - 1.0 - 1.5	Borehole SS_12 terminated at 0.25m	PID = 3.9 ppm	End of hole at refusal on sandstone
	3.5			

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:18-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1 **Reference Level:** Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Silty SAND - light brown, heterogeneous, dry, loose - medium dense, fine - medium grained. Inclusions of roots and trace sandstone.	SS_13 0.0-0.1 PID = 1.5 ppm	No odours, stains or ACM noted
_	_	0.15		SM	Silty SAND - light brown, heterogeneous, dry, loose - medium dense, fine - medium grained with large sandstone boulders.		No odours, stains or ACM noted
	0 <u>.5</u>					SS_13 0.4-0.5 PID = 1.4 ppm	
	- -						
	1.0	1.00			Borehole SS_13 terminated at 1m	SS_13 0.9-1.0 PID = 1 ppm	End of hole at program depth
	_				55-5-55 551-5 55.1.m. acc 4x 1.m.		End of note at program depth
	_						
	1 <u>.5</u>						
	- -						
	_						
	2 <u>.0</u>						
	_						
	_						
	2.5						
	_ _						
	- -						
	3 <u>.0</u>						
	_						
	- -						
	3 <u>.5</u>						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:18-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.15 Reference Level: Ground Surface

Method	Depth (mbgs) Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_		Fill	Silty SAND - brown, orange, heterogeneous, dry, loose - medium dense, fine - medium grained, sub angular to sub rounded, inclusions of fine to medium sandstone gravels.	SS_14 0.0-0.1 PID = 2.1 ppm	No odours, stains or ACM noted
F	0.15 0.5 1_0 1_0 1_5 2_0 2_5 3_0 3_5 3_5 3_5			Borehole SS_14 terminated at 0.15m		End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA
Site Address: Peat Island, Mooney Mooney, NSW

Date:18-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.25 Reference Level: Ground Surface

Method	Depth (mbgs) Contact (mbgs) Graphic Log Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	- Fill	Silty SAND - brown, heterogeneous, dry, loose - medium dense, fine - medium grained, sub angular to sub rounded, inclusions of fine to medium sandstone gravels and rootlets.	SS_15 0.0-0.1 PID = 0.6 ppm	No odours, stains or ACM noted
	0.25 0.5 1.0 1.0 1.5 2.0 2.5 3.0 3.5	Borehole SS_15 terminated at 0.25m		End of hole at refusal on sandstone

Contractor: Ken Coles

SS_16

Project Number: 54933 Client: Property NSW

Zone/Area/Permit#:

Project Name: Peat Island ESA **Site Address:** Peat Island, Mooney Mooney, NSW

Date: 18-Sep-18 Eastings (GDA 94):
Logged By: C Bennett Northings (GDA 94):

Total Hole Depth (mbgs): 0.8 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Silty SAND - brown, orange, heterogeneous, dry, loose - medium dense, fine - medium grained, sub angular to sub rounded, inclusions of fine to medium sandstone gravels and rootlets.	SS_16 0.0-0.1 PID = 0.6 ppm	No odours, stains or ACM noted
	0.5	0.30		SC	Clayey SAND - brown, orange, heterogeneous, damp, medium dense, fine - medium grained. Inclusions of trace sandstone.	SS_16 0.5-0.6 PID = 0.4 ppm	No odours, stains or ACM noted
	-	0.80		SP	SAND - white, yellow, red, heterogeneous, damp, loose - medium dense, fine to medium grained, sub angular to sub rounded, inclusions of trace sandstone.	PID = 0.4 ppm	_
	1 <u>.0</u>	1.00			medium grained, sub angular to sub rounded, inclusions of trace sandstone. Borehole SS_16 terminated at 0.8m	SS_16 0.9-1.0 PID = 0.4 ppm	No odours, stains or ACM noted End of hole at program depth
	_ _ _ _ 1.5						
	- -						
	2 <u>.0</u>						
	_ _ 2.5						
	_ _ _						
	3.0						
	- 3 <u>.5</u>						
	_						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:19-Sep-18Eastings (GDA 94):Logged By:R LillNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.1 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Sandy Gravelly SILT - red with grey gravels, heterogeneous, dry, stiff - very stiff, non-plastic.	SS_17 0.0-0.1 PID = 1.6 ppm	No odours, stains or ACM noted
	0.5	0.20		Fill	Sandy CLAY - brown, red, heterogeneous, dry, stiff, medium plasticity.	SS_17 0.2-0.3 PID = 0.7 ppm	No odours, stains or ACM noted
	_ _ _ _	0.60		SANDSTONE	Weathered SANDSTONE - red, white, light brown, heterogeneous, dry, very stiff - hard.		No odours, stains or ACM noted
	1 <u>.0</u>				Borehole SS_17 terminated at 1.1m	SS_17 0.9-1.1 PID = 0.9 ppm	
	1.5 - - 2.0 - - 2.5 - - 3.0						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA
Site Address: Peat Island, Mooney Mooney, NSW

Date:19-Sep-18Eastings (GDA 94):Logged By:R LillNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.1 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	- - 0 <u>.5</u>	0.10		SM SC	Silty SAND - brown, heterogeneous, damp, loose. Inclusions of rootlets and trace sandstone. Clayey SAND - orange/light brown, heterogeneous, dry - damp, loose to medium dense.	SS_18 0.0-0.1 PID = 1.6 ppm SS_18 0.2-0.3 PID = 0.8 ppm	No odours, stains or ACM noted No odours, stains or ACM noted
	1.0	0.90		SC	Clayey SAND - light grey, brown and orange, heterogeneous, damp, medium dense, no inclusions. Borehole SS_18 terminated at 1.1m	SS_18 0.9-1.0 PID = 0.6 ppm	No odours, stains or ACM noted End of hole at program depth
	1 <u>.5</u>						
	2.0 - - - 2.5						
	3.0						
	- 3.5 -						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:19-Sep-18Eastings (GDA 94):Logged By:R LillNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.9 Reference Level: Ground Surface

Method Depth (mbgs) Contact (mbgs) Graphic Log	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	SC Clayey SAND - white, light brown, heterogeneous, damp, dense to very dense increasing sandstone boulders with depth.	SS_19 0.0-0.1 PID = 0.6 ppm SS_19 0.2-0.3 PID = 0.4 ppm	No odours, stains or ACM noted
	Borehole SS_19 terminated at 0.9m	SS_19 0.6-0.7 PID = 0.4 ppm	End of hole at program depth
1.0			

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:19-Sep-18Eastings (GDA 94):Logged By:R LillNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.2 Reference Level: Ground Surface

$\overline{}$						
Method Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit			Fill	Silty SAND - black, heterogeneous, damp, loose, fine grainded. Inclusions of rootlets.	SS_20 0.0-0.1 PID = 1.2 ppm	No odours, stains or ACM noted
- 0 <u>.5</u>	0.20		SP	SAND - light grey, brown, heterogeneous, damp, medium dense, fine grained. Inclusions of some fine sandstone gravels.	SS_20 0.2-0.3 PID = 0.6 ppm	No odours, stains or ACM noted
1.0	1.00		SP	SAND - orange, grey, heterogeneous, damp, medium dense, fine to medium grained. Inclusions of fine to medium sandstone gravels	SS_20 0.9-1.0 PID = 0.7 ppm	-
-				Inclusions of fine to medium sandstone gravels		No odours, stains or ACM noted

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:19-Sep-18Eastings (GDA 94):Logged By:R LillNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.7 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
l est Pit				Fill	Silty SAND - light brown, heterogeneous, dry, medium dense, fine grained. Inclusions of rootlets.	SS_21 0.0-0.1 PID = 1.1 ppm	No odours, stains or ACM noted
<u> </u>	-	0.10		Fill	SAND - red, orange, heterogeneous, damp, medium dense, fine grained. Inclusions of roots, branches, plastic bottle, trace sandstone gravels.	SS_21 0.2-0.3 PID = 1 ppm	No odours, stains or ACM noted
	0 <u>.5</u>	0.40		SP	SAND - red, grey, heterogeneous, damp, very dense, fine to medium grained. Inclusions of large sandstone boulders.		No odours, stains or ACM noted
	1.0 				Borehole SS_21 terminated at 0.7m		End of hole at program depth

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:19-Sep-18Eastings (GDA 94):Logged By:R LillNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2.5 **Reference Level:** Ground Surface

Bor	re Dia	amete	er (mm	1):	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Silty SAND - black, heterogeneous, dry to damp, loose, fine grained. Inclusions of rootlets.	SS_22 0.0-0.1 PID = 0.4 ppm	No odours, stains or ACM noted
	0.5	0.20		Fill	Clayey SAND - light brown, homogeneous, damp, dense, fine grained.	SS_22 0.2-0.3 PID = 0.4 ppm	No odours, stains or ACM noted
	-	0.70		SC	Clayey SAND - reddish, grey mottled brown, heterogeneous, damp to moist, dense - very dense, medium grained.		No odours, stains or ACM noted
	1.0					SS_22 1.0-1.1 PID = 0.3 ppm	
	-						
	- 1 <u>.5</u>						
	-						
	2.0						
	- - -						
	2.5	2.50	7.7.7.		Borehole SS_22 terminated at 2.5m		End of hole at program depth
	3.0						
	-						
	3 <u>.5</u>						
	_						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:19-Sep-18Eastings (GDA 94):Logged By:R LillNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 3.1 Reference Level: Ground Surface

Boi	Bore Diameter (mm):		1):	Elevation (m):					
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations		
Test Pit	-			Fill	SAND - black, heterogeneous, damp, very loose, fine grained. Inclusions of rootlets.	SS_23 0.0-0.1 PID = 1.4 ppm	No odours, stains or ACM noted		
	0.5	0.20		SP	SAND - grey, homogeneous, damp to wet (increasing moisture with depth), loose, medium dense, fine to medium grained.	SS 23 0.2-0.3 PID = 0.8 ppm	No odours, stains or ACM noted		
	_ _ 1 <u>.0</u> _					SS_23 0.9-1.0 PID = 0.8 ppm			
	_ _ _ 1 <u>.5</u>								
	_ _ _ 2 <u>.0</u>								
	_ _ _ _ 2.5								
	3.0								
	- - 3 <u>.5</u>	3.10	<u> </u>		Borehole SS_23 terminated at 3.1m		End of hole at program depth		
	-								

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:19-Sep-18Eastings (GDA 94):Logged By:J CransonNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.3 Reference Level: Ground Surface

<u> </u>										
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations			
Test Pit	_			Fill	Silty SAND - black and brown, heterogeneous, dry to damp, medium density, fine to medium grained. Inclusions of rootlets.	SS_24 0.0-0.1 PID = 1.2 ppm	No odours, stains or ACM noted			
	0.5	0.20		SP	SAND - orange, brown, heterogeneous, damp to moist, medium density, well graded, medium grained with fine to medium weathered sandstone gravels.	SS 24 0.2-0.3 PID = 1 ppm	No odours, stains or ACM noted			
	1.0	0.60		SC	Clayey SAND - red, brown, heterogeneous, moist to wet (increasing moisture with depth), medium dense, with inclusions of large sandstone boulders	SS_24 0.9-1.0 PID = 1 ppm	No odours, stains or ACM noted			
	1.5	1.30			Borehole SS_24 terminated at 1.3m		End of hole due to collapsing sand and sandstone			
	2.0									
BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 12-10-18	_ 2 <u>.5</u> _									
IOLE - 2017.GPJ GINT STD	3 <u>.0</u>									
SOREHOLE JBSG BOREH	3 <u>.5</u>									

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:19-Sep-18Eastings (GDA 94):Logged By:J CransonNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.3 Reference Level: Ground Surface

Method Denth (mhgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-		Fill	Silty SAND - blackish brown, heterogeneous, dry to damp, loose to medium dense, medium grained. Inclusions of rootlets.	SS_25 0.0-0.1 PID = 1 ppm	No odours, stains or ACM noted
	0.20		SP	SAND - yellow, heterogeneous, damp, medium dense, medium grained.	SS_25 0.2-0.3 PID = 0.8 ppm	No odours, stains or ACM noted
	0.50 - - - -		SC	Clayey SAND - red, brown, heterogeneous, damp to wet (increasing moisture with depth), medium dense, with inclusions of large sandstone boulders		No odours, stains or ACM noted
1	_				SS_25 1.0-1.1 PID = 0.8 ppm	_
2.	2.0			Borehole SS_25 terminated at 1.3m		End of hole due to collapsing sand sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA **Site Address:** Peat Island, Mooney Mooney, NSW

Date:19-Sep-18Eastings (GDA 94):Logged By:R GrayNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_	-		Fill	Silty SAND - dark brown, heterogeneous, dry, poorly sorted, loose, medium grained. Inclusions of weathered sandstone gravels, rootlets, and oyster shells.	SS_26 0.0-0.1 PID = 0.6 ppm	No odours, stains or ACM noted
	-	0.20		SC	Clayey SAND - orange, white, heterogeneous, damp, poorly sorted, medium grained. Inclusions of weathered sandstone boulders.	SS_26 0.2-0.5 PID = 0.6 ppm	No odours, stains or ACM noted
	1.0 1.5 - 2.0 - 3.5				Borehole SS_26 terminated at 0.5m		End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:19-Sep-18Eastings (GDA 94):Logged By:R GrayNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1 Reference Level: Ground Surface

			r (mm	,	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Clayey Silty SAND - dark brown, heterogeneous, damp, poorly sorted, medium grained. Inclusions of rootlets.	SS_27 0.0-0.1 PID = 0.6 ppm	No odours, stains or ACM noted
	0.5	0.20		SC	Clayey SAND - white, orange, heterogeneous, saturated, loose to medium dense, inclusions of sandstone cobbles.	SS 27 0.2-0.3 PID = 0.4 ppm	No odours, stains or ACM noted
	_ _ _ 1.0					SS_27 0.9-1.0 PID = 0.4 ppm	No odours, stains or ACM noted End of hole due to collapsing sand a
	1.5						sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:19-Sep-18Eastings (GDA 94):Logged By:R GrayNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit				Fill	Clayey Silty SAND - dark brown, heterogeneous, damp, medium grained, loose to medium dense, poorly sorted. Inclusions of rootlets.	SS_28 0.0-0.1 PID = 0.6 ppm	No odours, stains or ACM noted
Les		0.10		SC	Clayey SAND - orange, red, heterogeneous, damp, medium grained, loose to medium dense, poorly sorted.	1 12 0.0 pp	No odours, stains or ACM noted
	-				delise, poorly sorted.	SS_28 0.2-0.3 PID = 0.5 ppm	
	-					PID = 0.5 ppm	-
	-						
	0.5	0.50	17.77		Borehole SS_28 terminated at 0.5m		End of hole due to collapsing sand a sandstone
	_						sandstone
	_						
	_						
	_						
	1.0						
	_						
	-						
	-						
	1.5						
	_						
	_						
	_						
	2.0						
	_						
	-						
	-						
	-						
	2.5						
	_						
	_						
	_						
	3.0						
	_						
	-						
	-						
	-						
	3 <u>.5</u>						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA
Site Address: Peat Island, Mooney Mooney, NSW

Date:19-Sep-18Eastings (GDA 94):Logged By:J CransonNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 3 Reference Level: Ground Surface

ВОІ	Bore Diameter (mm):				Elevation (m):					
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations			
Test Pit	-			Fill	Fill - Sandy Silty CLAY - black, yellow, heterogeneous, damp, medium plasticity. Inclusions of rootlets	SS_29 0.0-0.1 PID = 0.9 ppm SS_29 0.2-0.3 PID = 1.2 ppm	No odours, stains or ACM noted			
	0 <u>.5</u>	0.30		SC	Clayey SAND - grey, red, heterogeneous, damp, medium dense medium grained. Inclusions of large weathered sandstone boulders.	PID = 1.2 ppm	No odours, stains or ACM noted			
	1 <u>.0</u>					SS_29 1.0-1.1 PID = 1.2 ppm				
	- - - 2.0					SS_29 1.6-1.7 PID = 1 ppm				
	- - - 2.5					SS_29 2.0-2.1 PID = 1 ppm				
	- - 3.0					SS_29 2.6-2.7 PID = 1 ppm				
	- - 3 <u>.5</u>	3.00			Borehole SS_29 terminated at 3m		End of hole at program depth			
	-									

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.35 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	-			SM	Silty SAND - brown, heterogeneous, dry, loose, fine to medium grained, sub angular to sub rounded. Inclusions of shells and rootlets, increasing sandstone gravels with depth.		No odours, stains or ACM noted
Hanc	1.5 	0.35	A-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0		Borehole SS_30 terminated at 0.35m	SS_30 0.2-0.3 PID = 0.6 ppm	End of hole at refusal on sandstone
	3.0						
	3 <u>.5</u>						

Date: 20-Sep-18

SS_31

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA
Site Address: Peat Island, Mooney Mooney, NSW

Eastings (GDA 94):

Logged By:J CransonNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface

Method Depth (mbgs)	Deptn (mbgs) Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-		Fill	Silty SAND - brown, heterogeneous, damp, poorly sorted.	SS_31 0.0-0.1 PID = 0.6 ppm	No odours, stains or ACM noted
	0.20		SC	Clayey SAND - yellow, brown, heterogeneous, damp, loose, fine to medium grained.	SS_31 0.2-0.3 PID = 0.6 ppm	No odours, stains or ACM noted
1. 1. 2. 2. 3.	0.50 - 0.50 - 1.00 - 1.55			Borehole SS_31 terminated at 0.5m		End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA **Site Address:** Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):

Contractor: Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.15 Reference Level: Ground Surface

Bore Diameter (mm): Elevation (m):

			. (,	Lievation (iii).		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hard Auger	_			Fill	Silty SAND; brown, heterogeneous, damp, loose to medium dense, fine to medium grained, sub angular to sub rounded. Inclusions of trace roadbase gravels and sandstone.	SS_32 0.0-0.1 PID = 1 ppm	No odours, stains or ACM noted
Hand	_	0.15	XXX		Borehole SS_32 terminated at 0.15m		End of hole at refusal on sandstone
	_						
	_						
	0 <u>.5</u>						
	_						
	-						
	1.0						
	_						
	1 <u>.5</u>						
	-						
	_						
	2 <u>.0</u>						
	-						
	_						
	2.5						
	-						
	-						
	3.0						
	_						
	-						
	3.5						
	_						
	_						

BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 12-10-18

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:J CransonNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface

Method Depth (mbgs)	Contact (mbgs)	Graphic Log Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit		CL-ML-SM	Sandy Silty CLAY - black, brown, heterogeneous, damp, medium plasticity, soft to firm.	SS_33 0.0-0.1 PID = 1.4 ppm	No odours, stains or ACM noted
- -	0.20	SC SC	Clayey SAND - red, brown, heterogeneous, damp to moist, loose to medium dense, fine to medium grained, with inclusions of fine to medium sandstone gravels	SS_33 0.2-0.3 PID = 1.2 ppm	No odours, stains or ACM noted
0.5			Borehole SS_33 terminated at 0.5m		End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.2 Reference Level: Ground Surface

Bore Diameter (mm): Elevation (m):

			. (,	Lievation (iii).		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	_			Fill	Silty SAND - brown, orange, heterogeneous, dry to damp, loose to medium dense, fine to medium grained. Inclusions of trace road base gravels and fine to medium sandstone gravels.	SS_34 0.0-0.1 PID = 0.9 ppm	No odours, stains or ACM noted
	1.5 	0.20			Borehole SS_34 terminated at 0.2m		End of hole at refusal on sandstone

BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 12-10-18

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA
Site Address: Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:J CransonNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 2 Reference Level: Ground Surface

DOI	Bore Diameter (mm):).	Elevation (m):				
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations		
Test Pit	-			Fill	Sandy Silty CLAY - brown, yellow, heterogeneous, damp, medium plasticity, soft to firm, Inclusions of rootlets and fine weathered sandstone gravels.	SS_35 0.0-0.1 PID = 0.9 ppm SS_35 0.2-0.3 PID = 2.8 ppm	No odours, stains or ACM noted		
	0.5	0.30		SC	Clayey SAND - red, grey, heterogeneous, damp (increasing moisture with depth), medium dense, fine to medium grained, inclusions of large sandstone boulders	PID = 2.8 ppm	No odours, stains or ACM noted		
	1 <u>.0</u>					SS_35 1.0-1.1 PID = 1 ppm			
	- - - 2.0					SS_35 1.6-1.7 PID = 0.6 ppm			
	2 <u>.5</u> 3 <u>.0</u> 3 <u>.5</u>	2.00			Borehole SS_35 terminated at 2m		End of hole at refusal on sandstone		

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.15 Reference Level: Ground Surface

Method
Hard Auger

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA
Site Address: Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:J CransonNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.5 **Reference Level:** Ground Surface

	Elevation (m):				
Method Depth (mbgs) Contact (mbgs) Graphic Log	Lithological Description	Samples Tests Remarks	Additional Observations		
	Silty CLAY - brown, yellow, heterogeneous, damp, low - medium plasticity, soft. Inclusions of rootlets.	SS 37 0.0-0.1 PID = 1.8 ppm SS 37 0.2-0.3 PID = 1.7 ppm	No odours, stains or ACM noted		
0.30	Clayey SAND - yellow, red and grey, heterogeneous, damp, medium dense. Inclusions of large sandstone boulders.	PID = 1.7 ppm	No odours, stains or ACM noted		
1.0 -		SS_37 0.9-1.0 PID = 1.7 ppm			
1.5 1.50 -	Borehole SS_37 terminated at 1.5m	SS_37 1.4-1.5 PID = 1.6 ppm	End of hole at refusal on sandstone		

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.15 Reference Level: Ground Surface

Method Denth (mhas)	Depth (mbgs) Contact (mbgs) Graphic Log Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Auger	- Fill	Fill - Gravelly Silty SAND - yellow, orange, heterogeneous, dry, loose to medium dense, fine to medium grained, sub angular to sub rounded. Inclusions of sandstone gravels (increasing with depth)	SS_38 0-0.1 PID = 2.3 ppm	No odours, stains or ACM noted
1. 1. 2. 2. 3.		gravels (increasing with depth) Borehole SS_38 terminated at 0.15m		End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:J CransonNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.7 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Sandy Silty CLAY- brown, grey and yellow, heterogeneous, damp, loose, fine to medium grained, inclusions of fine rootlets and fine sandtone gravels	SS_39 0.0-0.1 PID = 0.5 ppm	No odours, stains or ACM noted
	0.5	0.20		SC	Clayey SAND - yellow, red and grey, heterogeneous, damp, medium dense. Inclusions of large sandstone boulders.	SS_39 0.2-0.3 PID = 0.9 ppm	No odours, stains or ACM noted
	1.0 - 1.0 - 1.5 - 2.0 - 2.5 2.5 - 3.0 3.5	0.70			Borehole SS_39 terminated at 0.7m		End of hole at refusal on sandstone

Date: 20-Sep-18

SS_40

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA **Site Address:** Peat Island, Mooney Mooney, NSW

Eastings (GDA 94):

Logged By:C BennettNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.1 **Reference Level:** Ground Surface

Pit Dimension (m3): Elevation (m):

-	Г		n (m3)		Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observation
Hand Auger				Fill	Silty SAND - orange, yellow, heterogeneous, wet, loose to medium dense, fine grained, sub rounded. Inclusions of road base gravels and fine to medium sandstone chunks.	SS_40 0.0-0.1 PID = 1.2 ppm	No odours, stains or ACN noted
		0.10			Test Pit SS_40 terminated at 0.1m		End of hole at refusal on sandstone
	_						
	_						
	_						
	0.5						
	-						
	-						
	1.0						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:J CransonNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.3 Reference Level: Ground Surface

во	re Dia	amete	er (mm	1):	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Sandy Silty CLAY - brown, heterogeneous, damp, medium plasticity, soft. Inclusions of rootlets, roots and trace sandstone gravels.	SS_41 0.0-0.1 PID = 3.8 ppm	No odours, stains or ACM noted
						SS_41 0.2-0.3 PID = 1.6 ppm	
	- 0 <u>.5</u> - -	0.30		SC	Clayey SAND - yellow, red and grey, heterogeneous, damp, medium dense. Inclusions of large sandstone boulders.		No odours, stains or ACM noted
	1.0					SS_41 1.0-1.1 PID = 1 ppm	_
	_					PID = 1 ppm	
		1.30			Borehole SS_41 terminated at 1.3m		
	_	1.50			Buchole 66_41 terminated at 1.5m		End of hole at refusal on sandston
	1.5						
	_						
	_						
	2.0						
	_						
	_						
	_						
	2.5						
	_						
	_						
	_						
	3 <u>.0</u>						
	_						
	_						
	3 <u>.5</u>						
	_						
	_						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:J CransonNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.2 Reference Level: Ground Surface

					1		T
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Sandy Silty CLAY - brown, heterogeneous, damp, medium plasticity, soft. Inclusions of rootlets.	SS_42 0.0-0.1 PID = 0.9 ppm	No odours, stains or ACM noted
Т	-	0.30		SC	Clavey SAND, velley, rad and gray, betargeneous, damp, medium dense, Inclusions	SS_42 0.2-0.3 PID = 1.4 ppm	-
	_	0.30		30	Clayey SAND - yellow, red and grey, heterogeneous, damp, medium dense. Inclusions of large sandstone boulders.		No odours, stains or ACM noted
	0 <u>.5</u>						
	_						
	_						
	1.0					SS_42 1.0-1.1 PID = 1.6 ppm	_
	_	4.00				PID = 1.6 ppm	
	_	1.20			Borehole SS_42 terminated at 1.2m		End of hole at refusal on sandstone
	- 1 <u>.5</u>						
	_						
	_						
	_						
	2 <u>.0</u>						
	_						
	_						
	2.5						
	_						
	3 <u>.0</u>						
	_						
	-						
	_						
	3 <u>.5</u>						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA
Site Address: Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:J CransonNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.2 Reference Level: Ground Surface

Method	Depth (mbgs) Contact (mbgs) Graphic Log Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	Fill	Silty CLAY - brown, heterogeneous, damp, low plasticity, soft. Inclusions of rootlets.	SS_43 0.0-0.1 PID = 2.4 ppm	No odours, stains or ACM noted
<u> </u>	0.20 - 0.5 - 0.5 - 1.0 - 1.5	Borehole SS_43 terminated at 0.2m		End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:J CransonNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.3 Reference Level: Ground Surface

Method Depth (mbgs) Contact (mbgs) Graphic Log	Lithological Description o s s s s s s s s s s s s s s s s s s	Samples Tests Remarks	Additional Observations
0.10	Fill Silty CLAY - brown, heterogeneous, damp, low plasticity, soft. Inclusions of	PID = 0.1 ppm	No odours, stains or ACM noted
0.10	Fill Gravelly CLAY - black, brown, heterogeneous, dry, low to medium plasticity graded with inclusions of angular, road base gravels.	SS_44 0.2-0.3 PID = 0.3 ppm	No odours, stains or ACM noted
0.30 0.5 1.0 1.5 - 2.0 - 3.0 - 3.5	Borehole SS_44 terminated at 0.3m	PIĎ = 0.3 ppm	End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:J CransonNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1.4 Reference Level: Ground Surface

_	-						T
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Silty CLAY - brown, heterogeneous, damp, low plasticity, soft. Inclusions of rootlets, some sandstone gravels.	SS_45 0.0-0.1 PID = 1.8 ppm	No odours, stains or ACM noted
	0.5			SG	Gravelly SAND - brown, heterogeneous, dry, loose to medium dense, medium grained, withi inclusions of well graded angular sandstone gravels.	SS_45 0.2-0.3 PID = 1.9 ppm	No odours, stains or ACM noted
	1.5	1.40			Borehole SS_45 terminated at 1.4m	SS_45 1.3-1.4 PID = 0.6 ppm	End of hole at refusal on sandstone
	2.0 - - 2.5 - - 3.0 - - 3.5						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA
Site Address: Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.1 Reference Level: Ground Surface

Bore Diameter (mm): Elevation (m):

Remarks See See See See See See See See See Se			amete	(,.	Lievation (iii).		
Borehole SS_46 terminated at 0.1m End of hole at refusal on sandat 1.0 1.5 2.5 2.5 3.0	Method	Depth (mbgs)	Contact (mbgs)	Graphic Log			Tests Remarks	Additional Observations
Borrihole SS_46 terminated at 0.1m End of hole at refusal on sandat 1.0 1.5 2.0 2.0 3.0 3.0	uger				SM	Silty SAND - brown, heterogeneous, dry, fine grained, medium dense, with inclusions of fine to medium sandstone gravels.	SS_46 0-0.1 PID = 0.4 ppm	No odours, stains or ACM noted
0.5 	lud <u>A</u> t		0.10	.1:1:1		Borehole SS_46 terminated at 0.1m	1 15 0.1 pp	End of hole at refusal on sandstone
		1.0 - 1.5 - 2.0 - 2.5 	0.10			Borehole SS_46 terminated at 0.1m		End of hole at refusal on sandstone

BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 12-10-18

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.1 Reference Level: Ground Surface

- 1	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
nariu ∌uger				SM	Silty SAND - brown, heterogeneous, dry, fine grained, medium dense, with inclusions of fine to medium sandstone gravels.	SS_47 0-0.1 PID = 0.6 ppm	No odours, stains or ACM noted
2		0.10	11111		Borehole SS_47 terminated at 0.1m		End of hole at refusal on sandstone
Ĕ	7						
	+						
	-						
	0.5						
	-						
	-						
	-						
	4						
	1.0						
	_						
	4						
	_						
	1.5						
	2.0						
	1						
	-						
	_						
	2.5						
	-						
	+						
	-						
	+						
	3.0						
	4						
	-						
	4						
	4						
	3.5						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:J CransonNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.5 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	_			Fill	Silty CLAY - brown, heterogeneous, damp, low plasticity, soft. Inclusions of rootlets, and some sub-rounded sandstone gravels.	SS_48 0.0-0.1 PID = 0.9 ppm	No odours, stains or ACM noted
	- -	0.20		SG	Gravelly SAND - yellow, heterogeneous, damp, medium grained, medium dense, well graded, with some sandstone gravels.	SS_48 0.2-0.3 PID = 0.9 ppm	No odours, stains or ACM noted
	0.5	0.50			Borehole SS_48 terminated at 0.5m		End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:J CransonNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 1 Reference Level: Ground Surface

					T	I	T
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Test Pit	-			Fill	Silty CLAY; brown, damp, medium dense, low plasticity, soft. Inclusions; grass, roots, some sandstone gravels.	SS_49 0.0-0.1 PID = 1 ppm	No odours, stains or ACM noted
	-	0.20		SP	SAND - brown, yellow, heterogeneous, damp, medium dense, with inclusions of weathered sandstone gravels.	SS_49 0.2-0.3 PID = 1 ppm	No odours, stains or ACM noted
	0 <u>.5</u>						
	- -						
	-					\$\$ 40.0.0.1.0	
	1.0	1.00			Borehole SS_49 terminated at 1m	SS_49 0.9-1.0 PID = 1 ppm	End of hole at refusal on sandstone
	-						
	- 1 <u>.5</u>						
	1 <u>.5</u>						
	-						
	2 <u>.0</u>						
	-						
	-						
	2.5						
	-						
	-						
	3.0						
	_						
	3 <u>.5</u>						
	<u>5.5</u>						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA **Site Address:** Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:J CransonNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.3 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	-			Fill	Silty CLAY - brown, heterogeneous, damp, low plasticity, soft. Inclusions of rootlets and some angular road base gravels.	SS_50 0.0-0.1 PID = 0.4 ppm	No odours, stains or ACM noted
I	_	0.30			Borehole SS_50 terminated at 0.3m	SS_50 0.2-0.3 PID = 0.6 ppm	End of hole at refusal on sandstone
	0.5						
	- -						
	1 <u>.0</u>						
	-						
	_ _ 1 <u>.5</u>						
	_						
	- -						
	2 <u>.0</u>						
	- -						
	- 2 <u>.5</u>						
	_ _						
	-						
	3 <u>.0</u>						
	3 <u>.5</u>						
	_						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:J CransonNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.2 Reference Level: Ground Surface

Bore Diameter (mm): Elevation (m):

			er (mir	·/·	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	-			Fill	Gravelly Silty CLAY - brown, heterogeneous, damp, low plasticity, firm. Inclusions of angular road base gravels, rootlets, organic matter (twigs, branches) and trace plastic	SS_51 0.0-0.1 PID = 0.4 ppm	No odours, stains or ACM noted
Har	_	0.20			Borehole SS_51 terminated at 0.2m		End of hole at refusal on sandstone
	0 <u>.5</u>						
	_						
	_						
	- 1 <u>.0</u>						
	1 <u>.0</u>						
	_						
	-						
	1 <u>.5</u>						
	_						
	2 <u>.0</u> –						
	_						
	_						
	2 <u>.5</u> _						
	_						
	3.0						
	3 =						
	3 <u>.5</u>						

BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 12-10-18

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:J CransonNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.3 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Lithological	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	-	8	Fil	Silty SAND - brown, heterogeneous, dry to damp, loose. Inclusions of some sandst gravels.	SS_52 0.0-0.1 PID = 0.4 ppm	No odours, stains or ACM noted
Ė	0.5	1.30	×	Borehole SS_52 terminated at 0.3m	SS_52 0.2-0.3 PID = 0.3 ppm	End of hole at refusal on sandstone
	- - -					
	1.0					
	-					
	1 <u>.5</u>					
	2.0					
	- - -					
	2 <u>.5</u>					
	3.0					
	-					
	3.5					

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA **Site Address:** Peat Island, Mooney Mooney, NSW

Date:20-Sep-18Eastings (GDA 94):Logged By:J CransonNorthings (GDA 94):Contractor:Ken ColesZone/Area/Permit#:

Total Hole Depth (mbgs): 0.4 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	_ _ _			Fill	Silty CLAY - brown, heterogeneous, dry, low plasticity, firm Inclusions of rootlets.	SS_53 0.0-0.1 PID = 0.1 ppm SS_53 0.2-0.3 PID = 0.1 ppm	No odours, stains or ACM noted
	0.5	0.40			Borehole SS_53 terminated at 0.4m		End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA **Site Address:** Peat Island, Mooney Mooney, NSW

Date:21-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.1 Reference Level: Ground Surface

Bore Diameter (mm): Elevation (m):

Doie							
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
uger				Fill	Sandy SILT - brown, heterogeneous, dry, soft, non plastic. Inclusions of rootlets and fine road base gravels.	SS_54 0.0-0.1 PID = 0.9 ppm	No odours, stains or ACM noted
₽u		0.10	XXX		Borehole SS_54 terminated at 0.1m	1 15 0.0 pp	End of hole at refusal on sandstone
	0.5	0.10	XXX		Borehole SS_54 terminated at 0.1m		

BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 12-10-18

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA **Site Address:** Peat Island, Mooney Mooney, NSW

Date:21-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.1 Reference Level: Ground Surface

Bore Diameter (mm): Elevation (m):

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
uger				Fill	Sandy SILT - brown, heterogeneous, dry, soft, non plastic. Inclusions of rootlets and fine road base gravels.	SS_55 0.0-0.1 PID = 1.2 ppm	No odours, stains or ACM noted
l y pu		0.10	×××		Borehole SS_55 terminated at 0.1m	. 1.5 1.2 pp	End of hole at refusal on sandstone
Hand Auger	1.0 	0.10			Borehole SS_55 terminated at 0.1m		End of hole at refusal on sandstone

BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 12-10-18

BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.GDT 12-10-18

SS_56

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA
Site Address: Peat Island, Mooney Mooney, NSW

Date:28-Sep-18Eastings (GDA 94):Logged By:R LillNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.4 Reference Level: Ground Surface

 Ro	re Di	amete	er (mn	1):	Elevation (m):		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	_			Fill	Sandy SILT - brown, heterogeneous, damp, non plastic, firm, inclusions of rootlets and coarse gravels	SS_56 0.0-0.1 PID = 1.3 ppm	No odours, stains or ACM noted
Ha	_	0.20		Fill	Silty SAND - dark brown, heterogeneous, damp, loose to medium dense.	SS_56 0.2-0.3 PID = 1.1 ppm	No odours, stains or ACM noted
	0.5	0.40			Borehole SS_56 terminated at 0.4m		End of hole at refusal on sandstone
	_						
	_						
	1 <u>.0</u>						
	_						
	_						
	1.5						
	_						
	_						
	2 <u>.0</u>						
	_						
	_						
	2 <u>.5</u>						
	_						
	_						
	3.0						
	_						
	_						
	3 <u>.5</u>						
	_						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:28-Sep-18Eastings (GDA 94):Logged By:R LillNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.3 Reference Level: Ground Surface

Bore Diameter (mm):						
Method Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger			Fill	Silty SAND - dark brown, heterogeneous, damp, loose to medium dense, inclusions of trace sandstone gravels	SS_57 0.0-0.1 PID = 2.3 ppm	No odours, stains or ACM noted
1.0 - 1.5 2.0 2.5 3.0 3.5				Borehole SS_57 terminated at 0.3m		End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:28-Sep-18Eastings (GDA 94):Logged By:R LillNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.3 Reference Level: Ground Surface

Boi	Bore Diameter (mm):):	Elevation (m):				
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations		
Hand Auger	-			Fill	Silty SAND - brown, heterogeneous, damp, loose, poorly sorted, inclusions of rootlets and fine sandstone gravels.	SS_58 0.0-0.1 PID = 3.6 ppm	No odours, stains or ACM noted		
	0.5	0.30			Borehole SS_58 terminated at 0.3m	SS_58 0.2-0.3 PID = 2.4 ppm	End of hole at refusal on sandstone		
	1 <u>.0</u>								
	1 <u>.5</u>								
	_ 2 <u>.0</u> _ _								
	_ 2 <u>.5</u> _ _								
	3.0								
	_ _ 3 <u>.5</u> _								

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:28-Sep-18Eastings (GDA 94):Logged By:R LillNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.2 Reference Level: Ground Surface

Method	Depth (mbgs) Contact (mbgs) Graphic Log Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	Fill	Silty SAND - brown, heterogeneous, damp, loose, poorly sorted, inclusions of rootlets and fine sandstone gravels.	SS_59 0.0-0.1 PID = 1.7 ppm	No odours, stains or ACM noted
Hand	0.20 0.5 - 1.0 - 1.5 2.0 3.0 - 3.5 3.5 3.5	Borehole SS_59 terminated at 0.2m		End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:28-Sep-18Eastings (GDA 94):Logged By:R LillNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.2 Reference Level: Ground Surface

Method	Depth (mbgs) Contact (mbgs) Graphic Log Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	- Fill	Clayey SAND - brown, heterogeneous, dry to damp, medium dense, inclusions of fine sandstone gravels.	SS_60 0.0-0.1 PID = 4.1 ppm	No odours, stains or ACM noted
Hand	0.20 - 0.5 - 1.0 - 1.5 2.0 3.5 3.5 3.5 3.5	Borehole SS_60 terminated at 0.2m		End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:28-Sep-18Eastings (GDA 94):Logged By:R LillNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.3 Reference Level: Ground Surface

Depth (mbgs) Contact (mbgs) Graphic Log Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Fill	Silty SAND - brown, heterogeneous, damp, loose, poorly sorted, inclusions of rootlets and fine sandstone gravels.	SS_61 0.0-0.1 PID = 2.1 ppm	No odours, stains or ACM noted
		SS_61 0.2-0.3 PID = 0.6 ppm	
0.30 - 0.5 - 1.0 - 1.5 - 2.0 - 2.5 - 3.0 - 3.5	Borehole SS_61 terminated at 0.3m		End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:28-Sep-18Eastings (GDA 94):Logged By:R LillNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.3 Reference Level: Ground Surface

Method	Depth (mbgs) Contact (mbgs) Graphic Log Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	Fill	Sandy SILT - brown, heterogeneous, damp, non plastic, firm, inclusions of rootlets	SS_62 0.0-0.1 PID = 2.4 ppm SS_62 0.2-0.3 PID = 1.8 ppm	No odours, stains or ACM noted
	0.30 0.5 1.0 1.5	Borehole SS_62 terminated at 0.3m		End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:28-Sep-18Eastings (GDA 94):Logged By:R LillNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.4 Reference Level: Ground Surface

Method	Depth (mbgs) Contact (mbgs) Graphic Log Lithological	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	- - -	Sandy SILT - brown, heterogeneous, damp, non plastic, soft to firm, inclusions of rootlets, woodchips and sticks	SS_63 0.0-0.1 PID = 1.2 ppm SS_63 0.2-0.3 PID = 0.9 ppm	No odours, stains or ACM noted
	0.40 0.5 - 0.40 1.0 - 1.5 - 2.0 - 3.0 - 3.5 - 3.5	Borehole SS_63 terminated at 0.4m		End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:28-Sep-18Eastings (GDA 94):Logged By:R LillNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.4 Reference Level: Ground Surface

Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	_			Fill	Silty SAND - dark brown, heterogeneous, damp, poorly sorted, inclusions of rootlets.	SS_64 0.0-0.1 PID = 2.4 ppm	No odours, stains or ACM noted
Ĭ	-	0.20		SM	Silty SAND - brown mottled red, heterogeneous, damp, poorly sorted. Inclusions of fine sandstone gravels	SS_64 0.2-0.3 PID = 1.8 ppm	No odours, stains or ACM noted
	0.5	0.40			Borehole SS_64 terminated at 0.4m		End of hole at refusal on sandstone
	2 <u>.5</u>						
	- - - 3 <u>.5</u>						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA
Site Address: Peat Island, Mooney Mooney, NSW

Date:28-Sep-18Eastings (GDA 94):Logged By:R LillNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.3 Reference Level: Ground Surface

Memod	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
nger				Fill	Sandy SILT - dark brown, heterogeneous, damp to wet, non plastic, soft to firm, inclusions of rootlets, and organic matter (bark, sticks)	SS_65 0.0-0.1 PID = 1.9 ppm	No odours, stains or ACM noted
nand Auger		0.10		SP	SAND - light to medium brown, heterogeneous, damp,poorly sorted, inclusions of fine sandstone gravels.		No odours, stains or ACM noted
						SS_65 0.2-0.3 PID = 1.2 ppm	
		0.30			Borehole SS_65 terminated at 0.3m		End of hole at refusal on sandstone
	0.5						
	0.5						
	-						
	-						
	-						
	-						
	1 <u>.0</u>						
	-						
	-						
	-						
	_						
	1.5						
	_						
	_						
	2.0						
	2.5						
	-						
	-						
	-						
	3.0						
	-						
	-						
	-						
	4						
	3.5						
			1				

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:28-Sep-18Eastings (GDA 94):Logged By:R GrayNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.7 Reference Level: Ground Surface

Method Depth (mbgs) Contact (mbgs)	Graphic Log		Samples Tests Remarks	Additional Observations
Hand Auger	F		SS_66 0.0-0.1 PID = 0.9 ppm	No odours, stains or ACM noted
0.1	s	M Silty SAND - brown, heterogeneous, damp to wet (increasing moisture with depth), poorly sorted, inclusions of fine sandstone gravels.		No odours, stains or ACM noted
1			SS_66 0.2-0.3 PID = 0.5 ppm SS_66 0.5-0.6 PID = 0.4 ppm	-
			PID = 0.4 ppm	
1.0 1.0 1.5 - 2.0 - 2.5 - 3.0 - 3.5		Borehole SS_66 terminated at 0.7m		End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA **Site Address:** Peat Island, Mooney Mooney, NSW

Date:28-Sep-18Eastings (GDA 94):Logged By:R GrayNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.2 Reference Level: Ground Surface

Bore Diameter (mm): Elevation (m):

			. (<u>'</u>	Lievation (iii).		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger	-			Fill	Silty SAND - brown, heterogeneous, damp to wet, loose, poorly sorted, inclusions of rootlets, fine road base gravels and sandstone gravels.	SS_67 0.0-0.1 PID = 0.9 ppm	No odours, stains or ACM noted
	0.5	0.20			Borehole SS_67 terminated at 0.2m		End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:28-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.1 Reference Level: Ground Surface

Bore Diameter (mm): Elevation (m):

Part	Method	Depth (mbgs)	Contact (mbgs)	Graphic Log			Tests Remarks	Additional Observations
2	uger				Fill	Sandy Silty CLAY - yellow brown, heterogeneous, dry, low plasticity, soft, inclusions of fine to medium sandstone gravels.	SS_68 0.0-0.1 PID = 1.8 ppm	No odours, stains or ACM noted
10 10 15 - 20 25	l bui		0.10	XXX		Borehole SS_68 terminated at 0.1m	. 15 1.6 pp	
		1.0 - 1.5 - 2.0 - 2.5 	0.10			Borehole SS_68 terminated at 0.1m	PID = 1.8 ppm	

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:28-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.1 Reference Level: Ground Surface

Bore Diameter (mm): Elevation (m):

		amete			Lievation (iii).		
Method	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
uger				Fill	Sandy Silty CLAY - yellow brown, heterogeneous, dry, low plasticity, soft, inclusions of fine to medium sandstone gravels.	SS_69 0.0-0.1 PID = 1.2 ppm	No odours, stains or ACM noted
nd Au		0.10	XXX		Borehole SS_69 terminated at 0.1m	pp	End of hole at program depth
Hand Auger	0.5 - 1.0 - 1.5 - - 2.0 - - - - - - - - - - - - - - - - - - -	0.10		F:III	Sandy Sitty CLAY - yellow brown, heterogeneous, dry, low plasticity, soft, inclusions of fine to medium sandstone gravels. Borehole SS_69 terminated at 0.1m	SS_69 0.0-0.1 PID = 1.2 ppm	No odours, stains or ACM noted End of hole at program depth
							l .

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA
Site Address: Peat Island, Mooney Mooney, NSW

Date:28-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.1 Reference Level: Ground Surface

Bore Diameter (mm): Elevation (m):

Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
			Fill	Silty CLAY - brown, heterog dry, low plasticity, firm, with inclusions of sandstone gravels and rootlets	SS_70 0.0-0.1 PID = 1.6 ppm	No odours, stains or ACM noted
1.5 				Sity CLAY - brown, heterog dry, low plasticity, firm, with inclusions of sandstone gravels and rootlets Borehole SS_70 terminated at 0.1m		
3.0						
	0.5 1.0 1.5 2.0 3.0 3.0	0.10 0.5 - 1.0 - 1.5 2.0 2.5	0.10 0.5 - 1.0 - 1.5 2.0 3.0 3.0	1.0 - 1.0 - 1.5 	Fill Silty CLAY - brown, heterog dry, low plasticity, firm, with inclusions of sandstone gravels and rootlets Borenole SS_70 terminated at 0.1m 1.5	Fill style (LAY - Never, heterog dry, low plasticity, firm, with inclusions of sandstone greeted and rotelles and rotelles and rotelles (Lay - Lay - L

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:28-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.1 Reference Level: Ground Surface

Bore Diameter (mm): Elevation (m):

Method Depth (mbgs) Contact (mbgs) Ciass C	Samples Tests Additional Observations Remarks
Fill Sandy SILT - brown, heterogeneous, dry, low plasticity, soft, with sandstone gravels.	h inclusions of trace SS_71 0.0-0.1 PID = 1.9 ppm No odours, stains or ACM noted
Borehole SS_71 terminated at 0.1m	End of hole at refusal on sandstone
Fill Sandy SILT-prown, heterogeneous, dry, low plasticity, soft, will sandstone gravels. Borehole SS_71 terminated at 0.1m 1.0 2.0 2.5 3.0 3.5	End of hole at refusal on sandstone

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:28-Sep-18Eastings (GDA 94):Logged By:C BennettNorthings (GDA 94):Contractor:Zone/Area/Permit#:

Total Hole Depth (mbgs): 0.1 Reference Level: Ground Surface

- 1	Depth (mbgs) Contact (mbgs) Graphic Log Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
	Fill	Sandy SILT - brown, heterogeneous, dry, low plasticity, soft, with inclusions of fine angular road base gravels and trace sandstone gravels.	SS_72 0.0-0.1 PID = 2.1 ppm	No odours, stains or ACM noted
	0.10 0.5 0.5 1.0 1.5 - 2.0 - 3.0 - 3.5 - 3.5	angular road base gravels and trace sandstone gravels. Borehole SS_72 terminated at 0.1m	PID = 2.1 ppm	End of hole at refusal on sandstone

Elevation (m):

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA Site Address: Peat Island, Mooney Mooney, NSW

Date: 28-Sep-18 Eastings (GDA 94): Logged By: C Bennett Northings (GDA 94):

Zone/Area/Permit#: Contractor:

Total Hole Depth (mbgs): 0.1 Reference Level: Ground Surface Bore Diameter (mm):

Method Depth (mbgs)	Contact (mbgs)					
	Contact	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Hand Auger			Fill	Sandy SILT - brown, heterogeneous, dry, low plasticity, soft, with inclusions of rootlets and trace sandstone gravels.	SS_73 0.0-0.1 PID = 1.9 ppm	No odours, stains or ACM noted
₩ pu	0.10	×××		Borehole SS_73 terminated at 0.1m	. 12 1.0 pp.11	End of hole at refusal on sandstone
표 -						
-						
0.5						
1.0						
1.5						
2.0						
2.0						
<u></u>						
12-10-18						
9 2 <u>.5</u>						
STRA						
D AU						
3 <u>.0</u>						
- 201						
3.5						
BOREHOLE JBSG BOREHOLE - 2017.GPJ GINT STD AUSTRALIA.G						
BOR						

Noel Arnold & Associates TEST PIT LOG REPORT

			State Property Authority	Test Pit Reference: MW01 (monitoring well installed)						
		Job Name:	UPSS Investigation Mooney Mooney			Central, North of Site - On Concrete Pad				
_		Job/Client Number:	Lot 3 DP239249, Pacific Highway, Mooney Mooney	Logged by: SJC Checked by: JH						
		Confractor:	Matrix Truck mounted rig	Date C	commenced: Completed:	23/07/2013				
\vdash		Unii kig:	Irruck mounted rig	Date	Completed:	23/0/72013				
Drilling Method	DTW	Depth (m)	Material Description		PID (ppm)	Comments:				
			Concrete pavement			Concrete pavement from 0-0.14m				
		0.5	Sand/clay, soft, loose, moist, low/hard plasticity, light brown/brown	\$01-0.7	0.9	Fill with sandstone; some clay throughout				
1		1.0	Sand/clay, soft, loose, moist, low/hard plasticity, light brown/brown	502-0.8	0.7	Fill; Small rocks and sandstone cobble				
1			Sand/clay, soft/strong, loose, moist, medium plasticity, dark rock/orange matter	S02(DUP1)-1.2		Natural soil, Clay content increasing with depth				
		2.0	Sand/clay, strong, loose, slighty moist, medium plasticity, dark red/light grey			Natural: Light grey band of shale				
			Sand/clay, strong, mildly dense, slightly moist, medium plasticity, light brown/dark red	1		Natural: Moisture content increasing with depth beyond 2.9m; Light grey band of shale				
		3.0 3.5 4.0	Sand/clay, strong, mildly dense, slightly moist, medium plasticity, dark red/light grey	\$03-3.0 \$03(DUP2)-3.1	11.7	Natural: Chunks of clay; Light grey band of shale				
		5.0	Clayey sand, strong, mildly dense, slightly moist, medium plasticity, dark red/light grey			Natural: Light grey band of shale: Light grey with increasing depth				
		5.5 6.0 Sand. slightly molst, dark red/brown 6.5		Natural: weathered sandstone with shale bands (light grey)						
		7.5	sandstone			Decreasing from dark red to pink				
		9.0	sandstone			Increasing from pink to dark red: Groundwater depth approximately 8.5m				
		9.5	sandstone			Losing red finge and becoming brown:				

End of hole at 10.0m

Noel Arnold & Associates TEST PIT LOG REPORT

	Client:	State Property Authority	Test Pit Reference:	MW02
1	Job Name:	UPSS Investigation Mooney Mooney	Localion:	North End of Eastern Boundary
	Site Address:	Lot 3 DP239249, Pacific Highway, Mooney Mooney	Logged by:	SJC
	Job/Client Number:	J119655	Checked by:	JH
	Contractor:	Matrix	Date Commenced:	23/07/2013
	Drill Rig.	Inuck mounted rig	Date Completed:	23/07/2013

Drilling Method	DTW	Depth (m)	Malerial Description	Field Sample Analysed	PID (ppm)	Comments:
			Ashphalt			Ashphalt from 0-0.4m
		0.5	Sand/clay, soft, loose, moist, medium plasticity, brown/grey			Fill
		1.0	saria/ciay, soii, loose, moisi, mealom plasiicily, brown/grey	\$01-0.8	0.3	· ""
				S02-1.2	0.4	Fill; medium sandstone chunks
		1.5	Sand/clay. soft. mildly dense. moist. low plasticity. brown/tan			Natural
		2.0				
		2.5	Clayey sand, strong, moist, medium plasticity, dark red/brown			Natural
		3.0		\$03-3.0	0.6	
		3.5		1		Natural; Decreasing red colour with depth, increasing grey
		4.0	Clayey sand, soft, loose, moist, low plasticity, dark red/dark brown			colour with depth
		4.5				
Backhoe		5.5	Sand/clay, soft, loose, moist, medium plasticity, pink/grey			Natural
98		6.0				
			Sand/clay, strong, loose, moist, medium plasticity, grey/pink	1		Natural
		6.5	Sand/clay, soft, loose, moist, low plasticity, dark red/dark brown	ł		Natural; Increasing red colour with depth
		7.0	sandstone			Red/pink diminishing: Rocks, sandstones
		7.5	Sullusione			rearphik diffinishing, rocks, salidsfolios
		8.0		1		Pink colour increasing with depth again; Groundwater depth
		9.0	sandstone			approximately between 8.0-8.5m
		9.5]		
		10.0	sandstone			
		10.5				
			End of hole at 10.5m			

Noel Arnold & Associates TEST PIT LOG REPORT

8		Client	State Property Authority	Test Pit Reference:	MW03
			UPSS Investigation Mooney Mooney		North of Site (Exterior)
			Lot 3 DP239249, Pacific Highway, Mooney Mooney	Logged by:	suc
		Job/Client Number:	J119655	Checked by:	Эн
		011	N-W-	10.1.0	In an an an an
		Confractor:	Matrix Truck mounted rig	Date Commenced: Date Completed:	
-		Dhi kig:	Lirock mounted ng	Date Completed:	23/0/72013
Drilling Method	DTW	Depth (m)	Material Description	Field Sample PID (ppm) Analysed	Comments:
$\overline{}$			Silt, moist, low plasticity, dark brown/brown	S01-0.2 0.0	Grass: Topsoll
I		0.5	Sand/clay, soft, loose, moist, medium plasticity, brown/light brown,		
		1.0	Clayey sand, soft, loose, very moist, medium plasticity, brown/light brown		Filt; very moist at 0.9
		1.5	Sand/clay, strong, moist, medium plasticity, dark brown/brown	S02-0.9 0.1	Natural: Sandstone chunks
		2.0	Clayey sand, soft, loose, moist, medium plasticity, dark brown/red	S03-1.8 0.6	Natural
1		2.5	Sand/clay, soft, loose, moist, medium plasticity, red/brown	_	Natural: Increasing red colour with depth
		3.0	Sand/clay, soft, loase, moist, low plasticity, red/light grey]	Natural: Increasing red colour with depth; Slight hydrocarbon odour at 3.0m
		3.5	sand/clay, soft, loose, most, low plasticity, red/light grey	\$04-3.5 1.9	Naturat increasing rea colour with depth; signit hydrocarbon adour at sum
		4.5	Sand, very dense, moist, dark red/light grey]	Natural: Sandstone: Air hammer commenced
		5.0	Sand/clay, strong, mildly dense, moist, medium plasticity, red/grey	1	Natural; Band of clay material
		6.0	Sandstone	S05-0.4 0.4	Natural: Very faint hydrocarbon odour: Sandstone
		7.5	Sandstone		Natural: Slight hydroarbon odour. Decreasing red colour and increasing orange colour with depth; Sandstone
		9.0	Sandstone		Natural: Very faint hydrocarbon odour: Groundwater at approximately 8.5m
		9.5	Sandstone	1	Natural: Very faint hydrocarbon odour
			End o	of hole at 10.0m	

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:19-Sep-18Eastings (GDA 94):Water Level Initial (mbgs):1.5Logged By:E HowleyNorthings (GDA 94):Surface Finish:Roadbox

Contractor: Terratest Zone/Area/Permit#: Casing / Screen Type: Class 18 PVC - 50mm

Total Hole Depth (mbgs): 3Reference Level: Ground SurfaceCasing Bottom Depth (mbgs): 0.8Bore Diameter (mm): 150Elevation (m): Screen Bottom Depth (mbgs): 3

Bore Diame			eter (i	mm):	150		Elevation (m):	Screen Bottom Depth	(mbgs): 3
Method	Water (mbgs)	Well Details	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations
Solid Flight Auger			-			Fill	Gravelly SAND - dark brown, heterogeneous, damp, loose to medium dense, fine to medium grained	GW_01 0.0-0.1 PID = 4.3 ppm	No odours, stains, or ACM noted
olla Filgn			_	0.70		SC	Clavey SAND - brown, heterogeneous, moist, medium dense.	GW_01 0.4-0.5 PID = 3.9 ppm	No odours, stains, or ACM noted
n			<u>1</u>				Clayey SAND - brown, heterogeneous, moist, medium dense, inclusions of medium to large sandstone boulders	GW_01 0.9-1.0 PID = 2.1 ppm	,
	•		_ _ _ 2	1.50		SANDSTONE	SANDSTONE (Weathered) - red, grey, heterogeneous, hard, medium grained.		No odours, stains, or ACM noted
			3	3.00			Borehole GW_01 terminated at 3m		End of hole at program depth
			_ _ _ 5						
			- -						
			7 - -						
			_ _ 8						
			<u>9</u> - -						
			_ _ 10						

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:19-Sep-18Eastings (GDA 94):Water Level Initial (mbgs):3.2Logged By:E HowleyNorthings (GDA 94):Surface Finish:Roadbox

Contractor: Terratest Zone/Area/Permit#: Casing / Screen Type: Class 18 PVC - 50mm

Total Hole Depth (mbgs): 5 Reference Level: Ground Surface Casing Bottom Depth (mbgs): 2

Bore Diameter (mm): 150 Elevation (m): Screen Bottom Depth (mbgs): 5

Bore Diameter (mm): 150					100		Elevation (m):	Screen Bottom Deptn (mpgs): 5			
Method	Water (mbgs)	Well Details	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations		
uger			_	0.10		Fill SM-SG	Silty SAND - brown, heterogeneous, dry, loose, inclusions of rootlets and roganic matter (sticks, bark)	GW_02 0.0-0.1 PID = 4 ppm	No odours, stains, or ACM noted No odours, stains, or ACM noted		
light A			_		0 (Silty Gravelly SAND - brown, heterogeneous, dry, loose to medium dense, with inclusions of trace sandstone gravels	GW_02 0.4-0.5 PID = 3.9 ppm	-		
Solid Flight Auger			- 1 - - - - 2	0.50		SANDSTONE	SANDSTONE (Weathered) - red, grey, brown heterogeneous, soft to hard, damp to wet (increasing moisture with depth)		No odours, stains, or ACM noted		
Air Hammer	•		3	3.50		SANDSTONE	SANDSTONE (Weathered) - red, grey, heterogeneous, very hard, dry to damp		No odours, stains, or ACM noted		
Air H			<u>4</u> - - - - 5	5.00			Borehole GW_02 terminated at 5m		End of hole at program depth		
			9 -								

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:19-Sep-18Eastings (GDA 94):Water Level Initial (mbgs):8Logged By:R LillNorthings (GDA 94):Surface Finish:Roadbox

Contractor: Terratest Zone/Area/Permit#: Casing / Screen Type: Class 18 PVC - 50mm

Total Hole Depth (mbgs):10Reference Level:Ground SurfaceCasing Bottom Depth (mbgs):5Bore Diameter (mm):150Elevation (m):Screen Bottom Depth (mbgs):10

В	Bore Diameter (mm): 150				150		Elevation (m):	Screen Bottom Depth (mbgs): 10			
Method	Water (mbgs)	Well Details	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations		
Solid Flight Auger						Fill	Silty SAND - light to dark brown, heterogeneous, moist, loose to medium dense (increasing density with depth), fine grained.	GW 03 0.0-0.1 PID = 9.8 ppm GW 03 0.4-0.5 PID = 9.8 ppm GW 03 0.9-1.0 PID = 6.8 ppm	No odours, stains, or ACM noted No odours, stains, or ACM noted		
			2 - 3	3.00		sc	Clayey SAND - dark brown, heterogeneous, moist, medium dense, inclusions of highly weathered sandstone gravels	GW 03 1.9-2.0 PID = 6 ppm	No odours, stains, or ACM noted		
				3.50		SANDSTONE	SANDSTONE (Highly Weathered) - red, white, heterogeneous, soft, damp	GW 03 3.4-3.5 PID = 3.1 ppm			
Air Hammer			6 7	5.50		SANDSTONE	SANDSTONE (Weathered) - orange, red, grey, heterogeneous, hard, damp to wet (increasing moisture with depth)		No odours, stains, or ACM noted		
			9 10				Borehole GW_03 terminated at 10m		End of hole at program depth		

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date: 19-Sep-18 Eastings (GDA 94): Water Level Initial (mbgs): 1
Logged By: E Howley Northings (GDA 94): Surface Finish: Roadbox
Contractory Tourneton Class

Contractor: Terratest Zone/Area/Permit#: Casing / Screen Type: Class 18 PVC - 50mm

Total Hole Depth (mbgs):3.5Reference Level:Ground SurfaceCasing Bottom Depth (mbgs):0.5Bore Diameter (mm):150Elevation (m):Screen Bottom Depth (mbgs):3.5

	Bore Diameter (mm): 150				150		Elevation (m):	Screen Bottom Depth (mbgs): 3.5		
Method	Water (mbgs)	Well Details	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations	
						Fill	Silty SAND - dark brown, heterogeneous, damp, loose, inclusions of trootlets	GW_04 0.0-0.1 PID = 13.2 ppm	No odours, stains, or ACM noted	
Solid Flight Auger	-			0.20		SG	Gravelly SAND - yellow, light brown, heterogeneous, loose, fine to medium grained, with inclusions of crushed and higly weathered sandstone gravels	GW 04 0.4-0.5 PID = 11.1 ppm		
				1.50	0.1.	SANDSTONE	SANDSTONE (Weathered) -yellow, grey, heterogeneous, damp (increasing moisture with depth), fine to medium grained.		No odours, stains, or ACM noted	
			4 - - - 5 - - - - - - - - - - - - - - -	3.50			Borehole GW_04 terminated at 3.5m		End of hole at program depth	

Project Number: 54933 Client: Property NSW

Project Name: Peat Island ESA

Site Address: Peat Island, Mooney Mooney, NSW

Date:19-Sep-18Eastings (GDA 94):Logged By:E HowleyNorthings (GDA 94):Contractor:TerratestZone/Area/Permit#:

Zone/Area/Permit#: Casing / Scr

Total Hole Depth (mbgs): 3.5 Bore Diameter (mm): 150 Reference Level: Ground Surface

Elevation (m):

Water Level Initial (mbgs): 1.4

Surface Finish: Roadbox

Casing / Screen Type: Class 18 PVC - 50mm

Casing Bottom Depth (mbgs): 0.5 Screen Bottom Depth (mbgs): 3.5

Bore	Bore Diame		eter (I	mm):	150		Elevation (m):	Screen Bottom Depth (mbgs): 3.5		
Method	Water (mbgs)	Well Details	Depth (mbgs)	Contact (mbgs)	Graphic Log	Lithological Class	Lithological Description	Samples Tests Remarks	Additional Observations	
t Auger			-			Fill	Silty SAND - dark brown, heterogeneous, dry to damp, loose, inclusions of fine sandstone gravels, shells and tile fragments	GW_05 0.0-0.1 PID = 2.6 ppm	No odours, stains, or ACM noted	
Solid Flight Auger			1 1	0.50		SG	Gravelly SAND - orange, brown, heterogeneous, damp, loose to medium dense, fine to medium grained, inclusions of highly weathered crushed sandstone and fine to medium sandstone gravels	GW_05.0.4-0.5 PID = 11.4 ppm	No odours, stains, or ACM noted	
•			2 -	1.40		SP	SAND - grey, yellow, homogeneous, wet (saturated), soft, fine grained		No odours, stains, or ACM noted	
			_ 3 _	3.00		SC	Clayey SAND - orange, grey, heterogeneous, wet, loose to medium dense	_	No odours, stains, or ACM noted	
		<u>·Д·</u>	_ _ _4	3.50	11.1		Borehole GW_05 terminated at 3.5m	_	End of hole at program depth	
			- - -							
			5							
			- 6							
			- - -							
			7 							
			8							
			- - -							
			9 -							
			- - - 10							
			10 10							

Appendix F Laboratory Certificates and Chain of Custody Documentation

CHAIN OF CUSTODY

PROJECT NO.: 5493	33					LABORATORY BATCH NO.:						
PROJECT NAME: Poat	15/00	0				SAMPLERS: S QC LEVEL: NEPM (2013)						
DATE NEEDED BY: 54	797											
PHONE: Sydney: 02 8245 0		08 9488 0	100 Bris	sbane: 07 3112 2688		-						
SEND REPORT & INVOICE T	O: (1) admin	nsw@jbsg	.com.au;	(2) Sbuzow 5 @	ibsg.com	au:	(3)	cher	noet/ @	ibsg com au		
COMMENTS / SPECIAL HANDLING / ST	ORAGE OR DISPOS	SAL:		, ,	Jacobico.iii	15	1			TYPE OF		
						15	.1			ASBESTOS ANALYSIS		
						1				NO.		
						10	\			WA WA		
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	рН	3				DENTIFICATION STATE DENTIFICATION DENTIFICATION		
QC 130918	Soil	18.9.	8	J+3	- 1	X						
						+						
		1				+	+					
						+	+++	+				
	-					+	-					
			-			+	-	-				
		-				+	-			Envirolati Servic.		
	-					1				Envirola Servic. 25 Research Drivi Croydon South VIC 3136 Ph. (03) 9763 2500		
										11. 103/ 5/ 60 255		
										Job No:		
										74896 Date Reseived: 20/9/18		
				r.						Time Received: 12.07		
										Received Byt. CP Received Byt. CP		
										Temp: Cool/Amblent		
						1				Cooling deallecoack Security intact/Croken/None		
						+	+			Security miacobioxenine		
	1					+	+					
RELINQUISHED E	3Y:	1		METHOD OF SHIPMENT:		+		RECEIV	/ED RV:	FOR RECEIVING LAB USE ONLY:		
NAME: DATE: OF: JBS&G NAME: DTONES DATE:	21014	CON	SIGNMENT			N	AME: /	0		COOLER SEAL – Yes No Intact Broken		
05,1858	18/9/10					Di	ATE: C	MON	769			
NAME: ATTOMETED DATE:	3 1 - 1 -	TRAI	NSPORT CO. SIGNMENT I			0	F:	30 111	0 0175 0-1	COOLER TEMP deg C COOLER SEAL Yes No Broken		
DON'ES DATE.	0/9/18	CON	SISTAIVIENT I	NOTE NO.		O	F: EL	C C	. DATE: 20/			
OF: EUROFINS	/		SPORT CO							COOLER TEMP 3 deg C		
Container & Preservative Codes: P =	Plastic; J = Soil Jar;	B = Glass Bott	le; N = Nitric	Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC	= Hydrochlo	oric Ac	id Prsvd \	/ial; VS = Sulf	uric Acid Prsvd Vial; S	= Sulfuric Acid Prsvd; Z = Zinc Prsvd; E = EDTA Prsvd; ST = Sterile Bottle; O = Other		

IMSO FormsO13 - Chain of Custody - Generic

Envirolab Services Pty Ltd

ABN 37 112 535 645 - 002 25 Research Drive Croydon South VIC 3136 ph 03 9763 2500 fax 03 9763 2633 melbourne@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 14896

Client Details	
Client	JBS & G Australia Pty Ltd
Attention	S Burrows
Address	1/50 Margaret St, Sydney, NSW, 2000

Sample Details	
Your Reference	54933 - Peat Island
Number of Samples	1 Soil
Date samples received	20/09/2018
Date completed instructions received	20/09/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	26/09/2018
Date of Issue	24/09/2018
NATA Accreditation Number 2901. Th	is document shall not be reproduced except in full.
Accredited for compliance with ISO/IE	C 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Chris De Luca, Senior Chemist

Authorised By

Pamela Adams, Laboratory Manager

Acid Extractable metals in soil		
Our Reference		14896-1
Your Reference	UNITS	QC180918
Date Sampled		18/09/2018
Type of sample		Soil
Date digested	-	21/09/2018
Date analysed	-	21/09/2018
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	10
Copper	mg/kg	21
Lead	mg/kg	92
Mercury	mg/kg	<0.1
Nickel	mg/kg	26
Zinc	mg/kg	21

Moisture		
Our Reference		14896-1
Your Reference	UNITS	QC180918
Date Sampled		18/09/2018
Type of sample		Soil
Date prepared	-	21/09/2018
Date analysed	-	24/09/2018
Moisture	%	4.7

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105 deg C for a minimum of 12 hours.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
M-4-1- 004 0V 440	Determination of Managements and AAO
Metals-021 CV-AAS	Determination of Mercury by Cold Vapour AAS.

QUALITY CONT	ROL: Acid E	xtractabl	le metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	14896-1
Date digested	-			21/09/2018	[NT]		[NT]	[NT]	21/09/2018	21/09/2018
Date analysed	-			21/09/2018	[NT]		[NT]	[NT]	21/09/2018	21/09/2018
Arsenic	mg/kg	4	Metals-020 ICP- AES	<4	[NT]		[NT]	[NT]	96	94
Cadmium	mg/kg	0.4	Metals-020 ICP- AES	<0.4	[NT]		[NT]	[NT]	104	88
Chromium	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	101	108
Copper	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	103	123
Lead	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	95	72
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	[NT]		[NT]	[NT]	111	112
Nickel	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	101	99
Zinc	mg/kg	1	Metals-020 ICP- AES	<1	[NT]		[NT]	[NT]	101	93

Result Definiti	Result Definitions					
NT	Not tested					
NA	Test not required					
INS	Insufficient sample for this test					
PQL	Practical Quantitation Limit					
<	Less than					
>	Greater than					
RPD	Relative Percent Difference					
LCS	Laboratory Control Sample					
NS	Not specified					
NEPM	National Environmental Protection Measure					
NR	Not Reported					

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 14896

Revision No: R00

Page | 7 of 7

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 201363

Client Details	
Client	JBS & G (NSW & WA) Pty Ltd
Attention	George Black, Joshua Cranson
Address	Level 1, 50 Margaret St, Sydney, NSW, 2000

Sample Details	
Your Reference	54782, Basin BTP
Number of Samples	3 Soil
Date samples received	21/09/2018
Date completed instructions received	21/09/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	28/09/2018
Date of Issue	26/09/2018
NATA Accreditation Number 2901. Th	nis document shall not be reproduced except in full.
Accredited for compliance with ISO/IE	EC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Jeremy Faircloth, Organics Supervisor Long Pham, Team Leader, Metals Nancy Zhang, Assistant Lab Manager **Authorised By**

Jacinta Hurst, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		201363-3
Your Reference	UNITS	QC20180919- RG01
Date Sampled		19/09/2018
Type of sample		Soil
Date extracted	-	24/09/2018
Date analysed	-	25/09/2018
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<1
Surrogate aaa-Trifluorotoluene	%	95

svTRH (C10-C40) in Soil		
Our Reference		201363-3
Your Reference	UNITS	QC20180919- RG01
Date Sampled		19/09/2018
Type of sample		Soil
Date extracted	-	24/09/2018
Date analysed	-	26/09/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	92

Acid Extractable metals in soil			
Our Reference		201363-3	
Your Reference	UNITS	QC20180919- RG01	
Date Sampled		19/09/2018	
Type of sample		Soil	
Date prepared	-	24/09/2018	
Date analysed	-	- 24/09/2018	
Arsenic	mg/kg	<4	
Cadmium	mg/kg	<0.4	
Chromium	mg/kg	9	
Copper	mg/kg	39	
Lead	mg/kg	110	
Mercury	mg/kg	0.2	
Nickel	mg/kg	5	
Zinc	mg/kg	230	
Selenium	mg/kg	<2	

Moisture		
Our Reference		201363-3
Your Reference	UNITS	QC20180919- RG01
Date Sampled		19/09/2018
Type of sample		Soil
Date prepared	-	24/09/2018
Date analysed	-	25/09/2018
Moisture	%	9.4

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10).	/BTEXN in Soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			24/09/2018	[NT]		[NT]	[NT]	24/09/2018	
Date analysed	-			25/09/2018	[NT]		[NT]	[NT]	25/09/2018	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	118	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	118	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	115	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	115	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	118	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	121	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	120	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	97	[NT]		[NT]	[NT]	101	

QUALITY CO	NTROL: svT	Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			24/09/2018	[NT]		[NT]	[NT]	24/09/2018	
Date analysed	-			25/09/2018	[NT]		[NT]	[NT]	25/09/2018	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	100	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	92	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	90	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	100	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	92	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	90	
Surrogate o-Terphenyl	%		Org-003	90	[NT]		[NT]	[NT]	97	

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date prepared	-			24/09/2018	[NT]		[NT]	[NT]	24/09/2018	
Date analysed	-			24/09/2018	[NT]		[NT]	[NT]	24/09/2018	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	109	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	106	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	109	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	112	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	111	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	112	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	112	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	105	
Selenium	mg/kg	2	Metals-020	<2	[NT]		[NT]	[NT]	100	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Augherlien Deinkinn	Water Cuidelines recommend that Thermatelevent California Faceal Enterescopic 9 F California are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 201363

Revision No: R00

Page | 11 of 11

CHAIN OF CUSTODY

PROJECT NO.: 54782						ĽΑ	BOR	ATOR	Ү ВАТ	CH1	VO:	<u>و</u> ^ و الجي	1 . J . V	virginis	u u	e		6 2	er grant	and the state of t
PROJECT NAME: Basin B TP							SAMPLERS: JC													
DATE NEEDED BY:								QC LEVEL: NEPM (2013)												
PHONE: Sydney: 02 8245 030	0 Perth: C	8 9488 010	00 Bris	bane: 07 3112 2688																
SEND REPORT & INVOICE TO:	(1) adminr	isw@jbsg.c	om.au;	(2) <u>Gólach</u> @jbs	g.com.a	au; (3)	اد ره	VQ Ø	<u></u>		@	jbsg.co	m.au					_	
COMMENTS / SPECIAL HANDLING / STORA	GE OR DISPOSA	ıL:							7								-		TYPE OF ASBESTO	nc .
						Niteds		TPH/BIEY 12 TEV		ASBES105	SELENTINA OL :	(CXn) Silve							ANALYSI:	<u>\$</u>
						1	_ .	<u>@</u> ?	PFASS	3	SELENSI	8							IDENTIFICATION NEPA/WA	
				· · · · · · · · · · · · · · · · · · ·		3	포	귀는	还	50	10	<u>Ş</u>	-			1			IDENTIFICA:	
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	pН		4		र ज	₹.	S, č	10							<u> </u>	NOTES:
Q&20180919-3001	5011	19.8.18		Jun + Bay +Icc		3														
Q€ 11 -JC02		1		4 0																
QC 2018 0919-RC01	4		_	*		X	,	<												
		19.9.18=	<u>-55</u>						\Box											
		19.9.18 = perjar En	a																	
-	-			-																
	-					_	\neg			-						1				1
					_					_		1		1 1	_		\top		\neg	
,			F	Envirolab Services NVIROLAB 12 Ashley St				<u> </u>	1		1	\top			11					
				Chalswood NSW 2067 Ph: (02) 9910 6200			\neg	i						† †	+-1		 		_	
				ob No: 201363		_	一						_		-		+-	1-1		
			_	7; 8 10		\dashv	$\neg \uparrow$		+			1	_	\vdash	-	-	+-	+		
			<u></u> E	ate Received: 21-1-18 ime Received: 13:00		-	+	-	1 1	\neg		+			-		+-	+		
- · ·				eceived By: KC		+	\dashv	+	╁┯┼	+		+ +		++		-	+	 	-	
			. 1	emp Cool/Ambient		\dashv	+	-	╁╼┼		+	+	\dashv	+	+	+	+	+	+	
		-	€	emp Cool/Ambient ooting: Ice to pack ecurity: (night) Broken/None			-+	+	 		-	╫┤		╁┼	 	+	+-	1	+	
	-		S	ecurity: (alze)/Broken/None			-+	-		_}	-	+		╁	++		+	\vdash	•	
			-			\dashv			 - -			╂┈╏		1						
							_		 	_	+	1	_			-		 		-
RELINQUISHED BY:	_		_	\							ــِـــ			<u> </u>				<u> </u>	1	
NAME: 3//// DATE:		CONSIG	NMENT	METHOD OF SHIPMENT:		NΔ	ME: /		ECEIVE	D BY:	-/-			OU ER	EAL LIV	FC Acco	IR REC	EIVIN	5:LAB	USE-ONLY:
, ,		3011310	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			DA'	TE: (\mathbb{A}	NG	10	1/9	ı		***					i icacc.	and the second s
OF: JBS&G			ORT CO.			OF:					' []	. ~	cc	OOLER'	EMP	de	g C	-	i de la companya de l	
NAME: DATE:		CONSIG	NMENT	IOTE NO.		NAI OF:	ME:	KF	1	•	DATÉ:		o co	OLER	EAL - Y	'es	. No		Intact	
OF:			ORT CO				6	25/	7		21.0		co	OLER	EMP	. <u> d</u> eg	g C		18 1	Broken
Container & Preservative Codes: P = Plas MSO FormsO13 = Chain of Custody = Get	tic; J = Soil Jar; B	= Glass Bottle;	N = Nitric A	cid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hy	drochlori	c Acid	Prsvd	Vial; VS	= Sulfu	ric Acid	d Prsvd	Vial; S	= Sulfurio	Acid Pr	svd; Z = 2	Zinc Pr	vd; E ≃	EDTA	rsvd; S	ST = Sterile Bottle; O = Other

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 201466

Client Details	
Client	JBS & G (NSW & WA) Pty Ltd
Attention	C Bennett, S Burrows
Address	Level 1, 50 Margaret St, Sydney, NSW, 2000

Sample Details	
Your Reference	54933, Put Island
Number of Samples	2 Soil
Date samples received	24/09/2018
Date completed instructions received	24/09/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	02/10/2018
Date of Issue	27/09/2018
NATA Accreditation Number 2901. T	his document shall not be reproduced except in full.
Accredited for compliance with ISO/II	EC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Long Pham, Team Leader, Metals

Authorised By

Jacinta Hurst, Laboratory Manager

Acid Extractable metals in soil			
Our Reference		201466-1	201466-2
Your Reference	UNITS	QC20180920- JC01	QC20180920- JC02
Date Sampled		20/09/2018	20/09/2018
Type of sample		Soil	Soil
Date prepared	-	25/09/2018	25/09/2018
Date analysed	-	25/09/2018	25/09/2018
Arsenic	mg/kg	<4	<4
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	9	7
Copper	mg/kg	24	<1
Lead	mg/kg	50	9
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	14	<1
Zinc	mg/kg	62	3

Moisture			
Our Reference		201466-1	201466-2
Your Reference	UNITS	QC20180920- JC01	QC20180920- JC02
Date Sampled		20/09/2018	20/09/2018
Type of sample		Soil	Soil
Date prepared	-	25/09/2018	25/09/2018
Date analysed	-	26/09/2018	26/09/2018
Moisture	%	3.5	5.8

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.

Envirolab Reference: 201466 Page | 4 of 7

Revision No: R00

QUALITY CONT		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date prepared	-			25/09/2018	1	25/09/2018	25/09/2018		25/09/2018	
Date analysed	-			25/09/2018	1	25/09/2018	25/09/2018		25/09/2018	
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	107	
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	101	
Chromium	mg/kg	1	Metals-020	<1	1	9	8	12	104	
Copper	mg/kg	1	Metals-020	<1	1	24	27	12	112	
Lead	mg/kg	1	Metals-020	<1	1	50	47	6	106	
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	103	
Nickel	mg/kg	1	Metals-020	<1	1	14	17	19	105	
Zinc	mg/kg	1	Metals-020	<1	1	62	62	0	101	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Defin	itions
	ne component of the analytical signal which is not derived from the sample but from reagents, re etc, can be determined by processing solvents and reagents in exactly the same manner as for .
	ne complete duplicate analysis of a sample from the process batch. If possible, the sample selected e one where the analyte concentration is easily measurable.
	of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike nitor the performance of the analytical method used and to determine whether matrix interferences
	nprises either a standard reference material or a control matrix (such as a blank sand or water) fortified lytes representative of the analyte class. It is simply a check sample.
	es are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which ar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 201466 Page | 7 of 7
Revision No: R00

Envirole

CHAIN OF CUSTODY

PROJECT NO.: 44933				LABORATORY BATCH NO																					
PROJECT NAME: APORT BARE POLK I Short				SAMPLERS: JC																					
DATE NEEDED BY: S TAT					,QC LEVEL: NEPM (2013)																				
PHONE: Sydney: 02 8245	0300 Perth	: 08 9488 O	100 Brisb	ane: 07 3112 2688									- 4	- Æ											
SEND REPORT & INVOICE	TO: (<u>1) a</u> dmi	nnsw@jbsg	.com.au; (2)49990 5	@jbse	com.	au; (3) 🎜	ann.	BAR	7 C	be^'	@jt	sg.co	m.a	ıu	86	300	1 0	പാ	(Q)	168	9. cə	m. au	
COMMENTS / SPECIAL HANDLING /	TORAGE OR DISP	DSAL:	•			-	325				\ \ \	<i>;</i>] T		Ī	Τ		T	T	Τ		TYPE OF ASBESTO	T -	<u>J</u>		
							Motals	· 1.	IN IN			4	ž					1			ANALYSI	4			
							7	、	公河	SS :	J 3	3 0	Š			1					ATION				
		 _		· · · · · · · · · · · · · · · · · · ·			3	개.	TPH/BIEY 18 TEY	T. (ASBEDIOS SELENSINA	Phenois	Explasions			1 1					IDENTIFICATION	_			
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE		рH		<u> </u>		<u> </u>	V 0	व	10	_	<u> </u>			-	<u> </u>		NE DE	NOTES	:		
Q620180920-50		20 -(-(*	San + Bay +Ice			Ŕ	ļ_		<u> </u>					<u> </u>					1		<u> </u>			_
	02 //	//					<u>.</u>]								L				<u> -</u>	Ш		╀		_]
																	<u> </u>	٠.	<u> </u>			,		<u> </u>	
													\perp		<u> </u>				<u> </u>					,	
<u> </u>					,									•							7		•		- 4
				<u>. </u>	·															1	-		•		
							4						_	/	\uparrow		Env	rdiab	Sen	ices				•	^
													ŀ	ENVI	HOLF	В	atsw	72 A	shle	2057		_	• " .	· .	
					Ţ.Ĉ		j ,							1 7	T		Ph:	(də) a	din.	200				**, **	-
				· · · · · ·	-									400	10:	2.¢	1 -	r 6 1	4				-		
														Date	P~	المحال	01.	محا		R		T .		-	
											7			Time	Rec	eived:	11	115	5						
						•		_,				Ħ		Toma	ved	Ву:	T	7	Τ			1			
,				•		-		- (Time Rece Temp Coolii Secur	10. 10	erde	naka Maka	1							
							7		1				-	Secur	18/1	ntagi	3roke	n/No.	ne						\neg
	-	_						\dashv			1	t i			`		╅		-	\Box		1			
				·			'	_			1	\vdash						+-				1		-	
<u> </u>	-						١		 -		+			+-	\vdash		+		\vdash			 -			
<u>-</u>								+	+		+	 	+				-	+				1			
RELINQUISHED			 	METHOD OF SHIPMENT:			 		RI	ECEIVEI	BY:			13.	<u>Ι</u> , χ's,		_	FOR	REC	EIÝIN	GLAB	USE ONLY Bro	Sac A.	96	J ²⁵ v (
NAME: J/// DATE:	20 4.1	CONS	IGNMENT N		_		NA	ME: /	1110	Λ	7,	0-9	-18	,cc	OLE	R SEAL	– Ye	5	No		Intact	Bro	ken		
OF: JBS&G		TDAN	ISPORT CO.				DA	ا رحا	Mille Company	1	سهر ددا	. ک داک	ייט מים ממ	, ·		` D'7554	", D: •		-	e Gar		A 5		Ta K/	
NAME: DATE;	_		SIGNMENT N	OTE NO.	_		NA NA	ME:	(and	. D.	reh Di	<i>ا ب</i> و ATE: 2	,4,09 ,4,09	יוא כר	OLF	R SEAL	– Ye	aeg	رد No		Intact	Brc	ken	<u>.</u>	
0.							OF:	د	3 3	_	2			3.5	- -		u -		ě,	· ·	e e e	p ,	, 4	de j	, ,
OF: Container & Preservative Codes: P	Plastic: J = Soil Ia	r: B = Glass Bottl	ISPORT CO	id Prsvd.; C = Sodium Hydroxide Prsvd;	VC - Pv																				
MSO FormsO13 - Chain of Custody		., _ 5.555 5000	-, ,		ve - rty	G. OCHIOII	CACIL	11340	-101, 43	Junuit	- 74-IU F	. JVL V	,,,, <u>,,</u>	Saltai (C		; 13VU)	411	C L 13A	-,	LUIA	1374;	Sterile	- O -	Other	

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 202081

Client Details	
Client	JBS & G (NSW & WA) Pty Ltd
Attention	C Bennett, S Burrows
Address	Level 1, 50 Margaret St, Sydney, NSW, 2000

Sample Details	
Your Reference	54933, Peat Island
Number of Samples	1 Water, 2 Soil
Date samples received	30/10/2018
Date completed instructions received	03/10/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	10/10/2018
Date of Issue	10/10/2018
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.
Accredited for compliance with ISO/	IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Aida Marner Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Long Pham, Team Leader, Metals Lucy Zhu, Asbsestos Analyst Steven Luong, Senior Chemist **Authorised By**

Jacinta Hurst, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil			
Our Reference		202081-2	202081-3
Your Reference	UNITS	QC-CB20180928	QC0120180928
Date Sampled		28/09/2018	28/09/2018
Type of sample		Soil	Soil
Date extracted	-	04/10/2018	04/10/2018
Date analysed	-	08/10/2018	08/10/2018
TRH C ₆ - C ₉	mg/kg	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
o-Xylene	mg/kg	<1	<1
naphthalene	mg/kg	<1	<1
Total +ve Xylenes	mg/kg	<1	<1
Surrogate aaa-Trifluorotoluene	%	109	115

svTRH (C10-C40) in Soil			
Our Reference		202081-2	202081-3
Your Reference	UNITS	QC-CB20180928	QC0120180928
Date Sampled		28/09/2018	28/09/2018
Type of sample		Soil	Soil
Date extracted	-	04/10/2018	04/10/2018
Date analysed	-	05/10/2018	05/10/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	80	80

PAHs in Soil		
Our Reference		202081-2
Your Reference	UNITS	QC-CB20180928
Date Sampled		28/09/2018
Type of sample		Soil
Date extracted	-	04/10/2018
Date analysed	-	08/10/2018
Naphthalene	mg/kg	<0.1
Acenaphthylene	mg/kg	<0.1
Acenaphthene	mg/kg	<0.1
Fluorene	mg/kg	<0.1
Phenanthrene	mg/kg	<0.1
Anthracene	mg/kg	<0.1
Fluoranthene	mg/kg	<0.1
Pyrene	mg/kg	<0.1
Benzo(a)anthracene	mg/kg	<0.1
Chrysene	mg/kg	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2
Benzo(a)pyrene	mg/kg	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1
Total +ve PAH's	mg/kg	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5
Surrogate p-Terphenyl-d14	%	92

Organochlorine Pesticides in soil		
Our Reference		202081-2
Your Reference	UNITS	QC-CB20180928
Date Sampled		28/09/2018
Type of sample		Soil
Date extracted	-	04/10/2018
Date analysed	-	05/10/2018
нсв	mg/kg	<0.1
alpha-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	92

PCBs in Soil		
Our Reference		202081-2
Your Reference	UNITS	QC-CB20180928
Date Sampled		28/09/2018
Type of sample		Soil
Date extracted	-	04/10/2018
Date analysed	-	05/10/2018
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCLMX	%	92

Acid Extractable metals in soil			
Our Reference		202081-2	202081-3
Your Reference	UNITS	QC-CB20180928	QC0120180928
Date Sampled		28/09/2018	28/09/2018
Type of sample		Soil	Soil
Date prepared	-	04/10/2018	04/10/2018
Date analysed	-	05/10/2018	05/10/2018
Arsenic	mg/kg	<4	<4
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	6	3
Copper	mg/kg	6	18
Lead	mg/kg	67	61
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	2	3
Zinc	mg/kg	50	43

Moisture			
Our Reference		202081-2	202081-3
Your Reference	UNITS	QC-CB20180928	QC0120180928
Date Sampled		28/09/2018	28/09/2018
Type of sample		Soil	Soil
Date prepared	-	04/10/2018	04/10/2018
Date analysed	-	05/10/2018	05/10/2018
Moisture	%	12	7.6

Asbestos ID - soils NEPM - ASB-001			
Our Reference		202081-2	202081-3
Your Reference	UNITS	QC-CB20180928	QC0120180928
Date Sampled		28/09/2018	28/09/2018
Type of sample		Soil	Soil
Date analysed	-	09/10/2018	09/10/2018
Sample mass tested	g	668.46	706.38
Sample Description	-	Brown sandy soil & rocks	Brown sandy soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected
Total Asbestos#1	g/kg	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	_	_
FA and AF Estimation*	g	_	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001

VOCs in water		
Our Reference		202081-1
Your Reference	UNITS	QC20180928-01
Date Sampled		28/09/2018
Type of sample		Water
Date extracted	-	03/10/2018
Date analysed	-	04/10/2018
Dichlorodifluoromethane	μg/L	<10
Chloromethane	μg/L	<10
Vinyl Chloride	μg/L	<10
Bromomethane	μg/L	<10
Chloroethane	μg/L	<10
Trichlorofluoromethane	μg/L	<10
1,1-Dichloroethene	μg/L	<1
Trans-1,2-dichloroethene	μg/L	<1
1,1-dichloroethane	μg/L	<1
Cis-1,2-dichloroethene	μg/L	<1
Bromochloromethane	μg/L	<1
Chloroform	μg/L	<1
2,2-dichloropropane	μg/L	<1
1,2-dichloroethane	μg/L	<1
1,1,1-trichloroethane	μg/L	<1
1,1-dichloropropene	μg/L	<1
Cyclohexane	μg/L	<1
Carbon tetrachloride	μg/L	<1
Benzene	μg/L	<1
Dibromomethane	μg/L	<1
1,2-dichloropropane	μg/L	<1
Trichloroethene	μg/L	<1
Bromodichloromethane	μg/L	<1
trans-1,3-dichloropropene	μg/L	<1
cis-1,3-dichloropropene	μg/L	<1
1,1,2-trichloroethane	μg/L	<1
Toluene	μg/L	<1
1,3-dichloropropane	μg/L	<1
Dibromochloromethane	μg/L	<1
1,2-dibromoethane	μg/L	<1
Tetrachloroethene	μg/L	<1
1,1,1,2-tetrachloroethane	μg/L	<1
Chlorobenzene	μg/L	<1
Ethylbenzene	μg/L	<1
Bromoform	μg/L	<1

VOCs in water		
Our Reference		202081-1
Your Reference	UNITS	QC20180928-01
Date Sampled		28/09/2018
Type of sample		Water
m+p-xylene	μg/L	<2
Styrene	μg/L	<1
1,1,2,2-tetrachloroethane	μg/L	<1
o-xylene	μg/L	<1
1,2,3-trichloropropane	μg/L	<1
Isopropylbenzene	μg/L	<1
Bromobenzene	μg/L	<1
n-propyl benzene	μg/L	<1
2-chlorotoluene	μg/L	<1
4-chlorotoluene	μg/L	<1
1,3,5-trimethyl benzene	μg/L	<1
Tert-butyl benzene	μg/L	<1
1,2,4-trimethyl benzene	μg/L	<1
1,3-dichlorobenzene	μg/L	<1
Sec-butyl benzene	μg/L	<1
1,4-dichlorobenzene	μg/L	<1
4-isopropyl toluene	μg/L	<1
1,2-dichlorobenzene	μg/L	<1
n-butyl benzene	μg/L	<1
1,2-dibromo-3-chloropropane	μg/L	<1
1,2,4-trichlorobenzene	μg/L	<1
Hexachlorobutadiene	μg/L	<1
1,2,3-trichlorobenzene	μg/L	<1
Surrogate Dibromofluoromethane	%	76
Surrogate toluene-d8	%	101
Surrogate 4-BFB	%	100

vTRH(C6-C10)/BTEXN in Water		
Our Reference		202081-1
Your Reference	UNITS	QC20180928-01
Date Sampled		28/09/2018
Type of sample		Water
Date extracted	-	03/10/2018
Date analysed	-	04/10/2018
TRH C ₆ - C ₉	μg/L	<10
TRH C ₆ - C ₁₀	μg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
m+p-xylene	μg/L	<2
o-xylene	μg/L	<1
Naphthalene	μg/L	<1
Surrogate Dibromofluoromethane	%	76
Surrogate toluene-d8	%	101
Surrogate 4-BFB	%	100

svTRH (C10-C40) in Water		
Our Reference		202081-1
Your Reference	UNITS	QC20180928-01
Date Sampled		28/09/2018
Type of sample		Water
Date extracted	-	04/10/2018
Date analysed	-	05/10/2018
TRH C ₁₀ - C ₁₄	μg/L	<50
TRH C ₁₅ - C ₂₈	μg/L	<100
TRH C ₂₉ - C ₃₆	μg/L	<100
TRH >C ₁₀ - C ₁₆	μg/L	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100
Surrogate o-Terphenyl	%	83

PAHs in Water		
Our Reference		202081-1
Your Reference	UNITS	QC20180928-01
Date Sampled		28/09/2018
Type of sample		Water
Date extracted	-	04/10/2018
Date analysed	-	05/10/2018
Naphthalene	μg/L	<1
Acenaphthylene	μg/L	<1
Acenaphthene	μg/L	<1
Fluorene	μg/L	<1
Phenanthrene	μg/L	<1
Anthracene	μg/L	<1
Fluoranthene	μg/L	<1
Pyrene	μg/L	<1
Benzo(a)anthracene	μg/L	<1
Chrysene	μg/L	<1
Benzo(b,j+k)fluoranthene	μg/L	<2
Benzo(a)pyrene	μg/L	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1
Dibenzo(a,h)anthracene	μg/L	<1
Benzo(g,h,i)perylene	μg/L	<1
Benzo(a)pyrene TEQ	μg/L	<5
Total +ve PAH's	μg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	109

HM in water - dissolved		
Our Reference		202081-1
Your Reference	UNITS	QC20180928-01
Date Sampled		28/09/2018
Type of sample		Water
Date prepared	-	04/10/2018
Date analysed	-	04/10/2018
Arsenic-Dissolved	μg/L	<1
Cadmium-Dissolved	μg/L	<0.1
Chromium-Dissolved	μg/L	1
Copper-Dissolved	μg/L	4
Lead-Dissolved	μg/L	<1
Mercury-Dissolved	μg/L	<0.05
Nickel-Dissolved	μg/L	6
Zinc-Dissolved	μg/L	77

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE #1 Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE #2 The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).

Method ID	Methodology Summary
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's. Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" td="" teq="" teqs="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CON	TROL: vTRH	(C6-C10)	BTEXN in Soil			Du	ıplicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			04/10/2018	[NT]		[NT]	[NT]	04/10/2018	
Date analysed	-			08/10/2018	[NT]		[NT]	[NT]	08/10/2018	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	104	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	104	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	95	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	104	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	105	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	108	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	109	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	110	[NT]		[NT]	[NT]	107	

QUALITY CONTROL: svTRH (C10-C40) in Soil							Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]		
Date extracted	-			04/10/2018	[NT]		[NT]	[NT]	04/10/2018			
Date analysed	-			05/10/2018	[NT]		[NT]	[NT]	05/10/2018			
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	101			
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	91			
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	90			
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	101			
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	91			
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	90			
Surrogate o-Terphenyl	%		Org-003	82	[NT]		[NT]	[NT]	89			

QUA	LITY CONTRO	TY CONTROL: PAHs in Soil				Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			04/10/2018	[NT]		[NT]	[NT]	04/10/2018	
Date analysed	-			08/10/2018	[NT]		[NT]	[NT]	08/10/2018	
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	119	
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	118	
Phenanthrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	125	
Anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	121	
Pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	112	
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	119	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]		[NT]	[NT]	137	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012	95	[NT]		[NT]	[NT]	95	

QUALITY CONTROL: Organochlorine Pesticides in soil						Du	plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]	
Date extracted	-			04/10/2018	[NT]		[NT]	[NT]	04/10/2018		
Date analysed	-			05/10/2018	[NT]		[NT]	[NT]	05/10/2018		
НСВ	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	94		
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	91		
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	101		
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	97		
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	99		
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	97		
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	106		
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	112		
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	91		
Endosulfan II	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	77		
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-005	103	[NT]		[NT]	[NT]	111		

QUALIT		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	[NT]
Date extracted	-			04/10/2018	[NT]		[NT]	[NT]	04/10/2018	
Date analysed	-			05/10/2018	[NT]		[NT]	[NT]	05/10/2018	
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	109	
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCLMX	%		Org-006	103	[NT]		[NT]	[NT]	90	

QUALITY CONT		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date prepared	-			04/10/2018	[NT]		[NT]	[NT]	04/10/2018	
Date analysed	-			05/10/2018	[NT]		[NT]	[NT]	05/10/2018	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	102	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	102	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	101	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	100	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	100	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	106	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	104	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	103	

QUAL	TY CONTROL	.: VOCs i	n water			Du	ıplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			03/10/2018	[NT]		[NT]	[NT]	03/10/2018	
Date analysed	-			04/10/2018	[NT]		[NT]	[NT]	04/10/2018	
Dichlorodifluoromethane	μg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
Chloromethane	μg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
Vinyl Chloride	μg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
Bromomethane	μg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
Chloroethane	μg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
Trichlorofluoromethane	μg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
1,1-Dichloroethene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Trans-1,2-dichloroethene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,1-dichloroethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	104	
Cis-1,2-dichloroethene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Bromochloromethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Chloroform	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	108	
2,2-dichloropropane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloroethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	106	
1,1,1-trichloroethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	109	
1,1-dichloropropene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Cyclohexane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Carbon tetrachloride	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Benzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Dibromomethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloropropane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Trichloroethene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	125	
Bromodichloromethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	100	
trans-1,3-dichloropropene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
cis-1,3-dichloropropene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2-trichloroethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Toluene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,3-dichloropropane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Dibromochloromethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	97	
1,2-dibromoethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Tetrachloroethene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	101	
1,1,1,2-tetrachloroethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Chlorobenzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Ethylbenzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Bromoform	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
m+p-xylene	μg/L	2	Org-013	<2	[NT]		[NT]	[NT]	[NT]	
Styrene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2,2-tetrachloroethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
o-xylene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	

QUALIT	Y CONTROI	L: VOCs ir	n water			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
1,2,3-trichloropropane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Isopropylbenzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Bromobenzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
n-propyl benzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
2-chlorotoluene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
4-chlorotoluene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,3,5-trimethyl benzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Tert-butyl benzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2,4-trimethyl benzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,3-dichlorobenzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Sec-butyl benzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,4-dichlorobenzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
4-isopropyl toluene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichlorobenzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
n-butyl benzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dibromo-3-chloropropane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2,4-trichlorobenzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Hexachlorobutadiene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2,3-trichlorobenzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-013	113	[NT]		[NT]	[NT]	111	
Surrogate toluene-d8	%		Org-013	99	[NT]		[NT]	[NT]	100	
Surrogate 4-BFB	%		Org-013	101	[NT]		[NT]	[NT]	103	

QUALITY CONT	ROL: vTRH(C6-C10)/E	BTEXN in Water			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			03/10/2018	[NT]		[NT]	[NT]	03/10/2018	
Date analysed	-			04/10/2018	[NT]		[NT]	[NT]	04/10/2018	
TRH C ₆ - C ₉	μg/L	10	Org-016	<10	[NT]		[NT]	[NT]	104	
TRH C ₆ - C ₁₀	μg/L	10	Org-016	<10	[NT]		[NT]	[NT]	104	
Benzene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	105	
Toluene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	100	
Ethylbenzene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	100	
m+p-xylene	μg/L	2	Org-016	<2	[NT]		[NT]	[NT]	107	
o-xylene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	106	
Naphthalene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-016	113	[NT]		[NT]	[NT]	111	
Surrogate toluene-d8	%		Org-016	99	[NT]		[NT]	[NT]	100	
Surrogate 4-BFB	%		Org-016	101	[NT]		[NT]	[NT]	103	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			04/10/2018	[NT]		[NT]	[NT]	04/10/2018	
Date analysed	-			04/10/2018	[NT]		[NT]	[NT]	04/10/2018	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-003	<50	[NT]		[NT]	[NT]	104	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-003	<100	[NT]		[NT]	[NT]	92	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-003	<100	[NT]		[NT]	[NT]	91	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-003	<50	[NT]		[NT]	[NT]	104	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-003	<100	[NT]		[NT]	[NT]	92	
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-003	<100	[NT]		[NT]	[NT]	91	
Surrogate o-Terphenyl	%		Org-003	82	[NT]		[NT]	[NT]	98	

QUAL	ITY CONTROL	.: PAHs ir) Water			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			04/10/2018	[NT]		[NT]	[NT]	04/10/2018	
Date analysed	-			05/10/2018	[NT]		[NT]	[NT]	05/10/2018	
Naphthalene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	93	
Acenaphthylene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]	
Fluorene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	96	
Phenanthrene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	103	
Anthracene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	101	
Pyrene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	93	
Benzo(a)anthracene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]	
Chrysene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	96	
Benzo(b,j+k)fluoranthene	μg/L	2	Org-012	<2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	97	
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012	101	[NT]		[NT]	[NT]	93	

QUALITY CO	NTROL: HN	1 in water	- dissolved			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			04/10/2018	[NT]		[NT]	[NT]	04/10/2018	
Date analysed	-			04/10/2018	[NT]		[NT]	[NT]	04/10/2018	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	104	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	105	
Chromium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	104	
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99	
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	104	
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	104	
Zinc-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	104	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Augherlien Deinkinn	Water Cuidelines recommend that Thermatelevent California Faceal Enteresses 9 F California are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

This is reported outside our scope of NATA accreditation.

016265

CHAIN OF CUSTODY

PROJECT NO .: 54 932	<u> </u>								Y BATCH					_			-			
PROJECT NAME: Peat 1	11/2/10					SA	MPI	ERS:	CB	RL	JC	RG		1						
DATE NEEDED BY: STAT						QC	: LEV	/EL: N	EPM (20	13)										
PHONE: Sydney: 02 8245 030	0 Perth: 0	8 9488 01	.00 Bris	bane: 07 3112 2688					<u>.</u>											
SEND REPORT & INVOICE TO:	(1) adminn	sw@jbsg.	com.au;	(2) OBENUET @jb	sg.com.a	u; (ã) .á	SBU	KRQU	<u>এ:</u>	@jbs	g.com	.au			~ -				
COMMENTS / SPECIAL HANDLING / STOR	AGE OR DISPOSA	L:				У		10/0	\ \(\bar{b} \)								TYP.	E OF ESTOS		
						(1)		12/0/2	As backs			,		.	1 1			LLYSIS		Į
						18	PAMS	Hoove	12 3	1					- -		DENTIFICATION	g		i
						2	Ź	2 2	18/3	1							Į.	NEPM/WA		
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE		2			1 1 2	.			-		١.	_	ä	필	NOTES:	
QC20180928-01		22.9.1	<u> </u>	2x VILES 1 X METAL		\times	×	<u> </u>	×			4.4		_				Ш	_	
	Water			1 × AMBER +ICE													_	Ш		
QC-CB 20120928	5011			J + B	'	×	×	××								, Servi	ces			
QCO1 20180928		4		1 4		X	•	\times	$ \times $	l i			4	En	12	Ashle	y st			
15 IGWed GS							Ì		7-7-			ENVIR	Offer	Chais	wood	VSW 2	5200			
QC20180978-07	- S. T31	vo(c%													1: (0-7)		- 1		· · · · · · · · · · · · · · · · · · ·	
		VVI U			- ,							149	7	20	? Z	0	5			
									1-1-		1	Date	Rece	ved.	31	(0	119		12:00	
	_							\dashv			1	Time	Rece	iveq.	1		50		PG	
-					,						1	Rec	eived 12 CC		sient	Ť		\Box	·	
	<u> </u>							_	 -		1	780	sino: l	ceuce	pack Broker		-			
· · · · · · · · · · · · · · · · · · ·						_		\dashv		 		Se	curity	matu	Bloke	4Mdu	e -	\Box		
				 	-	-		\dashv	++-	 -		+ +	+	Ħ				\vdash		
		_			- 1			\dashv	++			+ +				-+	+	╁		-
					 				+		+ +-	╅┼	+	-	┿┥	-		┼─╏		
					-	_	\vdash		 	\vdash	+ +	╅┷┼				-+	-	┼╌╏	<u> </u>	
		_				-			+-+	\vdash		 	+		4	-	_	+		
									\bot			4 1	+	-	4	\vdash		\vdash		
					<u> </u>								\perp		\perp			igsquare		
						.														
RELINQUISHED BY: METHOD OF SHIPMENT:									RECEIVED	BY:		<u> </u>							SE ONLY:	
NAME: DATE: 29 9 (8 CONSIGNMENT NOTE NO. TRANSPORT CO.							ME:	FOO	318			coo	LER SE		is≀ 745	40	Int	act	Broken	
OF: JBS&G	$_{\rm RG}$ \sim						:3	اجسرے <u>جس ک</u> ے	1378 1118 1118					MP	deg (<u>.</u>	
NAME: DATE:		CONS	IGNMENT	NOTE NO.		NΑ	ME:	5 0€	1249	PATI	0([8	,					In	tact	Broken	
OF:		TRAN	SPORT CO			OF		ڪ لا)إِذ	00 00	COO	FR TF	MP 13	ኢ (ኛ ፫ deg (. A				
	stic; J = Soil Jar; I			Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC =	Hydrochlori	Aci			S = Sulfuric			sulfuric A	id Prsv	d; Z = Zi	nc Prsvo	; E = E	DTA Pr	svd; ST	= Sterile Bottle; O = Other	
IMCO FormsO13 - Chain of Custody - Ge																				

CHAIN OF CUSTODY

PROJECT NO.: 5493					_													
PROJECT NAME: PEGT	isic-c	1								BATCH	NO.:							
DATE NEEDED BY: SH	701								: 0									
PHONE: Sydney: 02 8245 0	300 Perth	08 9488 01	OO Brick	2200: 07 2112 2000		0	C LE	VEL:	NEP	M (201	3)							
SEND REPORT & INVOICE	(1) admir	nsw@ihea	com au /	21 56 14(2) 35			727	- 1										
COMMENTS / SPECIAL HANDLING / ST	ORAGE OR DISPO	SAL:	com.au, (2) <u>Sbu//ows</u> @j	bsg.com	.au;	(3).	CE	e n	net	f	@jbsg.d	com.au					
Please forw	ad a	2 C S	amp	e to Envilolab		y Mucis	TRH/BTEX	PAMS	25/05	OC PS/PCBS	5						TYPE OF ASBESTS ANALYS	os s
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	рН	Heery	12/	4	356								IDENTIFICATION	
5501 0-0-1	Soil	18-9-18		J+B	рп	1	7.5		-	8 5	++			++	-	+	IDEA	NOTES:
0.5-0.6		1		1	1	×	.,		+	×		1	++		-			
0.9-1.0						^	×	+	-	X		-	+	-				
1.5-1.6								+	-	++	-	-		1				
5502 0-0-1						~		+	-		1							
0.3-0.4					1	× 機		+	+	++			-	1			_ { _	
0.5-0.6						PW.	X	+	+	++								
0.9 -1.0																		
1.5 -1.6						\vdash	-	+	+		++-							
SS03 0-0.1					1			-	+		+							
0.5-0.6	*			4	1		-	-	,		-					1		
5503 Frag	Frag			В			-	>	_	-	-						×	
5504 0-0.1	5014			D+13	-		-	>	-							>	<	
0-3-0-4	1			1		×	-		+		+							
5505 0-0-1						×	~	-	+	-	-							
0.5-0.6						_	^		-									
0.9-1.0						-	-	+			++-							
2506 0-0-1							/	-	-		-							
0.5-0.6	4	+				X	X	-	+									
RELINQUISHED BY			12		8			05050										
NAME: DATE:	8-9-18	CONSIG	NMENT NO	METHOD OF SHIPMENT: TE NO.		NAM		10	S)	(EDABY)		CC	OLER SEA	AL – Yes	FOR REG	CEIVING	LAB L	SE ONLY: Broken
OF: JBS&G NAME: DATE:			ORT CO.		(OF:	100		181	191			OLER TEI					
DF:		TRANSP	NMENT NO			NAN OF:					ATE:	CC	OLER SEA	AL – Yes	No .			Broken
Container & Preservative Codes: P = Pl	astic; J = Soil Jar; B	= Glass Bottle: I	V = Nitric Acid	Prsvd.; C = Sodium Hydroxide Prsvd; VC = H	hada-at t	100						СО	OLER TE	MP	deg C			

4 0+3

016256

CHAIN OF CUSTODY

PROJECT N	0.: 54933	3					L	ABO	RAT	ORY	BATCH NO.:						-	
PROJECT N	AME: peat	15/00					_			S: C								
DATE NEED	ED BY: 5+										PM (2013)							
PHONE: Sy	dney: 02 8245 030	00 Perth:	08 9488 01	00 Bris	bane: 07 3112 2688													
SEND REPO	RT & INVOICE TO	: (1) admin	nsw@jbsg.	com.au;	(2) Sbullows	Dibsg.com	.au:	(3)	4	che	enne# a	ihsg com	211	_		_		
COMMENTS / S	PECIAL HANDLING / STOR	AGE OR DISPOS	AL:			, 0	1.5					Jose Com	I	TT	T	TYPE		
							K	1		5	8					ASBE		
							1	8		SS	8					NOI		
							3	7	PAHS	Ash askos	Oc APCAS					IFICAT	/WA	
SA	MPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	рН	1	TON/AND	6	8	8					IDENTIFICATION	NEPM/WA	NOTES:
5506	0.9-1.3	Soil	18-918		JYB													
5507	0-01				4		×	×	×		×							
	0.5-0.6																	
	0.9-1.0							寒									\neg	
5508	0-0-1							×									1	
	0.5-0-6																	
	0.9-1.0	- 11																
5509	0-0-1						×	×									1	
	0.4-0.5																\dashv	
5510	0-0-/						×	×									+	
	0.4 - 0.5																\forall	
5511	0-0-1				J+B+ASS/ASS b		×	×	×	2	×						+	
	0.4-0.5		3-1		J+B+ASS/Pass E	200		53		Ť							+	
5512	0-0.1)	×										1	
5513	0-0-1																\dashv	
	0.4-0.5																+	
	0.9-1.0																+	
5514	0-01						×										+	
5515	0-0-1	4	4		+		X										+	
	RELINQUISHED BY:			METHOD OF SHIPMENT:							EIVED BX:			FOR	RECEIVI	NGIA	BUS	F ONLY:
NAME: OF: JBS&G	DATE:	9-18		CONSIGNMENT NOTE NO.							NG × 19			Yes	No			Broken
NAME:	DATE:			TRANSPORT CO. CONSIGNMENT NOTE NO.							DATE:		ER TEMP			luck.	-4	Broken
22					7.2.0.7()		OF	ME:			DATE:	COOL	LN SEAL -	162	INO	inta	LT	Broken
OF:	servative Codes D - No.	stic: I = Call Ica		PORT CO	aid Denid . C Cadina 11 day 11 day 12 day	C 11		1.0	lve :			COOL	ER TEMP	deg	С			
MCO F	Chairman Cours. P = Plas	siic, J = 3011 Jar;	D - Glass bottle	, IN = INITITIC A	cid Prsvd.; C = Sodium Hydroxide Prsvd; V	ic Aci	d Prsv	d Vial	; VS = S	ulfuric Acid Prsvd Vial; S	= Sulfuric Aci	d Prsvd; Z =	Zinc Prsv	d; E = EDTA	A Prsvo	; ST =	Sterile Bottle; O = Oth	

MSO FormsO13 – Chain of Custody - Generic

3 of 3

016257

CHAIN OF CUSTODY

PROJECT NO.: 54933		LA	BO	RAT	ORY	BAT	ГСН	NO	:														
PROJECT NAME: Pear Island		SA	MP	LER	S:	CI	3																
DATE NEEDED BY: S+ TAT						PM		(3)															
PHONE: Sydney: 02 8245 0300 Perth: 08 9488 0100 Brisbane: 07 3112 2688										T													
SEND REPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2) らしょについら	jbsg.com	.au;	(3).	0	6	n	01	t		@	ibs	g.cc	m.a	u									
COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:		Metass			SOX	5													1	TYPE O	ros l		
		120	I	PAHO	600	8														IDENTIFICATION	NEPM/WA		
SAMPLE ID MATRIX DATE TIME TYPE & PRESERVATIVE	рН	75	12	8	0	8														IDEN	NEPA	NOTES:	
5516 0-0-1 5017 189.18 J+B		X																					
0.5-0.6		48																					
0.9-1.0																							
Q9 1809/8 V		×																					
75 Water Vials	uia15																						
TB b + Wals																			1				
							-				-		5	-									
							2	-				-	1-3	_							1		
										3											\top		
													l i								1		
					П	Н		-													1		
																					1		
								3													1		
																			1		_		
							97													7	\top		
RELINQUISHED BY: METHOD OF SHIPMENT:			ME:			CEIVI								. 6								ONLY:	
NAME: DATE: 18-9.18 CONSIGNMENT NOTE NO. TRANSPORT CO.	CONSIGNMENT NOTE NO. TRANSPORT CO.							q								Yes d			1	ntact	t	Broken	
NAME: DATE: CONSIGNMENT NOTE NO. OF: TRANSPORT CO		OF NA OF	ME:					DA	TE:			CO	OLE	R SEA	AL —		N	0		ntac	t	Broken	**
Container & Preservative Codes: P = Plastic; J = Soil Jar; B = Glass Bottle; N = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC	= Hydrochlor	ic Acid	d Prs	/d Via	l; VS :	= Sulfu	ric A	id Pr	vd V	ial; S	= Sul	furic	Acid	Prsvo	; Z =	Zinc P	rsvd	; E = E	DTA	rsvd;	; ST =	Sterile Bottle; O = O	Oth

IMSO FormsO13 - Chain of Custody - Generic

170700)	1	6		5	8
--------	---	---	---	--	---	---

CHAIN OF CUSTODY

PROJECT NO.: 今493	₹					ΙLΑ	BOR/	ATOR	Y BA	TCH	NO.	;											
PROJECT NAME: Post	1310-0					SA	MPLI	ERS:		13													
LABORATORY BATCH NO.																							
		9488 01	100 Brisl	bane: 07 3112 2688																			
SEND REPORT & INVOICE TO): (1) adminns	w@jbsg	.com.au; ((2)Sh.//oJ.S@j	bsg.com.	au; (3)	Sk	6.	7.:2	R.H.	<u></u>	.@jbs	g.co	n.au								
						75														TYPE OF	os		
						1/2								***************************************						ANALYS	is.		
								durlandtersten												ATIO			
						3/	ŀ									ļ				E Z	Ž.		
	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	pН	3														90	벌	NOTES:	
QC 180918	5011	18.9.	∕ පි	Jr5		\times																	
															***************************************					L			
															-								
		***************************************																-					
								_	1												\top		
			1					1				\top											
									6		7	1	_						+	T	_		
		~***************						$\overline{\Lambda}$	1		1										1		***************************************
		м.						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\											11				
			<u> </u>				\dashv						_										
								_					_						1				~~~~
, , , , , , , , , , , , , , , , , , ,			 	ę.				1	+-		_	_	_								十		
								_	-				_					-			十		
							_		+		-	-			+	-			-				
***************************************	-							_	+-		\neg	-		+							十		
	-								1				-	-				-	+		-		
	-							\dashv	-		-		_	-				-	-		-		
RELINQUISHED BY				METHOD OF SHIPMENT:		╂			RECE	VED B	Y:			+			l F	OR RE	CEIVI	JG LAF	3 USI	E ONLY:	
		CONS	SIGNMENT N			NA	ME: /	1/	~ ^	1° Cr				co	OLER S	SEAL -					_	Broken	
UB)	8/9/18					DA	-		$\gamma_{\mathcal{Q}}$	1/6	,				01 50 5	CENAD							
OF: JBS&G NAME: DATE:			ISPORT CO. SIGNMENT N	NOTE NO		OF NA	ME:		(0	-/	DA	TF·				FEMP .				Intac	t	Broken	
INDIVICE DATE:		CON	PIOTAINTIAL I	10.2.10.		OF					2/1				~ ~~ 11 1								
OF:		TRAN	SPORT CO		Deader del		le.	\ <i>i</i> :=1 + ·		Cont.	-14.5		-4-5 3			TEMP .			FOT	A De1		Storilo Dattio: O - Ot	har
Container & Preservative Codes: P = P 4SO FormsO13 - Chain of Custody - G		= Glass Bott	ie; N = Nitric A	Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC	= Hyarochioi	ic Acid	a Prsvd	vial; V	5 = 5u	ituric A	cia Pr	sva VI	a1; 5 = 5	uituric	acia Pr	svu;	ZICIC P	5VU; E	- EUI	(PISVO)	, 31 =	sterile boutte; U = Oti	1161

Enviro Sample Vic

From

Nibha Vaidya

Sent:

Thursday, 11 October 2018 4:10 PM

To:

Enviro Sample Vic; Tony Wong

Cc:

Alena Bounkeua

Subject:

Urgent 1 DAY TAT - FW: Eurofins | mgt Test Results - Report 620797 : Site PEAT

ISLAND (54933)

Attachments:

image001.png; 618500_summary.pdf; 620797_COC.pdf; image003.jpg; image004.jpg

Hi SR team – can you please address the below emails ASAP? I have unlocked both 618500 & 620797.

Please log all missing analysis on a 1 day TAT,

Kind Regards,

Nibha Vaidya

Phone: +61 2 9900 8415 Mobile: +61 499 900 805

Email: NibhaVaidya@eurofins.com

From: Claudia Bennett [mailto:cbennett@jbsg.com.au]

Sent: Thursday, 11 October 2018 3:42 PM

To: Nibha Vaidya Cc: Scott Burrows

Subject: RE: Eurofins | mgt Test Results - Report 620797 : Site PEAT ISLAND (54933)

EXTERNAL EMAIL*

Hi Nibha,

91122: 9e25567

I have also noticed, that we submitted sample SS01 0.5-0.6 for CEC, but received a result for conductivity instead.

Is there a possibility we can organize an analysis for Cation Exchange Capacity for this sample please?

Thanks and kind regards,

Claudia

Claudia Bennett | Environmental Consultant | JBS&G

Sydney | Melbourne | Adelaide | Perth | Brisbane | Canberra | Darwin | Wollongong Level 1, 50 Margaret Street Sydney NSW 2000

T: 02 8245 0300 | M: 0403 351 446 | E: <u>cbennett@jbsg.com.au</u> | W: <u>www.jbsg.com.au</u>

Contaminated Land | Groundwater Remediation | Environmental Approvals | Auditing and Compliance | Hygiene and Hazardous Materials | Due Diligence and Liability | Stakeholder and Risk Management

This email message is intended only for the addressee(s) and contains information that may be confidential and/or copyright. If you are not the intended

immediately. Use, disclosure or reproduction of this email by anyone other than the intended recipient(s) is strictly prohibited. No representation is made that

are free of viruses and the recipient is responsible for undertaking appropriate virus scanning. Any advice provided in or attached to this email is subject to limitations.

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: Claudia Bennett PEAT ISLAND Project name:

Project ID: 54933

COC number: Not provided

Turn around time: 1 Day

Sep 18, 2018 6:05 PM Date/Time received:

Eurofins | mgt reference: 618500

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 8.1 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- **7** All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Split sample sent to requested external lab.
- XSome samples have been subcontracted.
- Custody Seals intact (if used). N/A

Notes

TS/TB NOT RECEIVED

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: Nibha Vaidya@eurofins.com

Results will be delivered electronically via e.mail to Claudia Bennett - CBennett@jbsg.com.au.

Note: A copy of these results will also be delivered to the general JBS & G Australia (NSW) P/L email address.

Environmental Laboratory Water Analysis Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

 Order No.:
 Received:
 Sep 18, 2018 6:05 PM

 Report #:
 618500
 Due:
 Oct 12, 2018

 Report #:
 618500
 Due:
 Oct 12, 2018

 Phone:
 02 8245 0300
 Priority:
 1 Day

Fax: Contact Name: Claudia Bennett

			mple Detail			% Clay	Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	BTEX	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
		ory - NATA Site		271					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
		- NATA Site # 1					Х	X										\vdash
		y - NATA Site #				Х												\vdash
		NATA Site # 237	736															\vdash
	rnal Laboratory		1	1	1													\vdash
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID													
1	SS01 0.5-0.6	Sep 18, 2018		Soil	M18-Se25567	Х				Х				Х	Х	Х	Х	Х
2	SS02 0-0.1	Sep 18, 2018		Soil	M18-Se25568									Х		Х		
3	SS02 0.3-0.4	Sep 18, 2018		Soil	M18-Se25569										Х	Х		Х
4	SS03 0.5-0.6	Sep 18, 2018		Soil	M18-Se25570		Х											
5	SS03 FRAG	Sep 18, 2018		Building Materials	M18-Se25571			Х										
6	SS04 0.3-0.4	Sep 18, 2018		Soil	M18-Se25572									Х		Х		
7	SS05 0-0.1	Sep 18, 2018		Soil	M18-Se25573									Х	Х	Х		Х
8	SS06 0-0.1	Sep 18, 2018		Soil	M18-Se25574									Х	Х	Х		Х
9	SS07 0-0.1	Sep 18, 2018		Soil	M18-Se25575						Х	Х	Х	Х	Х	Χ		Х

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +613 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Sep 18, 2018 6:05 PM

 Report #:
 618500
 Due:
 Oct 12, 2018

 Phone:
 02 8245 0300
 Priority:
 1 Day

Fax: Contact Name: Claudia Bennett

													•	 			
% Clay	Asbestos -	Asbestos /	HOLD	pH (1:5 Aq	Polycyclic	Organochl	Polychlorir	Metals M8	втех	Moisture S	Cation Exc	Total Reco					

		Sample l	Detail		Clay	bestos - WA guidelines	bestos Absence /Presence)LD	(1:5 Aqueous extract at 25°C as rec.)	lycyclic Aromatic Hydrocarbons	ganochlorine Pesticides	lychlorinated Biphenyls	etals M8	EX	bisture Set	ation Exchange Capacity	ital Recoverable Hydrocarbons
Mel	bourne Laborat	tory - NATA Site # 125	4 & 14271					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 18217				Х	Х										
Bris	bane Laborato	ry - NATA Site # 20794	4		Х												
Per	th Laboratory -	NATA Site # 23736															
10	SS08 0-0.1	Sep 18, 2018	Soil	M18-Se25576										Х	Х		Х
11	SS09 0-0.1	Sep 18, 2018	Soil	M18-Se25577									Х	Х	Х		Х
12	SS10 0-0.1	Sep 18, 2018	Soil	M18-Se25578									Х	Х	Х		Х
13	SS11 0-0.1	Sep 18, 2018	Soil	M18-Se25579						Х	Х	Х	Х	Х	Х		Χ
14	SS12 0-0.1	Sep 18, 2018	Soil	M18-Se25580									Х		Х		
15	SS14 0-0.1	Sep 18, 2018	Soil	M18-Se25581									Х		Х		
16	SS15 0-0.1	Sep 18, 2018	Soil	M18-Se25582									Х		Х		
17	SS16 0-0.1	Sep 18, 2018	Soil	M18-Se25583									Х		Х		
18	QA 180918	Sep 18, 2018	Soil	M18-Se25584									Х		Х		
19	SS01 0-0.1	Sep 18, 2018	Soil	M18-Se25585				Х									
20	SS01 0.9-1.0	Sep 18, 2018	Soil	M18-Se25586				Х									
21	SS01 1.5-1.6	Sep 18, 2018	Soil	M18-Se25587				Х									

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Sep 18, 2018 6:05 PM

 Report #:
 618500
 Due:
 Oct 12, 2018

 Phone:
 02 8245 0300
 Priority:
 1 Day

Fax: Contact Name: Claudia Bennett

		San	iple Detail		% Clay	Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Mell	ourne Laborate	ory - NATA Site #	1254 & 14271					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
		- NATA Site # 18				Х	Х										
Bris	bane Laborator	y - NATA Site # 2	0794		Х												
Pert	h Laboratory - I	NATA Site # 2373	6														
22	SS02 0.5-0.6	Sep 18, 2018	Soil	M18-Se25588				Х									
23	SS02 0.9-1.0	Sep 18, 2018	Soil	M18-Se25589				Х									
24	SS02 1.5-1.6	Sep 18, 2018	Soil	M18-Se25590				Х									
25	SS03 0-0.1	Sep 18, 2018	Soil	M18-Se25591				Х									
26	SS04 0-0.1	Sep 18, 2018	Soil	M18-Se25592				Х									
27	SS05 0.5-0.6	Sep 18, 2018	Soil	M18-Se25593				Х									
28	SS05 0.9-1.0	Sep 18, 2018	Soil	M18-Se25594				Х									
29	SS06 0.5-0.6	Sep 18, 2018	Soil	M18-Se25595				Х									
30	SS06 0.9-1.0	Sep 18, 2018	Soil	M18-Se25597				Х									
31	SS07 0.5-0.6	Sep 18, 2018	Soil	M18-Se25598				Х									
32	SS07 0.9-1.0	Sep 18, 2018	Soil	M18-Se25599				Х									
33	SS08 0.5-0.6	Sep 18, 2018	Soil	M18-Se25600				Х									

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

 Order No.:
 Received:
 Sep 18, 2018 6:05 PM

 Report #:
 618500
 Due:
 Oct 12, 2018

 Phone:
 02 8245 0300
 Priority:
 1 Day

Fax: Contact Name: Claudia Bennett

											Euro	ofins	mgt Analytical Services Manager : Nibha Vaidya
% C	Asb	Asb	HQ!	pH (Poly	Orga	Poly	Meta	вте	Mois	Cati	Tota	

		Sam	nple Detail		6 Clay	sbestos - WA guidelines	sbestos Absence /Presence	ЮГД	H (1:5 Aqueous extract at 25°C as rec.)	olycyclic Aromatic Hydrocarbons	rganochlorine Pesticides	olychlorinated Biphenyls	letals M8	тех	loisture Set	ation Exchange Capacity	otal Recoverable Hydrocarbons
Mell	ourne Laborat	ory - NATA Site #					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 182	217			Х	Х										
Bris	bane Laborator	y - NATA Site # 2	0794		Х												
Pert	h Laboratory - I	NATA Site # 2373	6														
34	SS08 0.9-1.0	Sep 18, 2018	Soil	M18-Se25601				Х									
35	SS09 0.4-0.5	Sep 18, 2018	Soil	M18-Se25602				Х									
36	SS10 0.4-0.5	Sep 18, 2018	Soil	M18-Se25603				Х									
37	SS11 0.4-0.5	Sep 18, 2018	Soil	M18-Se25604				Х									
38	SS13 0-0.1	Sep 18, 2018	Soil	M18-Se25605				Х									
39	SS13 0.4-0.5	Sep 18, 2018	Soil	M18-Se25606				Х									
40	SS13 0.9-1.0	Sep 18, 2018	Soil	M18-Se25607				Х									
41	SS16 0.5-0.6	Sep 18, 2018	Soil	M18-Se25608				Х									
42	SS16 0.9-1.0	Sep 18, 2018	Soil	M18-Se25609				Х									
43	SS11 0.9-1.0	Sep 18, 2018	Soil	M18-Se26813				Х									
Test	Counts				1	1	1	25	1	2	2	2	14	9	16	1	9

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention:Claudia BennettReport618500-V2-AIDProject NamePEAT ISLAND

Project ID 54933

Received Date Sep 18, 2018

Date Reported Sep 26, 2018

Methodology:

Asbestos Fibre

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS4964 method for inhomogeneous samples is around 0.1 g/kg (0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis where required, this is considered to be at the nominal reporting limit of 0.01 % (w / w). The examination of large sample sizes (500 mL is recommended) may improve the likelihood of identifying ACM in the > 2mm fraction. The NEPM screening level of 0.001 % (w / w) asbestos in soil for FA(friable asbestos) and AF(asbestos fines) then applies where they are able to be quantified by gravimetric procedures. This quantitative screening is not generally applicable to FF(free fibres) and results of Trace Analysis are referred.

NOTE: NATA News March 2014, p.7, states in relation to AS4964: "This is a qualitative method with a nominal reporting limit of 0.01%" and that currently in Australia "there is no validated method available for the quantification of asbestos". Accordingly, NATA Accreditation does not cover the performance of this service (indicated with an asterisk). This report is consistent with the analytical procedures and reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended) and the Western Australia Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, 2009, including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil, June 2011.

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name PEAT ISLAND

Project ID 54933

Date SampledSep 18, 2018Report618500-V2-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
SS03 0.5-0.6	18-Se25570	Sep 18, 2018		FA: Chrysotile and crocidolite asbestos detected in weathered fibre cement fragments. Approximate raw weight of FA = 1.1g Estimated asbestos content in FA = 0.21g* Total estimated asbestos concentration in FA = 0.027% w/w* Organic fibre detected. No respirable fibres detected.
SS03 FRAG	18-Se25571	Sep 18, 2018	Approximate Sample 182g / 200x90x5mm Sample consisted of: Grey fibre cement sheet	Chrysotile, amosite and crocidolite asbestos detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Asbestos - LTM-ASB-8020	Sydney	Sep 26, 2018	Indefinite
Asbestos - LTM-ASB-8020	Sydney	Sep 26, 2018	Indefinite

Order No.:

618500

Report #:

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F Brisbane

Received:

Due:

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Sep 18, 2018 6:05 PM

Oct 12, 2018

Company Name:

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

Project Name:

Address:

PEAT ISLAND

Project ID: 54933

Phone: 02 8245 0300 Priority: 1 Day

16 Mars Road

Fax:

Contact Name: Claudia Bennett

			mple Detail			% Clay	Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	BTEX	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271					Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
Sydr	ney Laboratory	- NATA Site # 1	8217				Х	Х										
Brisl	pane Laborator	y - NATA Site #	20794			Х												
Perti	n Laboratory - N	NATA Site # 237	36															
Exte	rnal Laboratory	1			1													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID													
1	SS01 0.5-0.6	Sep 18, 2018		Soil	M18-Se25567	Х				Х				Х	Х	Х	Х	Х
2	SS02 0-0.1	Sep 18, 2018		Soil	M18-Se25568									Х		Х		
3	SS02 0.3-0.4	Sep 18, 2018		Soil	M18-Se25569										Х	Х		Χ
4	SS03 0.5-0.6	Sep 18, 2018		Soil	M18-Se25570		Х											
5	SS03 FRAG	Sep 18, 2018		Building Materials	M18-Se25571			Х										
6	SS04 0.3-0.4	Sep 18, 2018		Soil	M18-Se25572									Х		Х		
7	SS05 0-0.1	Sep 18, 2018		Soil	M18-Se25573									Х	Х	Х		Х
8	SS06 0-0.1	Sep 18, 2018		Soil	M18-Se25574									Х	Х	Х		Х
9	SS07 0-0.1	Sep 18, 2018		Soil	M18-Se25575						Х	Х	Х	Х	Х	Х		Χ

Order No.:

Report #:

Phone:

Fax:

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271

618500

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Priority:

Contact Name:

Due:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Sep 18, 2018 6:05 PM

Oct 12, 2018

Claudia Bennett

1 Day

Company Name: JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name:

PEAT ISLAND

Project ID: 54933

		San	nple Detail		% Clay	Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Mell	oourne Laborate	ory - NATA Site #	# 1254 & 14271					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 18	3217			Х	Х										
Bris	bane Laborator	y - NATA Site # 2	20794		Х												
Pert	h Laboratory - I	NATA Site # 2373	36														
10	SS08 0-0.1	Sep 18, 2018	Soil	M18-Se25576										Х	Х		Х
11	SS09 0-0.1	Sep 18, 2018	Soil	M18-Se25577									Х	Х	Х		Х
12	SS10 0-0.1	Sep 18, 2018	Soil	M18-Se25578									Х	Х	Х		Х
13	SS11 0-0.1	Sep 18, 2018	Soil	M18-Se25579						Х	Х	Х	Х	Х	Х		Х
14	SS12 0-0.1	Sep 18, 2018	Soil	M18-Se25580									Х		Х		
15	SS14 0-0.1	Sep 18, 2018	Soil	M18-Se25581									Х		Х		
16	SS15 0-0.1	Sep 18, 2018	Soil	M18-Se25582									Х		Х		
17	SS16 0-0.1	Sep 18, 2018	Soil	M18-Se25583									Х		Х		
18	QA 180918	Sep 18, 2018	Soil	M18-Se25584									Х		Х		
19	SS01 0-0.1	Sep 18, 2018	Soil	M18-Se25585				Х									
20	SS01 0.9-1.0	Sep 18, 2018	Soil	M18-Se25586				Х									
21	SS01 1.5-1.6	Sep 18, 2018	Soil	M18-Se25587				Х									

Phone:

Fax:

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000

.....

Project Name: Project ID:

PEAT ISLAND

D: 54933

 Order No.:
 Received:
 Sep 18, 2018 6:05 PM

 Report #:
 618500
 Due:
 Oct 12, 2018

618500 **Due:** Oct 12, 2018 02 8245 0300 **Priority:** 1 Day

Contact Name: Claudia Bennett

		Sar	mple Detail		% Clay	Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Mell	ourne Laborate	ory - NATA Site	# 1254 & 14271					Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 18	8217			Х	Х										
Bris	bane Laborator	y - NATA Site #	20794		Х												
Pert	h Laboratory - I	NATA Site # 237															
22	SS02 0.5-0.6	Sep 18, 2018	Soil	M18-Se25588				Х									
23	SS02 0.9-1.0	Sep 18, 2018	Soil	M18-Se25589				Х									
24	SS02 1.5-1.6	Sep 18, 2018	Soil	M18-Se25590				Х									
25	SS03 0-0.1	Sep 18, 2018	Soil	M18-Se25591				Х									
26	SS04 0-0.1	Sep 18, 2018	Soil	M18-Se25592				Х									
27	SS05 0.5-0.6	Sep 18, 2018	Soil	M18-Se25593				Х									
28	SS05 0.9-1.0	Sep 18, 2018	Soil	M18-Se25594				Х									
29	SS06 0.5-0.6	Sep 18, 2018	Soil	M18-Se25595				Х									
30	SS06 0.9-1.0	Sep 18, 2018	Soil	M18-Se25597				Х									
31	SS07 0.5-0.6	Sep 18, 2018	Soil	M18-Se25598				Х									
32	SS07 0.9-1.0	Sep 18, 2018	Soil	M18-Se25599				Х									
33	SS08 0.5-0.6	Sep 18, 2018	Soil	M18-Se25600				Х									

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L Order No.: Received: Sep 18, 2018 6:05 PM

 Address:
 Level 1, 50 Margaret St
 Report #:
 618500
 Due:
 Oct 12, 2018

 Sydney
 Phone:
 02 8245 0300
 Priority:
 1 Day

NSW 2000 Fax: Contact Name: Claudia Bennett

Project Name: PEAT ISLAND

Project ID: 54933

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail Sample Detail Sample Detail						Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Mell	ourne Laborate	ory - NATA Site	# 1254 & 142	71					Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х
							Х	Х										
						Х												
34		Sep 18, 2018			M18-Se25601				Х									
35	SS09 0.4-0.5	Sep 18, 2018		Soil	M18-Se25602				Х									
36	SS10 0.4-0.5	Sep 18, 2018		Soil	M18-Se25603				Х									
37	SS11 0.4-0.5	Sep 18, 2018		Soil	M18-Se25604				Х									
38	SS13 0-0.1	Sep 18, 2018		Soil	M18-Se25605				Х									
39	SS13 0.4-0.5	Sep 18, 2018		Soil	M18-Se25606				Х									
40	SS13 0.9-1.0	Sep 18, 2018		Soil	M18-Se25607				Х									
41	SS16 0.5-0.6	Sep 18, 2018		Soil	M18-Se25608				Х									
42	SS16 0.9-1.0	Sep 18, 2018		Soil	M18-Se25609				Х									
43	SS11 0.9-1.0	Sep 18, 2018		Soil	M18-Se26813				Х									
Test	Counts					1	1	1	25	1	2	2	2	14	9	16	1	9

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas
Reported Concentration: fibres/mL

Flowrate: L/min

Terms

Dry Sample is dried by heating prior to analysis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

WA DOH Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated

Sites in Western Australia (2009), including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil (2011)

NEPM National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended)

ACM Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded and/or sound condition. For the purposes of the

NEPM, ACM is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Asbestos Fines. Asbestos containing materials, including friable, weathered and bonded materials, able to pass a 7mm x 7mm sieve. Considered under the NEPM as

AF equivalent to "non-bonded / friable".

Fibrous Asbestos. Asbestos containing materials in a friable and/or severely weathered condition. For the purposes of the NEPM, FA is generally restricted to those materials that do not pass a 7mm x 7mm sieve.

Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability.

Trace Analysis Analytical procedure used to detect the presence of respirable fibres in the matrix.

Comments

This report has been revised (V2) to include CEC test result for sample M18-Se25567.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Authorised by:

Laxman Dias Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Report618500-S-V2Project namePEAT ISLAND

Project ID 54933

Received Date Sep 18, 2018

Client Sample ID			SS01 0.5-0.6	SS02 0-0.1	SS02 0.3-0.4	SS04 0.3-0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Se25567	M18-Se25568	M18-Se25569	M18-Se25572
Date Sampled			Sep 18, 2018	Sep 18, 2018	Sep 18, 2018	Sep 18, 2018
Test/Reference	LOR	Unit		Cop 10, 2010	30p 10, 2010	cop 10, 2010
Total Recoverable Hydrocarbons - 1999 NEPM Fra		Offic				
TRH C6-C9	20	mg/kg	< 20	-	< 20	-
TRH C10-C14	20	mg/kg	< 20	_	< 20	_
TRH C15-C28	50	mg/kg	< 50	_	< 50	<u> -</u>
TRH C29-C36	50	mg/kg	< 50	_	110	_
TRH C10-36 (Total)	50	mg/kg	< 50	_	110	_
BTEX		19/9	100		1.10	
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	_	< 0.1	_
Ethylbenzene	0.1	mg/kg	< 0.1	_	< 0.1	_
m&p-Xylenes	0.2	mg/kg	< 0.2	_	< 0.2	_
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	_
Xylenes - Total	0.3	mg/kg	< 0.3	-	< 0.3	_
4-Bromofluorobenzene (surr.)	1	%	114	-	101	_
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	-	< 20	_
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	< 20	_
TRH >C10-C16	50	mg/kg	< 50	-	< 50	_
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	< 50	-
TRH >C16-C34	100	mg/kg	< 100	-	120	-
TRH >C34-C40	100	mg/kg	< 100	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	120	-
% Clay	1	%	14	-	-	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	39	-	-	-
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	7.7	-	-	-
% Moisture	1	%	6.6	4.5	5.0	17
Heavy Metals						
Arsenic	2	mg/kg	4.0	< 2	-	3.5
Cadmium	0.4	mg/kg	< 0.4	< 0.4	-	< 0.4
Chromium	5	mg/kg	14	22	-	8.3
Copper	5	mg/kg	< 5	26	-	35
Lead	5	mg/kg	15	160	-	89
Mercury	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Nickel	5	mg/kg	< 5	45	-	< 5
Zinc	5	mg/kg	8.7	40	-	140

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR		SS01 0.5-0.6 Soil M18-Se25567 Sep 18, 2018	SS02 0-0.1 Soil M18-Se25568 Sep 18, 2018	SS02 0.3-0.4 Soil M18-Se25569 Sep 18, 2018	SS04 0.3-0.4 Soil M18-Se25572 Sep 18, 2018
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	7.5	-	-	-

Client Sample ID			SS05 0-0.1	SS06 0-0.1	SS07 0-0.1	SS08 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Se25573	M18-Se25574	M18-Se25575	M18-Se25576
Date Sampled			Sep 18, 2018	Sep 18, 2018	Sep 18, 2018	Sep 18, 2018
Test/Reference	LOR	Unit	, , ,		, , , ,	
Total Recoverable Hydrocarbons - 1999 NEPM Fract						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	118	111	98	124
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Polycyclic Aromatic Hydrocarbons	1	1				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	1.2	-
Acenaphthene	0.5	mg/kg	-	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	-	-	< 0.5	-
Anthracene	0.5	mg/kg	-	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	-	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Chrysene Dibonz/a h)anthracena	0.5	mg/kg	-	-	< 0.5	-
Dibenz(a.h)anthracene Fluoranthene	0.5 0.5	mg/kg	-	-	< 0.5 < 0.5	-
Fluorene	0.5	mg/kg mg/kg	-	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	< 0.5	-
Naphthalene	0.5	mg/kg	-	-	< 0.5	-
ιναριπιαιστισ	0.5	i iig/kg			₹ 0.5	

Client Sample ID			SS05 0-0.1	SS06 0-0.1	SS07 0-0.1	SS08 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Se25573	M18-Se25574	M18-Se25575	M18-Se25576
Date Sampled			Sep 18, 2018	Sep 18, 2018	Sep 18, 2018	Sep 18, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	1 -					
Phenanthrene	0.5	mg/kg	_	-	< 0.5	_
Pyrene	0.5	mg/kg	_	_	< 0.5	_
Total PAH*	0.5	mg/kg	_	-	< 0.5	_
2-Fluorobiphenyl (surr.)	1	%	_	-	100	_
p-Terphenyl-d14 (surr.)	1	%	-	-	107	-
Organochlorine Pesticides		1			101	
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	_
4.4'-DDD	0.05	mg/kg	_	-	< 0.05	_
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	_
4.4'-DDT	0.05	mg/kg	_	-	< 0.05	_
a-BHC	0.05	mg/kg	_	-	< 0.05	_
Aldrin	0.05	mg/kg	_	-	< 0.05	_
b-BHC	0.05	mg/kg	_	-	< 0.05	_
d-BHC	0.05	mg/kg	-	-	< 0.05	_
Dieldrin	0.05	mg/kg	-	-	< 0.05	_
Endosulfan I	0.05	mg/kg	-	-	< 0.05	-
Endosulfan II	0.05	mg/kg	-	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	_
Endrin	0.05	mg/kg	-	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05	_
Endrin ketone	0.05	mg/kg	-	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.05	-
Heptachlor	0.05	mg/kg	-	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	=	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	-	=	< 0.05	-
Methoxychlor	0.05	mg/kg	-	-	< 0.05	-
Toxaphene	1	mg/kg	-	-	< 1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	-	123	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	126	-
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1221	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1232	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1242	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1248	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1254	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1260	0.1	mg/kg	-	-	< 0.1	-
Total PCB*	0.1	mg/kg	-	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	-	123	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	126	-
% Moisture	1	%	9.2	17	15	6.7

Client Sample ID Sample Matrix			SS05 0-0.1 Soil	SS06 0-0.1 Soil	SS07 0-0.1 Soil	SS08 0-0.1 Soil
Eurofins mgt Sample No.			M18-Se25573	M18-Se25574	M18-Se25575	M18-Se25576
Date Sampled			Sep 18, 2018	Sep 18, 2018	Sep 18, 2018	Sep 18, 2018
Test/Reference	LOR	Unit				
Heavy Metals	·					
Arsenic	2	mg/kg	< 2	< 2	< 2	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	-
Chromium	5	mg/kg	7.0	5.9	7.6	-
Copper	5	mg/kg	< 5	< 5	21	-
Lead	5	mg/kg	20	20	230	-
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Nickel	5	mg/kg	< 5	< 5	< 5	-
Zinc	5	mg/kg	24	8.7	600	-

Client Sample ID			SS09 0-0.1	SS10 0-0.1	SS11 0-0.1	SS12 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Se25577	M18-Se25578	M18-Se25579	M18-Se25580
Date Sampled			Sep 18, 2018	Sep 18, 2018	Sep 18, 2018	Sep 18, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	-
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	-
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	-
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	-
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	104	82	120	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	-
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	-
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	-
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	1.2	-
Acenaphthene	0.5	mg/kg	-	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	-	-	< 0.5	-
Anthracene	0.5	mg/kg	-	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	-	-	< 0.5	-
Benzo(b&j)fluorantheneN07	0.5	mg/kg	-	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	-

Client Sample ID			SS09 0-0.1	SS10 0-0.1	SS11 0-0.1	SS12 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
•						
Eurofins mgt Sample No.			M18-Se25577	M18-Se25578	M18-Se25579	M18-Se25580
Date Sampled			Sep 18, 2018	Sep 18, 2018	Sep 18, 2018	Sep 18, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Chrysene	0.5	mg/kg	-	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5	-
Fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Fluorene	0.5	mg/kg	-	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	< 0.5	-
Naphthalene	0.5	mg/kg	-	-	< 0.5	-
Phenanthrene	0.5	mg/kg	-	-	< 0.5	-
Pyrene	0.5	mg/kg	-	-	< 0.5	-
Total PAH*	0.5	mg/kg	-	-	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	-	-	75	-
p-Terphenyl-d14 (surr.)	1	%	-	-	85	-
Organochlorine Pesticides	1	1				
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	-	-	< 0.05	-
a-BHC	0.05	mg/kg	-	-	< 0.05	-
Aldrin	0.05	mg/kg	-	-	< 0.05	-
b-BHC	0.05	mg/kg	-	-	< 0.05	-
d-BHC	0.05	mg/kg	-	-	< 0.05	-
Dieldrin	0.05	mg/kg	-	=	< 0.05	-
Endosulfan I	0.05	mg/kg	-	=	< 0.05	-
Endosulfan II	0.05	mg/kg	-	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	-
Endrin	0.05	mg/kg	-	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05	-
Endrin ketone	0.05	mg/kg	-	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.05	-
Heptachlor	0.05	mg/kg	-	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05	-
Methoxychlor Toyonhone	0.05	mg/kg	-	-	< 0.05	-
Toxaphene Aldrin and Dieldrin (Total)*	1	mg/kg	-	-	< 1	-
,	0.05	mg/kg	-	-	< 0.05	-
DDT + DDE + DDD (Total)* Vic EPA IWRG 621 OCP (Total)*	0.05	mg/kg	-	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.1 < 0.1	-
Dibutylchlorendate (surr.)	1	mg/kg %	-	-	116	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	123	
Polychlorinated Biphenyls	1	70	-	-	123	-
Aroclor-1016	0.1	ma/ka	_	_	< 0.1	
Aroclor-1016 Aroclor-1221	0.1	mg/kg	-	-	< 0.1	-
		mg/kg		-		-
Aroclor 1343	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1242 Aroclor-1248	0.1	mg/kg	-	-	< 0.1 < 0.1	-
Aroclor-1248 Aroclor-1254	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1254 Aroclor-1260	0.1	mg/kg		-	< 0.1	
ATUGUT 120U	U. I	mg/kg	-	-	< 0.1	-

Client Sample ID Sample Matrix Eurofins mgt Sample No.			SS09 0-0.1 Soil M18-Se25577	SS10 0-0.1 Soil M18-Se25578	SS11 0-0.1 Soil M18-Se25579	SS12 0-0.1 Soil M18-Se25580
Date Sampled			Sep 18, 2018	Sep 18, 2018	Sep 18, 2018	Sep 18, 2018
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls						
Dibutylchlorendate (surr.)	1	%	-	-	116	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	123	-
% Moisture	1	%	6.3	4.4	15	9.4
Heavy Metals						
Arsenic	2	mg/kg	< 2	< 2	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	11	8.7	10	6.5
Copper	5	mg/kg	< 5	< 5	< 5	9.1
Lead	5	mg/kg	10	10	10	14
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5	8.3
Zinc	5	mg/kg	< 5	8.2	< 5	13

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	SS14 0-0.1 Soil M18-Se25581 Sep 18, 2018	SS15 0-0.1 Soil M18-Se25582 Sep 18, 2018	SS16 0-0.1 Soil M18-Se25583 Sep 18, 2018	QA 180918 Soil M18-Se25584 Sep 18, 2018
% Moisture	1	%	14	17	5.2	5.9
Heavy Metals	1	70	14	17	5.2	5.9
Arsenic	2	mg/kg	3.2	2.8	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	79	12	6.5	25
Copper	5	mg/kg	< 5	22	< 5	27
Lead	5	mg/kg	19	380	22	140
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	11	< 5	47
Zinc	5	mg/kg	8.4	260	21	39

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Sep 20, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 20, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 20, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	Sep 20, 2018	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Polycyclic Aromatic Hydrocarbons	Melbourne	Sep 20, 2018	14 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Melbourne	Sep 20, 2018	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Melbourne	Sep 20, 2018	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Clay	Brisbane	Sep 21, 2018	6 Day
- Method: LTM-GEN-7040			
pH (1:5 Aqueous extract at 25°C as rec.)	Melbourne	Sep 20, 2018	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Metals M8	Melbourne	Sep 20, 2018	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Melbourne	Sep 20, 2018	7 Day
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	Oct 12, 2018	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
% Moisture	Melbourne	Sep 20, 2018	14 Day

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Sep 18, 2018 6:05 PM

 Report #:
 618500
 Due:
 Oct 12, 2018

 Phone:
 02 8245 0300
 Priority:
 1 Day

Contact Name: Claudia Bennett

		% Clay	Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons				
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217				Х	Х										
Bris	bane Laborator	y - NATA Site #	20794			Х												
Pert	h Laboratory - N	NATA Site # 237	36															
Exte	rnal Laboratory	/																
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID													
1	SS01 0.5-0.6	Sep 18, 2018		Soil	M18-Se25567	Х				Х				Х	Х	Х	Х	Х
2	SS02 0-0.1	Sep 18, 2018		Soil	M18-Se25568									Х		Х		
3	SS02 0.3-0.4	Sep 18, 2018		Soil	M18-Se25569										Х	Х		Х
4							Х											
5	Materials							Х										
6														Х		Х		
7														Х	Х	Х		Х
8														Х	Х	Х		Х
9	SS07 0-0.1	M18-Se25575						Х	Х	Х	Х	Х	Х		Х			

Order No.:

Report #:

Phone:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

618500

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Priority:

Due:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Sep 18, 2018 6:05 PM

Oct 12, 2018

1 Day

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Fax: Contact Name: Claudia Bennett

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		% Clay	Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons			
		ory - NATA Site #						Х	Х	Х	Х	X	Х	Х	Х	Х	Х
		- NATA Site # 18				Х	Х										
		y - NATA Site # 2			Х												
	1	NATA Site # 2373															
10	SS08 0-0.1	Sep 18, 2018	Soil	M18-Se25576										Х	Х		Х
11	SS09 0-0.1	Sep 18, 2018	Soil	M18-Se25577									Х	Х	Х		Х
12	SS10 0-0.1	Sep 18, 2018	Soil	M18-Se25578									Х	Х	Х		Х
13	SS11 0-0.1	Sep 18, 2018	Soil	M18-Se25579						Х	Х	X	Х	Х	Х		Х
14	SS12 0-0.1	Sep 18, 2018	Soil	M18-Se25580									Х		Х		
15	SS14 0-0.1	Sep 18, 2018	Soil	M18-Se25581									Х		Х		
16	SS15 0-0.1	Sep 18, 2018	Soil	M18-Se25582									Х		Х		
17	SS16 0-0.1	Sep 18, 2018	Soil	M18-Se25583									Х		Х		
18	QA 180918	Sep 18, 2018	Soil	M18-Se25584									Х		Х		
19	SS01 0-0.1	Sep 18, 2018	Soil	M18-Se25585				Х									
20	SS01 0.9-1.0	Sep 18, 2018	Soil	M18-Se25586				Х									
21	SS01 1.5-1.6	Sep 18, 2018	Soil	M18-Se25587				Х									

Report Number: 618500-S-V2

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Sep 18, 2018 6:05 PM

 Report #:
 618500
 Due:
 Oct 12, 2018

 Phone:
 02 8245 0300
 Priority:
 1 Day

Fax: Contact Name: Claudia Bennett

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		% Clay	Asbestos - WA guidelines	Asbestos Absence /Presence	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons			
Mell	ourne Laborate	ory - NATA Site	# 1254 & 14271					Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 18	8217			Х	Х										
Bris	bane Laborator	y - NATA Site #	20794		Х												
Pert	h Laboratory - I	NATA Site # 237															
22	SS02 0.5-0.6	Sep 18, 2018	Soil	M18-Se25588				Х									
23	SS02 0.9-1.0	Sep 18, 2018	Soil	M18-Se25589				Х									
24	SS02 1.5-1.6	Sep 18, 2018	Soil	M18-Se25590				Х									
25	SS03 0-0.1	Sep 18, 2018	Soil	M18-Se25591				Х									
26	SS04 0-0.1	Sep 18, 2018	Soil	M18-Se25592				Х									
27	SS05 0.5-0.6	Sep 18, 2018	Soil	M18-Se25593				Х									
28	SS05 0.9-1.0	Sep 18, 2018	Soil	M18-Se25594				Х									
29	SS06 0.5-0.6	Sep 18, 2018	Soil	M18-Se25595				Х									
30	SS06 0.9-1.0	Sep 18, 2018	Soil	M18-Se25597				Х									
31	SS07 0.5-0.6	Sep 18, 2018	Soil	M18-Se25598				Х									
32	SS07 0.9-1.0	Sep 18, 2018	Soil	M18-Se25599				Х									
33	SS08 0.5-0.6	Sep 18, 2018	Soil	M18-Se25600				Х									

Report Number: 618500-S-V2

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +613 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Sep 18, 2018 6:05 PM

 Report #:
 618500
 Due:
 Oct 12, 2018

 Phone:
 02 8245 0300
 Priority:
 1 Day

Fax: Contact Name: Claudia Bennett

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail							HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 14271					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х										
Bris	bane Laborator	y - NATA Site #	20794		Х												,
Pert	h Laboratory - N	NATA Site # 237	36														
34	SS08 0.9-1.0	Sep 18, 2018	Soil	M18-Se25601				Х									
35	SS09 0.4-0.5	Sep 18, 2018	Soil	M18-Se25602				Х									
36	SS10 0.4-0.5	Sep 18, 2018	Soil	M18-Se25603				Х									
37	SS11 0.4-0.5	Sep 18, 2018	Soil	M18-Se25604				Х									
38	SS13 0-0.1	Sep 18, 2018	Soil	M18-Se25605				Х									
39	SS13 0.4-0.5				Х												
40	SS13 0.9-1.0				Х												
41	SS16 0.5-0.6				Х												
42	SS16 0.9-1.0				Х												
43	SS11 0.9-1.0	M18-Se26813				Х											
Test	Counts			1	1	1	25	1	2	2	2	14	9	16	1	9	

Report Number: 618500-S-V2

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
i				
mg/kg	< 20	20	Pass	
mg/kg	< 20	20	Pass	
mg/kg	< 50	50	Pass	
mg/kg	< 50	50	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.2	0.2	Pass	
	< 0.1		Pass	
	< 0.3	0.3	Pass	
1 3 3				
i				
	< 0.5	0.5	Pass	
	< 20			
	1			
i iiig/ikg	V 100	100	1 455	
ma/ka	< 0.5	0.5	Pass	
	1			
	1			
	1			
	1			
	1			
			_	
	1			
mg/kg	< 0.5	0.5	Pass	
	Т		Ι	
	.01	0.1	Door	
mg/kg mg/kg				
	< 0.05	0.05	Pass	I
	mg/kg	mg/kg < 20	mg/kg < 20	mg/kg < 20

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	+
Toxaphene		< 1	1	Pass	
	mg/kg	< 1		Pass	
Method Blank				I	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	-
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank					
% Clay	%	< 1	1	Pass	
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 10	10	Pass	
Method Blank				•	
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
		< 0.1	0.1	Pass	
Mercury	mg/kg				
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery		T T	T	Τ	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions				_	
TRH C6-C9	%	91	70-130	Pass	
TRH C10-C14	%	75	70-130	Pass	
LCS - % Recovery		T T	<u> </u>	T	
BTEX					
Benzene	%	100	70-130	Pass	
Toluene	%	107	70-130	Pass	
Ethylbenzene	%	104	70-130	Pass	
m&p-Xylenes	%	110	70-130	Pass	
Xylenes - Total	%	114	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	3				
Naphthalene	%	122	70-130	Pass	
TRH C6-C10	%	92	70-130	Pass	
TRH >C10-C16	%	79	70-130	Pass	
LCS - % Recovery	70	, , ,	1 70-100	, , 433	
Polycyclic Aromatic Hydrocarbons					
	0/	76	70.400	Pass	
Acenaphthene	%	76	70-130	Pass	
Acenaphthylene	%	80	70-130	Pass	
Anthracene	%	72	70-130	Pass	<u> </u>

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Benz(a)anthracene	%	77	70-130	Pass	
Benzo(a)pyrene	%	72	70-130	Pass	
Benzo(b&j)fluoranthene	%	70	70-130	Pass	
Benzo(g.h.i)perylene	%	84	70-130	Pass	
Benzo(k)fluoranthene	%	83	70-130	Pass	
Chrysene	%	77	70-130	Pass	
Dibenz(a.h)anthracene	%	78	70-130	Pass	
Fluoranthene	%	86	70-130	Pass	
Fluorene	%	76	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	84	70-130	Pass	
Naphthalene	%	76	70-130	Pass	
Phenanthrene	%	71	70-130	Pass	
Pyrene	%	88	70-130	Pass	
LCS - % Recovery	70		70 100	1 455	
Organochlorine Pesticides					
4.4'-DDD	%	110	70-130	Pass	
4.4'-DDE	%	116	70-130	Pass	
4.4'-DDT	%	107	70-130	Pass	
a-BHC	%	107	70-130	Pass	
Aldrin	%	103	70-130	Pass	
b-BHC	%	107	70-130	Pass	
d-BHC	%	103	70-130	Pass	
Dieldrin	%	106	70-130	Pass	
Endosulfan I	%	106	70-130	Pass	
Endosulfan aulahata	%		70-130	Pass	
Endosulfan sulphate	%	101	70-130	Pass	
Endrin	%	124	70-130	Pass	
Endrin aldehyde	%	103	70-130	Pass	
Endrin ketone	%	100	70-130	Pass	
g-BHC (Lindane)	%	103	70-130	Pass	-
Heptachlor	%	108	70-130	Pass	
Heptachlor epoxide	%	101	70-130	Pass	
Hexachlorobenzene	%	104	70-130	Pass	
Methoxychlor	%	104	70-130	Pass	
LCS - % Recovery		T T			
Polychlorinated Biphenyls				_	
Aroclor-1260	%	125	70-130	Pass	
LCS - % Recovery		1		Γ	
% Clay	%	93	70-130	Pass	
LCS - % Recovery		<u> </u>	<u> </u>	I	
Heavy Metals					
Arsenic	%	110	80-120	Pass	
Cadmium	%	107	80-120	Pass	
Chromium	%	113	80-120	Pass	
Copper	%	112	80-120	Pass	
Lead	%	114	80-120	Pass	
Mercury	%	101	75-125	Pass	
Nickel	%	111	80-120	Pass	
Zinc	%	109	80-120	Pass	

Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
			Result 1				
M18-Se25572	CP	%	114		75-125	Pass	
M18-Se25572	CP	%	112		75-125	Pass	
M18-Se25572	СР	%	117		75-125	Pass	
M18-Se25572	СР	%	115		75-125	Pass	
M18-Se25572	СР	%	92		75-125	Pass	
M18-Se25572	CP		108		70-130	Pass	
	CP		113		75-125	Pass	
	<u> </u>	,,,				. 455	
			Result 1				
	NCP	%	1		70-130	Pass	
			i				
			1				
M18-Se29425	NCP		91				
M18-Se29425	NCP	<u>%</u>	106		70-130	Pass	
			T	I I			
	1		Result 1				
M18-Se28693		%	119		70-130	Pass	
M18-Se28693		%	119		70-130	Pass	
M18-Se28693	NCP	%	85		70-130	Pass	
M18-Se28693	NCP	%	115		70-130	Pass	
M18-Se28693	NCP	%	121		70-130	Pass	
M18-Se28693	NCP	%	111		70-130	Pass	
M18-Se28693	NCP	%	109		70-130	Pass	
M18-Se28693	NCP	%	116		70-130	Pass	
M18-Se28693	NCP	%	128		70-130	Pass	
M18-Se28693	NCP	%	122		70-130	Pass	
M18-Se28693	NCP	%	112		70-130	Pass	
M18-Se28693	NCP	%	113		70-130	Pass	
M18-Se28693	NCP	%	119		70-130	Pass	
M18-Se28693	NCP	%	109		70-130	Pass	
M18-Se28693	NCP	%	113		70-130	Pass	
M18-Se28693	NCP	%	109		70-130	Pass	
M18-Se28693	NCP	%	114		70-130	Pass	
			112				
M18-Se28693		%	78				
			Result 1				
M18-Se32778	NCP	%	1		70-130	Pass	
0002110		,,,				. 455	
	M18-Se25572 M18-Se29425 M18-Se29693 M18-Se28693	M18-Se25572	M18-Se25572 CP % M18-Se29425 NCP % M18-Se28693 NCP %	Result 1 M18-Se25572 CP % 114 M18-Se25572 CP % 115 M18-Se25572 CP % 115 M18-Se25572 CP % 115 M18-Se25572 CP % 115 M18-Se25572 CP % 108 M18-Se25572 CP % 108 M18-Se25572 CP % 106 M18-Se25572 CP % 106 M18-Se25572 CP % 106 M18-Se25572 CP % 106 M18-Se29425 NCP % 96 M18-Se29425 NCP % 97 M18-Se29425 NCP % 89 M18-Se29425 NCP % 89 M18-Se29425 NCP % 88 M18-Se29425 NCP % 88 M18-Se29425 NCP % 88 M18-Se29425 NCP % 81 M18-Se29425 NCP % 97 M18-Se29425 NCP % 97 M18-Se29425 NCP % 96 M18-Se29425 NCP % 97 M18-Se29425 NCP % 96 M18-Se29425 NCP % 97 M18-Se29425 NCP % 97 M18-Se29425 NCP % 96 M18-Se29425 NCP % 97 M18-Se29425 NCP % 91 M18-Se29425 NCP % 91 M18-Se299425 NCP % 91 M18-Se28693 NCP % 119 M18-Se28693 NCP % 119 M18-Se28693 NCP % 110 M18-Se28693 NCP % 112 M18-Se28693 NCP % 113 M18-Se28693 NCP % 119 M18-Se28693 NCP % 119	Result 1	Result 1	Result 1 T5-125 Pass M18-Se25572 CP % 114 T5-125 Pass M18-Se25572 CP % 117 T5-125 Pass M18-Se25572 CP % 117 T5-125 Pass M18-Se25572 CP % 115 T5-125 Pass M18-Se25572 CP % 115 T5-125 Pass M18-Se25572 CP % 115 T5-125 Pass M18-Se25572 CP % 108 T0-130 Pass M18-Se25572 CP % 108 T5-125 Pass M18-Se25572 CP % 113 T5-125 Pass M18-Se25572 CP % 113 T5-125 Pass M18-Se25572 CP % 106 T5-125 Pass M18-Se25572 CP % 106 T5-125 Pass M18-Se25572 CP % 106 T5-125 Pass M18-Se29425 NCP % 96 T0-130 Pass M18-Se29425 NCP % 96 T0-130 Pass M18-Se29425 NCP % 89 T0-130 Pass M18-Se29425 NCP % 89 T0-130 Pass M18-Se29425 NCP % 88 T0-130 Pass M18-Se29425 NCP % 88 T0-130 Pass M18-Se29425 NCP % 81 T0-130 Pass M18-Se29425 NCP % 81 T0-130 Pass M18-Se29425 NCP % 97 T0-130 Pass M18-Se29425 NCP % 97 T0-130 Pass M18-Se29425 NCP % 97 T0-130 Pass M18-Se29425 NCP % 96 T0-130 Pass M18-Se29425 NCP % 97 T0-130 Pass M18-Se29425 NCP % 96 T0-130 Pass M18-Se29425 NCP % 97 T0-130 Pass M18-Se29425 NCP % 96 T0-130 Pass M18-Se29425 NCP % 96 T0-130 Pass M18-Se29425 NCP % 97 T0-130 Pass M18-Se2993 NCP % 119 T0-130 Pas

		QA		5 1/4			Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
TRH C6-C9	M18-Se25577	CP	%	90			70-130	Pass	
Spike - % Recovery									
BTEX	T			Result 1					
Benzene	M18-Se25577	CP	%	86			70-130	Pass	
Toluene	M18-Se25577	CP	%	89			70-130	Pass	
Ethylbenzene	M18-Se25577	CP	%	88			70-130	Pass	
m&p-Xylenes	M18-Se25577	CP	%	92			70-130	Pass	
o-Xylene	M18-Se25577	CP	%	100			70-130	Pass	
Xylenes - Total	M18-Se25577	СР	%	95			70-130	Pass	
Spike - % Recovery		_			1		ı		
Total Recoverable Hydrocarbons -			0.1	Result 1				_	
Naphthalene	M18-Se25577	CP	%	109			70-130	Pass	
TRH C6-C10	M18-Se25577	CP	%	90			70-130	Pass	
Spike - % Recovery	4000 117714				I I		I		
Total Recoverable Hydrocarbons -			0/	Result 1			70.400	D	
TRH C10-C14	M18-Se25579	CP	%	85			70-130	Pass	
Spike - % Recovery	2042 NEDNI E	! a u -		Danish					
Total Recoverable Hydrocarbons -			0/	Result 1			70.400	D	
TRH >C10-C16	M18-Se25579	СР	%	85			70-130	Pass	
Spike - % Recovery				Dec. it 4					
Heavy Metals	M40 0 -05500	0.0	0/	Result 1			75.405	D	
Arsenic	M18-Se25583	CP	%	114			75-125	Pass	
Cadmium	M18-Se25583	CP	%	112			75-125	Pass	
Chromium	M18-Se25583	CP	%	119			75-125	Pass	
Copper	M18-Se25583	CP	%	116			75-125	Pass	
Lead	M18-Se25583	CP	%	110			75-125	Pass	
Mercury	M18-Se25583	CP	%	107			70-130	Pass	
Nickel	M18-Se25583	CP	%	116 107			75-125	Pass	
Zinc	M18-Se25583	CP QA	% !!:::t-				75-125 Acceptance	Pass Pass	Qualifying
	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate				I	1		1		
	l			Result 1	Result 2	RPD		_	
% Clay Conductivity (1:5 aqueous extract	M18-Se25567	CP	%	14	14	<1	30%	Pass	
at 25°C as rec.)	M18-Se25567	CP	uS/cm	39	38	2.9	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	M18-Se26297	NCP	pH Units	7.9	7.7	pass	30%	Pass	
Duplicate	W110 0020207	1401	prionio	7.0	7.7	риоо	0070	1 455	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M18-Se25568	СР	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	M18-Se25568	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M18-Se25568	CP	mg/kg	22	24	9.0	30%	Pass	
Copper	M18-Se25568	CP	mg/kg	26	21	20	30%	Pass	
Lead	M18-Se25568	CP	mg/kg	160	150	9.0	30%	Pass	
Mercury	M18-Se25568	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M18-Se25568	CP	mg/kg	45	55	18	30%	Pass	
Zinc	M18-Se25568	CP	mg/kg	40	44	10	30%	Pass	
Duplicate		-	פי יב	· · · ·					
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M18-Se25572	СР	mg/kg	3.5	3.4	2.0	30%	Pass	
Cadmium	M18-Se25572	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
	M18-Se25572	CP	mg/kg	8.3	8.3	<1	30%	Pass	
Chromium	W110-3623372	Oi I	mg/kg	0.0					
Chromium	M18-Se25572	CP	mg/kg	35	35	<1	30%	Pass	

Duplicate					l		I		
Heavy Metals	1	1	1	Result 1	Result 2	RPD			
Mercury	M18-Se25572	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M18-Se25572	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	M18-Se25572	CP	mg/kg	140	140	1.0	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbo		1	1	Result 1	Result 2	RPD			
Acenaphthene	M18-Se29424	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M18-Se29424	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M18-Se29424	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M18-Se29424	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M18-Se29424	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M18-Se29424	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M18-Se29424	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M18-Se29424	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M18-Se29424	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M18-Se29424	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M18-Se29424	NCP	mg/kg	0.6	< 0.5	18	30%	Pass	
Fluorene	M18-Se29424	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M18-Se29424	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M18-Se29424	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M18-Se29424	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M18-Se29424	NCP	mg/kg	0.5	0.5	1.0	30%	Pass	
Duplicate				•					
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	P18-Se26883	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	P18-Se26883	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	P18-Se26883	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	P18-Se26883	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	P18-Se26883	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	P18-Se26883	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	P18-Se26883	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	P18-Se26883	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	P18-Se26883	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	P18-Se26883	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	P18-Se26883	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	P18-Se26883	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	P18-Se26883	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	P18-Se26883	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	P18-Se26883	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	P18-Se26883	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	P18-Se26883	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	P18-Se26883	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	P18-Se26883	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	P18-Se26883	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
, , , , , , , , , , , , , , , , , , ,									
Toxaphene	P18-Se26883	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate Polychlorinated Biphenyls				Popult 1	Result 2	RPD			
Aroclor-1016	P18-Se26883	NCP	ma/ka	Result 1		<1	30%	Pass	
		NCP	mg/kg	< 0.1	< 0.1		30%	Pass	
Aroclor 1221	P18-Se26883		mg/kg	< 0.1	< 0.1	<1			
Aroclor 1232	P18-Se26883	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor 1242	P18-Se26883	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	P18-Se26883	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	P18-Se26883	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	P18-Se26883	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	P18-Se26883	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	

Duplicate					1		İ		
				Result 1	Result 2	RPD			
% Moisture	M18-Se25575	CP	%	15	15	1.0	30%	Pass	
Duplicate					1		ı		
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M18-Se25576	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate					1		ı		
BTEX				Result 1	Result 2	RPD			
Benzene	M18-Se25576	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M18-Se25576	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M18-Se25576	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M18-Se25576	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M18-Se25576	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	M18-Se25576	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate					1		ı		
Total Recoverable Hydrocarbons		1		Result 1	Result 2	RPD			
Naphthalene	M18-Se25576	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M18-Se25576	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate					1 1		1		
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions	_	Result 1	Result 2	RPD			
TRH C10-C14	M18-Se25578	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M18-Se25578	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M18-Se25578	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate				1	1 1		T		
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	M18-Se25578	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M18-Se25578	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	M18-Se25578	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				T	T T		T		
Heavy Metals		1		Result 1	Result 2	RPD			
Arsenic	M18-Se25582	CP	mg/kg	2.8	2.3	20	30%	Pass	
Cadmium	M18-Se25582	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M18-Se25582	CP	mg/kg	12	11	16	30%	Pass	
Copper	M18-Se25582	CP	mg/kg	22	19	14	30%	Pass	
Lead	M18-Se25582	CP	mg/kg	380	370	2.0	30%	Pass	
Mercury	M18-Se25582	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M18-Se25582	CP	mg/kg	11	5.6	66	30%	Fail	Q15
Zinc	M18-Se25582	CP	mg/kg	260	210	20	30%	Pass	
Duplicate				1					
Heavy Metals		1		Result 1	Result 2	RPD			
Arsenic	M18-Se25583	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	M18-Se25583	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M18-Se25583	CP	mg/kg	6.5	6.6	1.0	30%	Pass	
Copper	M18-Se25583	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	M18-Se25583	CP	mg/kg	22	22	1.0	30%	Pass	
Mercury	M18-Se25583	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M18-Se25583	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	M18-Se25583	CP	mg/kg	21	21	1.0	30%	Pass	

Comments

This report has been revised (V2) to include CEC test result for sample M18-Se25567.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier	Codes/Comments
Code	Description
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q15	The RPD reported passes Eurofins mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

Nibha Vaidya
Analytical Services Manager
Chris Bennett
Senior Analyst-Metal (VIC)
Harry Bacalis
Senior Analyst-Volatile (VIC)
Jonathon Angell
Senior Analyst-Inorganic (QLD)
Joseph Edouard
Senior Analyst-Organic (VIC)
Julie Kay
Senior Analyst-Inorganic (VIC)
Nibha Vaidya
Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CHAIN OF CUSTODY

PROJECT NO.: MANY 5	4933					LA	BOR	ATOI	RY BA	ATCH	NO.	:			= 1			- 7							
PROJECT NAME:	THE PE	est 50	lont			_			JC	11 11 11 11 11 11															
DATE NEEDED BY: 5 7A	HT					Q	C LE\	EL: N	NEPIV	1 (20:	13)														
PHONE: Sydney: 02 8245 030											S	bur	04	, 9											
SEND REPORT & INVOICE TO:	(1) admir	nsw@jbsg.	com.au; (2) Chenett @jb	sg.com.	au:	(3) .3	SP 19	USS	AN S		-	@ibs	g.co	m.au										
COMMENTS / SPECIAL HANDLING / STORA	AGE OR DISPO	SAL:				3								13	-	TT	T	TYPE OF							
						240		10		05	3		£ 4	13				ASBESTOS ANALYSIS							
						2		3	7 3	3:5	ENS	06	10/	2				NOIL							
						3	T	TPH	FAC,	ASBEST	10	0)	0-0	10				IDENTIFICATION NEPM/WA							
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	рН	F	17	FO	0 0	AS.	5	61	S CX	Z				IDENTIFICA NEPM/WA	NOTES:						
55-24-0-0-1	Soil	20 9.18		Jac + Bag + Ice		X																			
-0.2-9.3	1	1		P													1								
-10-1:1					1 3																				
_1.6-1.7																									
- 2.0-2.1																									
-2.6-2.7						×	X	×																	
Q (20180920-5CO)							esa		00	res	0	4	F	n	coledo										
QA //						1	10	-	VEC	166	4	700	1	100	rowo			+							
QA // \$5-31_0-0.1		- 1				_			+			1	+					1		\neg					
1 -012-013						X			+			-	+			_	1	+							
55-33-0-01							×	V	+	X	1	_	×												
11 =0.7-0.3							/	4	+		\dashv	+													
55-35-0-01								+	-		1	-	+				+			-					
1 -9,2-0.3						×		+	-	+	-	+	-	×			+	_		\neg					
-1.0-1.1						^	-	+	-		+	-	+	\sim				-		\neg					
-1.6-1.7								+	+		+	+	+					+		\dashv					
55-37-0-0-1						-	-	-	-		+	+	-			-				\neg					
-0.2-03			-					+	-		+	+	+	\vdash			+	+		-					
- 9.4-1.0					+	\nearrow	-	+	+		+	-	+			-	+-			\dashv					
RELINQUISHED BY:		1		METHOD OF SHIPMENT:	-			_	RECE	VED B	y.			No.		FOR RE	CEIVIN	GLARI	JSE ONLY:	0,000					
	0.4-18	CONS	IGNMENT NO			NA	ME:	100	00,	1)-	2	0-0	1-18	co	OLER SEAL - Ye				Broken						
OF: JBS&G			DA	TE:		Pin	SM	-	6:00	D PM	60														
NAME: DATE:		NA	ME:	ur	un	s me	DAT	TE:		CO	OLER TEMP			Intact	Broken	2000									
Or.						OF					707														
OF: Container & Preservative Codes: P = Plas	tic; J = Soil Jar		SPORT CO e: N = Nitric Aci	d Prsvd.; C = Sodium Hydroxide Prsvd; VC =	Hydrochlori	c Acid	d Prsve	Vial: \	/S = SII	Ifuric A	rid Pre	vd Vial	· S = Sı	CO	OLER TEMP	deg C	= EDTA	Prevd- S	T = Storila Bottla: O = Other						

IMSO FormsO13 - Chain of Custody - Generic

CHAIN OF CUSTODY

PROJECT NO.: BARRES 5	40033					LAE	BOR	АТО	RY BA	ATCH	INO	.:	W.			111		0 - N	V.=			- 4	100		
PROJECT NAME: PROJECT NAME:	FR PE	ed 55	Lune				The second second	-	JC	22															
DATE NEEDED BY: 5797									NEPN		13)														
PHONE: Sydney: 02 8245 030	0 Perth: (08 9488 01	00 Brisk	pane: 07 3112 2688									4												
SEND REPORT & INVOICE TO:	(1) admini	nsw@jbsg.	com.au; (2) <i>BBJOPPS</i> @jbs	sg.com.a	nu; (3	3) .5	Pan.	373	32		can	.@jk	sg.c	om.a	u	56	1110	مد	03	0	Jb.	59		
COMMENTS / SPECIAL HANDLING / STORA	AGE OR DISPOSA	AL:				500				1	3				T					TYF	PE OF BESTOS		1		
						1840		M		100	SUL	5	3								ALYSIS				
						1		3	TAC.	3:5	S	enoi	8							ATION					5
2000000						30	工	HAT.	- 17	ASBEST	ELENSI	0)	(CXplassi							IDENTIFICATION	NEPM/WA				/
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	pH	I	4	1-5	20	_ 4.	S	8	10							130	N E	NOTE	5:		
55-37-1.4-1.5	50:1	20.9.16		Jur + Bay + See																					
55-34-0-0.1				10		X																			
11 -0.2-0.3																									
Q \$20180920-5602						Plea	ace		for	un	1	to	0 E	nu	pla	B									
QA 11																									
55-41-0-0.1																									
1 -0.2-03						X																			
V _1.0-1,1																			+	- 1			1		
55-42-0-0.1						×																			
					12-																				
-0.2-0.3																									
SS-43-0 -01						×																			
55-44-0-0.1						X																			
+ -0-2-0.3																									
55-45-0-0-1			-			×																			
0.2-0.3																									
-1.3-1.4																									
55-48-0-01																									
1 -0.2-0.3	4	1		1		X																			
RELINQUISHED BY:				METHOD OF SHIPMENT:					RECE					7,0		1		10.000000000000000000000000000000000000	Mahrenon's 33	A Sept. Stranger Sept. And a		SE ONLY			
NAME: DATE: DO	4.18	CONS	GNMENT N	OTE NO.		NAN	ME: (ell	a D	-	205	9-1	8	C	OOLE	RSEA	L – Yes	s N	0	. Int	act	Bro	ken		
OF: JBS&G		OF:	E	uno	leus	Mat	61	00	PU	C	OOLE	RTEN	1P	deg C											
NAME: DATE:		CONSIGNMENT NOTE NO. NAME: DATE: COOLER SEAL – Yes No Intact Broken																							
OF:	OF:																								
Container & Preservative Codes: P = Plas	tic; J = Soil Jar;	B = Glass Bottle	; N = Nitric A	cid Prsvd.; C = Sodium Hydroxide Prsvd; VC = F	Hydrochlori	c Acid	Prsvd	Vial:	VS = Su	Ifuric A	Acid Pr	svd Vi	al: S =	Sulfuri	c Acid	Prsvd	Z = Zin	c Prsvd	E = EF	OTA Pr	svd: ST	= Sterile	Bottle: 0) = Other	r

3/4
. 11. 1

CHAIN OF CUSTODY

PROJECT NO.: MALLEN 3	54933				ΙΙΔ	BOR	ATOR	RY BA	TCHI	NO ·	2A - 4A			70000	-					
PROJECT NAME: BASKING		e 25/c	inl			-	MPL			CITI	10									
DATE NEEDED BY:						_			EPM	(201	3)									
PHONE: Sydney: 02 8245 03	00 Perth: (08 9488 01	00 Bris	bane: 07 3112 2688									1.6							
SEND REPORT & INVOICE TO	: (1) adminr	nsw@ibsg.	com.au;	(2)	sg.com.	au: ((3) 6	m	man	ph (Cbe	MAG	ihsg	com a	. 5	by	100	25	(2)	1659
COMMENTS / SPECIAL HANDLING / STOR	RAGE OR DISPOSA	AL:		()	8,00,,,,	13			1			T				TT	T	TY	PEOF	023
						140		7		05	U.S.	1 3	35						BESTOS ALYSIS	
						1	1	BIET	SS	5	ELENSUL	Cxolosic	/PCAS					NOIT		
	1					3	T	16H/BI	FASS	ASBEST	10.1	S S	0					DENTIFICATION	NEPM/WA	
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	рН	구	4	一八	2 0	A	5.0	10	8					IDEN	NEP	NOTES:
55-46-0-0-1	Soil	20.9.18		Jai + Bagn + Ice		X														
55-47 -0-0.1	1					×														
55-49 0-0.1																				
1 0.2-0.3						×														
0.203																				
55-50-0-0.1						\propto														
11 -03-0.3																				
55-51 -0-0-1						X					\neg									
SS-50-0-0.1 11 -0.2-0.3 SS-51 - 0-0.1 SS-52 - 0-0.1								\top					×				\vdash		\Box	
11 -02-03				Tur +Tur	1	×	+	+	1		-	+	$\hat{}$		-		++			
11 -0.2-0.3 SS-53 -0-0.1				Sur + Icz Sur + Bay + six	1			+	+	-	_				+					
1/ .02-03	40			Jan Bay 15 C	1.	×	\vdash	-	+	_	-	+		-	_		++	-	\vdash	
1/ 10.2-0.3	Water			4x Vials + Ice			-	×		+	+	+		+	-		+	+	+	
9710	or of the			1,01005 13 20	-		-	-	-	+	+	+	\vdash		-					
					-	\vdash	-	+		-	-	+		-	-				\vdash	
					-			-	-	-	+	+	\vdash	+	+		+	-		
					-	H	-	-	-	-	-	-		-	-		+	-	+	
							-	-	+-	-	-	-					++		+	
					-	Н	-	-	+	-	_	-			-		+	-	-	
RELINQUISHED BY	/.			MATTHOD OF CHIDNAFAIT.		H			DECEN	ED DV		_				50	D DECE	D. (ID) G	100	CE ONLY
	0.4.18	CONSI	GNMENT N	METHOD OF SHIPMENT: NOTE NO.		NA	ME: A	111	RECEIV	FD RA	7.0	1 10	,	COOLER	SEAL -	7 2 40		Chipmonday Comment		SE ONLY: Broken
7100				- V.44.		DA	TE:	uc	ens a		101	1-18								
OF: JBS&G NAME: DATE:			OF	TU	rofi	ns a	lat	610	10 PM	h	COOLER									
DATE.														COOLER	SEAL -	Yes	No	In	tact	Broken
OF:			PORT CO			OF								COOLER	TEMP.	deg	C		A STATE OF	
Container & Preservative Codes: P = Pla	istic; J = Soil Jar; B	= Glass Bottle;	N = Nitric A	Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = H	Hydrochlor	ic Acid	d Prsvd	Vial; V	S = Sulf	ıric Aci	d Prsvd	Vial; S	= Sulf	uric Acid I	rsvd; Z =	Zinc Prs	vd; E = E	DTA Pr	svd; ST	= Sterile Bottle; O = Other

IMSO FormsO13 – Chain of Custody - Gener

016259

4/4

CHAIN OF CUSTODY

PROJECT NO.: 5493	3			LA	BOR	ATO	RY BA	TCH	NO.:													
PROJECT NAME: Pect	15/000	/				SAI	MPL	ERS:	-	B												
DATE NEEDED BY: 5+	TAT					QC	LEV	EL: N	IEPIV	B (201	13)											
PHONE: Sydney: 02 8245 03	00 Perth: 0	8 9488 01	.00 Bris	pane: 07 3112 2688																		
SEND REPORT & INVOICE TO	: (1) adminr	sw@jbsg.	com.au;	2) <i>\$50(100</i> \$@jb	sg.com.a	au; (3	3)	204	200	ets		@jb	sg.co	m.au	ı							
COMMENTS / SPECIAL HANDLING / STO	RAGE OR DISPOSA	AL:				2 y Mexals	STEX		42565405	10 y CE	X								IDENTIFICATION SISTEMAN NEPM/WA	5		
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	рН	He	7	9	4 6	Hd	BI								IDENTIFICA NEPM/WA	NOT	ES:	
5530 0-0.1	soil	20-9-1-	8	J+B		×	\Box	>	<										>	4		
0-2-0.3																						
5532 0-01						X				X												
SS 34 0-0-1						X																
5536 0-0.1				h		X			1													
35\$0 0-0.1	V			\$		X																
15	Winds Wats																					
	+			3/10/6							X											
		1																				
						\vdash	-	+	-	-	-		+	\vdash	_	-				-		
						\vdash	_	4	_		_		-	\perp						-		
							_	_					_		_	\perp				1		
							_	_						\sqcup		\perp				_		
							4	_			_									_		
					2000						_					\perp				_		
					0 5 3																	
		CON	ICAIA CAIT			P16	NAT.	1	RECEI	VED B	Y:	-9-18 6100 PM		2015-	CEAL					USE ON		
OF: JBS&G																– Yes		*******	Intact	В	roken	
NAME: DATE:		NA OF:	ME:	6	7.00		DAT	E:	C	OOLER	SEAL	– Yes	No	*******	Intact	E	Broken					
OF: Container & Preservative Codes: P = P	astic; J = Soil Jar:		SPORT CO e; N = Nitric	Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC =	Hydrochlor	ic Acid	Prsvo	d Vial:	VS = Su	Ifuric A	cid Prs	vd Vial: S =	Sulfuri	c Acid F	rsvd: 7	= Zinc	Prsvd: F	= EDTA	Prsvd:	ST = Steri	ile Bottle: ∩	= Other
						-		,														

IMSO FormsO13 - Chain of Custody - Generic

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

JBS & G Australia (NSW) P/L Company name:

Contact name: Claudia Bennett PEAT ISLAND Project name:

Project ID: 54933

COC number: Not provided

Turn around time: 5 Day

Sep 20, 2018 6:00 PM Date/Time received:

Eurofins | mgt reference: 618880

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 4.9 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- **7** Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- **7** All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- **7** Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.

Custody Seals intact (if used). Notes^{N/A}

Sample SS-34 0.0-0.1 listed twice in the COC. Sample SS-34 0.2-0.3 not received, analysis cancelled. Extra sample received (SS-39_0.0-0.1/0.2-0.3) placed on hold. QC20180920-JC01/02 forwarded to Envirolab.

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: Nibha Vaidya@eurofins.com

Results will be delivered electronically via e.mail to Claudia Bennett - CBennett@jbsg.com.au.

Note: A copy of these results will also be delivered to the general JBS & G Australia (NSW) P/L email address.

Environmental Laboratory Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Sep 20, 2018 6:00 PM

 Report #:
 618880
 Due:
 Sep 27, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271					Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
Sydi	ney Laboratory	- NATA Site # 1	8217				Х	Х										
Bris	bane Laborator	y - NATA Site #	20794			Х												
Pert	h Laboratory - N	NATA Site # 237	'36															
Exte	rnal Laboratory				_													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID													ı
1	SS-29_0.0-0.1	Sep 20, 2018		Soil	S18-Se28412									Х		Х		
2	SS-29_2.6-2.7	Sep 20, 2018		Soil	S18-Se28413						Х			Х	Х	Х		Χ
3	QA20180920- JC01	Sep 20, 2018		Soil	S18-Se28414									Х		Х		
4	SS-31_0.2-0.3	Sep 20, 2018		Soil	S18-Se28415									Х		Х		
5	SS-33_0.0-0.1	Sep 20, 2018		Soil	S18-Se28416		Х				Х	Х	Х	Х	Х	Х		Χ
6	SS-35_0.2-0.3	Sep 20, 2018		Soil	S18-Se28417	Х				Х				Х		Х	Х	
7	SS-37_0.2-0.3	Sep 20, 2018		Soil	S18-Se28418									Х		Х		
8	SS-34_0.0-0.1	Sep 20, 2018		Soil	S18-Se28419									Х		Х		
9	SS-41_0.2-0.3	Sep 20, 2018		Soil	S18-Se28420									Х		Х		

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Sep 20, 2018 6:00 PM

 Report #:
 618880
 Due:
 Sep 27, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

		Saı	mple Detail			% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Mell	oourne Laborato	ory - NATA Site	# 1254 & 142	71					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 18	8217				Х	Х										
Bris	bane Laboratory	y - NATA Site #	20794			Х												
Pert	h Laboratory - N	NATA Site # 237	36															
10	SS-42_0.0-0.1	Sep 20, 2018		Soil	S18-Se28421									Х		Х		
11	SS-43_0.0-0.1	i		Soil	S18-Se28422									Х		Х		
12	SS-44_0.0-0.1	Sep 20, 2018		Soil	S18-Se28423									Х		Х		
13	SS-45_0.0-0.1	Sep 20, 2018		Soil	S18-Se28424									Х		Х		
14	SS-48_0.2-0.3	Sep 20, 2018		Soil	S18-Se28425									Х		Х		
15	SS-46_0.0-0.1	Sep 20, 2018		Soil	S18-Se28426									Х		Х		
16	SS-47_0.0-0.1	Sep 20, 2018		Soil	S18-Se28427									Х		Х		
17	SS-49_0.2-0.3	Sep 20, 2018		Soil	S18-Se28428									Х		Х		
18	SS-50_0.0-0.1	Sep 20, 2018		Soil	S18-Se28429									Х		Х		
19	SS-51_0.0-0.1			Soil	S18-Se28430									Х		Х		
20	SS-52_0.0-0.1	Sep 20, 2018		Soil	S18-Se28431							Х	Х	Х		Х		
21	SS-53_0.0-0.1	Sep 20, 2018		Soil	S18-Se28432									Х		Х		

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Sep 20, 2018 6:00 PM

 Report #:
 618880
 Due:
 Sep 27, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

		San	nple Detail			% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Mell	ourne Laborato	ory - NATA Site #	1254 & 142 + 14	71					Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
Syd	ney Laboratory	- NATA Site # 18	3217				Х	Х										
Bris	bane Laboratory	y - NATA Site # 2	20794			Х												
Pert	h Laboratory - N	IATA Site # 2373	36	r														
22	TS	Sep 20, 2018		Water	S18-Se28433										Х			
23	ТВ	Sep 20, 2018		Water	S18-Se28434										Х			
24	SS-30_0.0-0.1	Sep 20, 2018		Soil	S18-Se28435		Х							Х		Х		
25	SS-32_0.0-0.1	Sep 20, 2018		Soil	S18-Se28436	Х				Х				Х		Х	Χ	
26		Sep 20, 2018		Soil	S18-Se28437									Х		Х		
27	SS-40_0.0-0.1	Sep 20, 2018		Soil	S18-Se28438									Х		Х		
28	SS-29_0.2-0.3	Sep 20, 2018		Soil	S18-Se28556				Х									
29	SS-29_1.0-1.1	Sep 20, 2018		Soil	S18-Se28557				Х									
30	SS-29_1.6-1.7	Sep 20, 2018		Soil	S18-Se28558				Х									
31	SS-29_2.0-2.1	Sep 20, 2018		Soil	S18-Se28559				Х									
32	SS-31_0.0-0.1	Sep 20, 2018		Soil	S18-Se28560				Х									
33	SS-33_0.2-0.3	Sep 20, 2018		Soil	S18-Se28561				Х									

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

 Order No.:
 Received:
 Sep 20, 2018 6:00 PM

 Report #:
 618880
 Due:
 Sep 27, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Mell	oourne Laborato	ory - NATA Site	# 1254 & 142	71					Х	Х	Х	Х	X	Х	Χ	Х	Х	Х
	ney Laboratory						Х	Х										
Bris	bane Laboratory	y - NATA Site #	20794			Х												
	h Laboratory - N		736															
34	SS-35_0.0-0.1			Soil	S18-Se28562				Х									
35	SS-35_1.0-1.1			Soil	S18-Se28563				Х									
36	SS-35_1.6-1.7			Soil	S18-Se28564				Х									
37	SS-37_0.0-0.1	Sep 20, 2018		Soil	S18-Se28565				Х									
38	SS-37_0.9-1.0	Sep 20, 2018		Soil	S18-Se28566				Х									
39	SS-37_1.4-1.5	Sep 20, 2018		Soil	S18-Se28567				Х									
40	SS-34_0.2-0.3	Sep 20, 2018		Soil	S18-Se28568			Х										
41	QA20180920- JC02	Sep 20, 2018		Soil	S18-Se28569				Х									
42	SS-41_0.0-0.1	Sep 20, 2018		Soil	S18-Se28570				Х									
43	SS-41_1.0-1.1	Sep 20, 2018		Soil	S18-Se28571				Х									
44	SS-42_0.2-0.3	Sep 20, 2018		Soil	S18-Se28572				Х									

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

 Order No.:
 Received:
 Sep 20, 2018 6:00 PM

 Report #:
 618880
 Due:
 Sep 27, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

			mple Detail			% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Mell	ourne Laborato	ory - NATA Site	# 1254 & 1427	<u>'1</u>					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	ney Laboratory						Х	Х										
	bane Laboratory					Х												
	h Laboratory - N																	
45	SS-42_1.0-1.1			Soil	S18-Se28573				Х									
46	SS-44_0.2-0.3			Soil	S18-Se28574				Х									
47	SS-45_0.2-0.3			Soil	S18-Se28575				Х									
48	SS-45_1.3-1.4			Soil	S18-Se28576				Х									
49	SS-48_0.0-0.1			Soil	S18-Se28577				Х									
50	SS-49_0.0-0.1			Soil	S18-Se28578				Х									
51	SS-49_0.9-1.0	Sep 20, 2018		Soil	S18-Se28579				Х									
52	SS-50_0.2-0.3			Soil	S18-Se28580				Х									
53	SS-52_0.2-0.3			Soil	S18-Se28581				Х									
54	SS-53_0.2-0.3			Soil	S18-Se28582				Х									
55	SS-30_0.2-0.3			Soil	S18-Se28583				Х									
56	SS-39_0.0-0.1	Sep 20, 2018		Soil	S18-Se28602				Х									

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Sep 20, 2018 6:00 PM

 Report #:
 618880
 Due:
 Sep 27, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

Sample Detail	% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melbourne Laboratory - NATA Site # 1254 & 14271				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Sydney Laboratory - NATA Site # 18217		Х	Х										
Brisbane Laboratory - NATA Site # 20794	Х												
Perth Laboratory - NATA Site # 23736													
57 SS-39_0.2-0.3 Sep 20, 2018 Soil S18-Se28603				Х									
Test Counts	2	2	1	29	2	2	2	2	25	4	25	2	2

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention: Claudia Bennett
Report 618880-AID
Project Name PEAT ISLAND

Project ID 54933

Received Date Sep 20, 2018

Date Reported Sep 27, 2018

Methodology:

Asbestos Fibre

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS4964 method for inhomogeneous samples is around 0.1 g/kg (0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis where required, this is considered to be at the nominal reporting limit of 0.01 % (w / w). The examination of large sample sizes (500 mL is recommended) may improve the likelihood of identifying ACM in the > 2mm fraction. The NEPM screening level of 0.001 % (w / w) asbestos in soil for FA(friable asbestos) and AF(asbestos fines) then applies where they are able to be quantified by gravimetric procedures. This quantitative screening is not generally applicable to FF(free fibres) and results of Trace Analysis are referred.

NOTE: NATA News March 2014, p.7, states in relation to AS4964: "This is a qualitative method with a nominal reporting limit of 0.01%" and that currently in Australia "there is no validated method available for the quantification of asbestos". Accordingly, NATA Accreditation does not cover the performance of this service (indicated with an asterisk). This report is consistent with the analytical procedures and reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended) and the Western Australia Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, 2009, including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil, June 2011.

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name PEAT ISLAND

Project ID 54933

Date SampledSep 20, 2018Report618880-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
SS-33_0.0-0.1	18-Se28416	Sep 20, 2018	Sample consisted of: Brown fine-grained sandy soil	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SS-30_0.0-0.1	18-Se28435	Sep 20, 2018	Sample consisted of: Brown fine-grained sandy soil	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneySep 21, 2018Indefinite

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Brisbane

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

Project Name:

Address:

PEAT ISLAND

Project ID: 54933

Order No.: Report #:

618880

Phone: 02 8245 0300

Fax:

Received: Sep 20, 2018 6:00 PM **Due:** Sep 27, 2018

Priority: 5 Day

Contact Name: Claudia Bennett

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	71					Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ
Sydi	ney Laboratory	- NATA Site # 1	8217				Х	Х										
Bris	bane Laborator	y - NATA Site #	20794			Х												
Pert	h Laboratory - N	NATA Site # 237	36															
Exte	rnal Laboratory																	
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID													
1	SS-29_0.0-0.1	Sep 20, 2018		Soil	S18-Se28412									Х		Х		
2	SS-29_2.6-2.7	Sep 20, 2018		Soil	S18-Se28413						Х			Х	Х	Х		Х
3	QA20180920- JC01	Sep 20, 2018		Soil	S18-Se28414									Х		Х		
4	SS-31_0.2-0.3	Sep 20, 2018		Soil	S18-Se28415									Х		Х		
5	SS-33_0.0-0.1	Sep 20, 2018		Soil	S18-Se28416		Х				Х	Х	Х	Х	Х	Х		Х
6	SS-35_0.2-0.3	Sep 20, 2018		Soil	S18-Se28417	Х				Х				Х		Х	Х	
7	SS-37_0.2-0.3	Sep 20, 2018		Soil	S18-Se28418									Х		Х		
8	SS-34_0.0-0.1	Sep 20, 2018		Soil	S18-Se28419									Х		Х		
9	SS-41_0.2-0.3	Sep 20, 2018		Soil	S18-Se28420									Х		Х		

Phone:

Fax:

Melbourne 3-5 Kingston Town Close

Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road

Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane Perth 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

Project Name:

Project ID:

Address:

PEAT ISLAND

54933

Order No.: Received: Sep 20, 2018 6:00 PM Report #:

618880 Due: Sep 27, 2018 02 8245 0300 Priority: 5 Day

> **Contact Name:** Claudia Bennett

> > Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sai	mple Detail		% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	ХЭТВ	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 14271					Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ
Sydi	ney Laboratory	- NATA Site # 1	8217			Х	Х										
Bris	bane Laborator	y - NATA Site #	20794		Х												
Pert	h Laboratory - N	NATA Site # 237	36														
10	SS-42_0.0-0.1	Sep 20, 2018	Soil	S18-Se28421									Х		Χ		
11	SS-43_0.0-0.1		Soil	S18-Se28422									Χ		Χ		
12	SS-44_0.0-0.1	Sep 20, 2018	Soil	S18-Se28423									Χ		Χ		
13	SS-45_0.0-0.1	Sep 20, 2018	Soil	S18-Se28424									Χ		Χ		
14	SS-48_0.2-0.3	Sep 20, 2018	Soil	S18-Se28425									Χ		Χ		
15	SS-46_0.0-0.1	Sep 20, 2018	Soil	S18-Se28426									Χ		Χ		
16	SS-47_0.0-0.1	Sep 20, 2018	Soil	S18-Se28427									Χ		Χ		
17	SS-49_0.2-0.3		Soil	S18-Se28428									Χ		Χ		
18	SS-50_0.0-0.1	Sep 20, 2018	Soil	S18-Se28429									Χ		Χ		
19	SS-51_0.0-0.1	Sep 20, 2018	Soil	S18-Se28430									Χ		Χ		
20	SS-52_0.0-0.1	Sep 20, 2018	Soil	S18-Se28431							Χ	Х	Х		Χ		
21	SS-53_0.0-0.1	Sep 20, 2018	Soil	S18-Se28432									Χ		Χ		

PEAT ISLAND

Project Name:

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F Brisbane 16 Mars Road

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L Order No.: Received: Sep 20, 2018 6:00 PM

Address: Level 1, 50 Margaret St Report #: 618880 Due: Sep 27, 2018

Sydney Phone: 02 8245 0300 Priority: 5 Day

NSW 2000 Fax: **Contact Name:** Claudia Bennett

Project ID: 54933 Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Saı	mple Detail			% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	71					Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х										
Bris	bane Laborator	y - NATA Site #	20794			Х												
Pert	h Laboratory - N	NATA Site # 237	36															
22	TS	Sep 20, 2018		Water	S18-Se28433										Х			
23	ТВ	Sep 20, 2018		Water	S18-Se28434										Х			
24	SS-30_0.0-0.1	Sep 20, 2018		Soil	S18-Se28435		Х							Х		Х		
25	SS-32_0.0-0.1	Sep 20, 2018		Soil	S18-Se28436	Х				Х				Х		Х	Х	
26	SS-36_0.0-0.1			Soil	S18-Se28437									Х		Х		
27	SS-40_0.0-0.1			Soil	S18-Se28438									Х		Х		
28	SS-29_0.2-0.3			Soil	S18-Se28556				Х									
29	SS-29_1.0-1.1	Sep 20, 2018		Soil	S18-Se28557				Х									
30	SS-29_1.6-1.7			Soil	S18-Se28558				Х									
31	SS-29_2.0-2.1	Sep 20, 2018		Soil	S18-Se28559				Х									
32	SS-31_0.0-0.1			Soil	S18-Se28560				X									
33	SS-33_0.2-0.3	Sep 20, 2018		Soil	S18-Se28561				Х									

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000

NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

Received:

Due:

NATA # 1261 Site # 18217

Brisbane
1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Sep 20, 2018 6:00 PM

Sep 27, 2018

Company Name: JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000

PEAT ISLAND

Project Name: Project ID:

54933

Order No.: Report #:

618880

Phone: 02 8245 0300

Fax:

Priority: 5 Day

Contact Name: Claudia Bennett

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail		% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 14271					Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х										
Bris	bane Laborator	y - NATA Site #	20794		Х												
Pert	h Laboratory - N	NATA Site # 237															
34	SS-35_0.0-0.1	Sep 20, 2018	Soil	S18-Se28562				Х									
35	SS-35_1.0-1.1		Soil	S18-Se28563				Х									
36	SS-35_1.6-1.7		Soil	S18-Se28564				Х									
37	SS-37_0.0-0.1	Sep 20, 2018	Soil	S18-Se28565				Х									
38	SS-37_0.9-1.0		Soil	S18-Se28566				Х									
39	SS-37_1.4-1.5	Sep 20, 2018	Soil	S18-Se28567				Х									
40	SS-34_0.2-0.3	Sep 20, 2018	Soil	S18-Se28568			Х										
41	QA20180920- JC02	Sep 20, 2018	Soil	S18-Se28569				х									
42	SS-41_0.0-0.1	Sep 20, 2018	Soil	S18-Se28570				Х									
43	SS-41_1.0-1.1	Sep 20, 2018	Soil	S18-Se28571				Х									
44	SS-42_0.2-0.3	Sep 20, 2018	Soil	S18-Se28572				Х									

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Sep 20, 2018 6:00 PM

Sep 27, 2018

Company Name: JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name:

PEAT ISLAND

Project ID: 54933 Order No.: Report #:

618880

02 8245 0300

Phone: Fax:

Received: Due: Priority:

5 Day

Contact Name: Claudia Bennett

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sai	mple Detail		% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	ХЭТВ	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 14271					Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217			Х	Х										
Bris	bane Laborator	y - NATA Site #	20794		Х												
Pert	h Laboratory - N	NATA Site # 237															
45	SS-42_1.0-1.1	Sep 20, 2018	Soil	S18-Se28573				Х									
46	SS-44_0.2-0.3		Soil	S18-Se28574				Х									
47	SS-45_0.2-0.3		Soil	S18-Se28575				Х									
48	SS-45_1.3-1.4		Soil	S18-Se28576				Х									
49	SS-48_0.0-0.1		Soil	S18-Se28577				Х									
50	SS-49_0.0-0.1	Sep 20, 2018	Soil	S18-Se28578				Х									\vdash
51	SS-49_0.9-1.0	· · · · · ·	Soil	S18-Se28579				Х									\vdash
52	SS-50_0.2-0.3		Soil	S18-Se28580				Х									
53	SS-52_0.2-0.3		Soil	S18-Se28581				Х									
54	SS-53_0.2-0.3		Soil	S18-Se28582				Х									
55	SS-30_0.2-0.3	Sep 20, 2018	Soil	S18-Se28583				Х									
56	SS-39_0.0-0.1	Sep 20, 2018	Soil	S18-Se28602				Х									

Fax:

Melbourne 3-5 Kingston Town Close

Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Received:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L Order No.:

Address: Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Sep 20, 2018 6:00 PM Report #: 618880 Due: Sep 27, 2018

Phone: 02 8245 0300 Priority: 5 Day

Contact Name: Claudia Bennett

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	imple Detail			% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Mell	bourne Laborato	ory - NATA Site	# 1254 & 142	71					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х										
Bris	bane Laboratory	y - NATA Site #	20794			Х												
Pert	h Laboratory - N	ATA Site # 237	736															
57	SS-39_0.2-0.3	Sep 20, 2018		Soil	S18-Se28603				Х									
Test	t Counts					2	2	1	29	2	2	2	2	25	4	25	2	2

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

WA DOH Western Australia Department of Health

NOHSC National Occupational Health and Safety Commission

ACM Bonded asbestos-containing material means any material containing more than 1% asbestos and comprises asbestos-containing-material which is in sound condition,

although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. Common examples of ACM include but are not limited to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on acoustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and ceiling plaster, ceiling tiles, and gasket materials. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it approximates the thickness of common asbestos cement sheeting and for fragments to be smaller than this would imply a high degree of damage and hence potential

for fibre release.

FA FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos

is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or

was previously bonded and is now significantly degraded (crumbling).

PACM Presumed Asbestos-Containing Material means thermal system insulation and surfacing material found in buildings, vessels, and vessel sections constructed no later

than 1980 that are assumed to contain greater than one percent asbestos but have not been sampled or analyzed to verify or negate the presence of asbestos.

Asbestos fines (AF) are defined as free fibres, or fibre bundles, smaller than 7mm. It is the free fibres which present the greatest risk to human health, although very

small fibres (< 5 microns in length) are not considered to be such a risk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve.

(Note that for bonded ACM fragments to pass through a 7 mm x 7 mm sieve implies a substantial degree of damage which increases the potential for fibre release.)

AC Asbestos cement means a mixture of cement and asbestos fibres (typically 90:10 ratios).

Comments

Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Laxman Dias Senior Analyst-Asbestos (NSW)

Authorised by:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Report 618880-S
Project name PEAT ISLAND
Project ID 54933

Project ID 54933 Received Date Sep 20, 2018

Client Sample ID			SS-29_0.0-0.1	SS-29_2.6-2.7	QA20180920- JC01	SS-31_0.2-0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Se28412	S18-Se28413	S18-Se28414	S18-Se28415
Date Sampled			Sep 20, 2018	Sep 20, 2018	Sep 20, 2018	Sep 20, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	-	< 20	-	-
TRH C10-C14	20	mg/kg	-	< 20	-	-
TRH C15-C28	50	mg/kg	-	< 50	-	-
TRH C29-C36	50	mg/kg	-	< 50	-	-
TRH C10-36 (Total)	50	mg/kg	-	< 50	-	-
BTEX	•					
Benzene	0.1	mg/kg	-	< 0.1	-	-
Toluene	0.1	mg/kg	-	< 0.1	-	-
Ethylbenzene	0.1	mg/kg	-	< 0.1	-	-
m&p-Xylenes	0.2	mg/kg	-	< 0.2	-	-
o-Xylene	0.1	mg/kg	-	< 0.1	-	-
Xylenes - Total	0.3	mg/kg	-	< 0.3	-	-
4-Bromofluorobenzene (surr.)	1	%	-	88	-	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	-	< 0.5	-	-
TRH C6-C10	20	mg/kg	-	< 20	-	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	< 20	-	-
TRH >C10-C16	50	mg/kg	-	< 50	-	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	< 50	-	-
TRH >C16-C34	100	mg/kg	-	< 100	-	-
TRH >C34-C40	100	mg/kg	-	< 100	-	-
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	-	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	< 0.5	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	-	-
Acenaphthene	0.5	mg/kg	-	< 0.5	-	-
Acenaphthylene	0.5	mg/kg	-	< 0.5	-	-
Anthracene	0.5	mg/kg	-	< 0.5	-	-
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	-	-
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	-	-
Benzo(b&j)fluorantheneN07	0.5	mg/kg	-	< 0.5	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	-	-
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	-	-
Chrysene	0.5	mg/kg	-	< 0.5	-	_

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	SS-29_0.0-0.1 Soil S18-Se28412 Sep 20, 2018	SS-29_2.6-2.7 Soil S18-Se28413 Sep 20, 2018	QA20180920- JC01 Soil S18-Se28414 Sep 20, 2018	SS-31_0.2-0.3 Soil S18-Se28415 Sep 20, 2018
Polycyclic Aromatic Hydrocarbons	·					
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	-	-
Fluoranthene	0.5	mg/kg	-	< 0.5	-	-
Fluorene	0.5	mg/kg	-	< 0.5	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	-	-
Naphthalene	0.5	mg/kg	-	< 0.5	-	-
Phenanthrene	0.5	mg/kg	-	< 0.5	-	-
Pyrene	0.5	mg/kg	-	< 0.5	-	-
Total PAH*	0.5	mg/kg	-	< 0.5	-	-
2-Fluorobiphenyl (surr.)	1	%	-	86	-	-
p-Terphenyl-d14 (surr.)	1	%	-	83	-	-
% Moisture	1	%	3.4	9.9	3.4	19
Heavy Metals						
Arsenic	2	mg/kg	< 2	< 2	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	6.9	8.9	7.7	23
Copper	5	mg/kg	53	< 5	79	< 5
Lead	5	mg/kg	43	13	41	9.9
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	13	< 5	13	< 5
Zinc	5	mg/kg	89	< 5	91	< 5

Client Sample ID			SS-33_0.0-0.1	SS-35_0.2-0.3	SS-37_0.2-0.3	SS-34_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Se28416	S18-Se28417	S18-Se28418	S18-Se28419
Date Sampled			Sep 20, 2018	Sep 20, 2018	Sep 20, 2018	Sep 20, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	-	-	-
TRH C10-C14	20	mg/kg	< 20	-	-	-
TRH C15-C28	50	mg/kg	< 50	-	-	-
TRH C29-C36	50	mg/kg	< 50	-	-	-
TRH C10-36 (Total)	50	mg/kg	< 50	-	-	-
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	-	-	-
Toluene	0.1	mg/kg	< 0.1	-	-	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	-	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	-	-
o-Xylene	0.1	mg/kg	< 0.1	-	-	-
Xylenes - Total	0.3	mg/kg	< 0.3	-	-	-
4-Bromofluorobenzene (surr.)	1	%	109	-	-	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	-	-
TRH C6-C10	20	mg/kg	< 20	-	-	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	-	-
TRH >C10-C16	50	mg/kg	< 50	-	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	-	-

Olient Oceanile ID						
Client Sample ID			SS-33_0.0-0.1	SS-35_0.2-0.3	SS-37_0.2-0.3	SS-34_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Se28416	S18-Se28417	S18-Se28418	S18-Se28419
Date Sampled			Sep 20, 2018	Sep 20, 2018	Sep 20, 2018	Sep 20, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM Fr	actions					
TRH >C16-C34	100	mg/kg	< 100	-	-	-
TRH >C34-C40	100	mg/kg	< 100	-	-	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	-	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	-	-
Acenaphthene	0.5	mg/kg	< 0.5	-	-	-
Acenaphthylene	0.5	mg/kg	< 0.5	-	-	-
Anthracene	0.5	mg/kg	< 0.5	-	-	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	-	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	-	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Chrysene	0.5	mg/kg	< 0.5	-	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	-	-
Fluoranthene	0.5	mg/kg	< 0.5	-	-	-
Fluorene	0.5	mg/kg	< 0.5	-	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	-	-
Naphthalene	0.5	mg/kg	< 0.5	-	-	-
Phenanthrene	0.5	mg/kg	< 0.5	-	-	-
Pyrene	0.5	mg/kg	< 0.5	-	-	-
Total PAH*	0.5	mg/kg	< 0.5	-	-	-
2-Fluorobiphenyl (surr.)	1	%	116	-	-	-
p-Terphenyl-d14 (surr.)	1	%	113	-	-	-
Organochlorine Pesticides		1				
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	-
a-BHC	0.05	mg/kg	< 0.05	-	-	-
Aldrin	0.05	mg/kg	< 0.05	-	-	-
b-BHC	0.05	mg/kg	< 0.05	-	-	-
d-BHC	0.05	mg/kg	< 0.05	-	-	-
Dieldrin	0.05	mg/kg	< 0.05	-	-	-
Endosulfan I	0.05	mg/kg	< 0.05	-	-	-
Endosulfan II	0.05	mg/kg	< 0.05	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	-
Endrin	0.05	mg/kg	< 0.05	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	-
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	-
Hexachlorobenzene Methovychlor	0.05	mg/kg	< 0.05	-	-	-
Methoxychlor	0.05	mg/kg	< 0.05	<u>-</u>	-	-
Toxaphene	1	mg/kg	< 1	-	-	-

Client Sample ID			SS-33_0.0-0.1	SS-35_0.2-0.3	SS-37_0.2-0.3	SS-34_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Se28416	S18-Se28417	S18-Se28418	S18-Se28419
Date Sampled			Sep 20, 2018	Sep 20, 2018	Sep 20, 2018	Sep 20, 2018
Test/Reference	LOR	Unit				
Organochlorine Pesticides		<u>'</u>				
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	-	-
Dibutylchlorendate (surr.)	1	%	121	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	101	-	-	-
Polychlorinated Biphenyls		,				
Aroclor-1016	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1232	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1242	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1248	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1254	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1260	0.1	mg/kg	< 0.1	-	-	-
Total PCB*	0.1	mg/kg	< 0.1	-	-	-
Dibutylchlorendate (surr.)	1	%	121	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	101	-	-	-
% Clay	1	%	-	19	-	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	-	47	-	-
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	5.0	-	-
% Moisture	1	%	9.4	16	12	6.8
Heavy Metals						
Arsenic	2	mg/kg	< 2	< 2	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	11	18	17	12
Copper	5	mg/kg	9.9	< 5	< 5	12
Lead	5	mg/kg	40	26	13	21
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5	9.3
Zinc	5	mg/kg	49	7.2	< 5	42
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	-	2.5	-	-

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	SS-41_0.2-0.3 Soil S18-Se28420 Sep 20, 2018	SS-42_0.0-0.1 Soil S18-Se28421 Sep 20, 2018	SS-43_0.0-0.1 Soil S18-Se28422 Sep 20, 2018	SS-44_0.0-0.1 Soil S18-Se28423 Sep 20, 2018
reserverence	LOIK	Offic				
% Moisture	1	%	8.8	5.5	7.6	7.9
Heavy Metals						
Arsenic	2	mg/kg	< 2	< 2	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	23	17	11	24
Copper	5	mg/kg	< 5	< 5	8.1	18
Lead	5	mg/kg	12	19	29	58
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1

Client Sample ID			SS-41 0.2-0.3	SS-42 0.0-0.1	SS-43 0.0-0.1	SS-44 0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Se28420	S18-Se28421	S18-Se28422	S18-Se28423
Date Sampled			Sep 20, 2018	Sep 20, 2018	Sep 20, 2018	Sep 20, 2018
Test/Reference	LOR	Unit				
Heavy Metals						
Nickel	5	mg/kg	< 5	< 5	8.2	6.8
Zinc	5	mg/kg	< 5	26	37	450

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			SS-45_0.0-0.1 Soil S18-Se28424 Sep 20, 2018	SS-48_0.2-0.3 Soil S18-Se28425 Sep 20, 2018	SS-46_0.0-0.1 Soil S18-Se28426 Sep 20, 2018	SS-47_0.0-0.1 Soil S18-Se28427 Sep 20, 2018
Test/Reference	LOR	Unit				
% Moisture	1	%	9.5	8.1	11	11
Heavy Metals						
Arsenic	2	mg/kg	< 2	< 2	< 2	13
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	13	16	15	10
Copper	5	mg/kg	9.2	< 5	7.4	23
Lead	5	mg/kg	23	7.3	13	38
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	6.6	< 5	10	5.8
Zinc	5	mg/kg	44	< 5	24	50

Client Sample ID Sample Matrix			SS-49_0.2-0.3 Soil	SS-50_0.0-0.1 Soil	SS-51_0.0-0.1 Soil	SS-52_0.0-0.1 Soil
Eurofins mgt Sample No.			S18-Se28428	S18-Se28429	S18-Se28430	S18-Se28431
Date Sampled			Sep 20, 2018	Sep 20, 2018	Sep 20, 2018	Sep 20, 2018
Test/Reference	LOR	Unit				
Organochlorine Pesticides	·	•				
Chlordanes - Total	0.1	mg/kg	-	-	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	-	-	< 0.05
a-BHC	0.05	mg/kg	-	-	-	< 0.05
Aldrin	0.05	mg/kg	-	-	-	< 0.05
b-BHC	0.05	mg/kg	-	-	-	< 0.05
d-BHC	0.05	mg/kg	-	-	-	< 0.05
Dieldrin	0.05	mg/kg	-	-	-	< 0.05
Endosulfan I	0.05	mg/kg	-	-	-	< 0.05
Endosulfan II	0.05	mg/kg	-	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	-	< 0.05
Endrin	0.05	mg/kg	-	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	-	< 0.05
Endrin ketone	0.05	mg/kg	-	-	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	-	-	< 0.05
Heptachlor	0.05	mg/kg	-	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	-	< 0.05
Methoxychlor	0.05	mg/kg	-	-	-	< 0.05

Client Sample ID			SS-49_0.2-0.3	SS-50_0.0-0.1	SS-51_0.0-0.1	SS-52_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Se28428	S18-Se28429	S18-Se28430	S18-Se28431
Date Sampled			Sep 20, 2018	Sep 20, 2018	Sep 20, 2018	Sep 20, 2018
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Toxaphene	1	mg/kg	-	-	-	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	-	-	120
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	99
Polychlorinated Biphenyls		_				
Aroclor-1016	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1221	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1232	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1242	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1248	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1254	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1260	0.1	mg/kg	-	-	-	< 0.1
Total PCB*	0.1	mg/kg	-	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	-	-	120
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	99
% Moisture	1	%	4.3	9.4	1.6	4.9
Heavy Metals	1	•				
Arsenic	2	mg/kg	< 2	< 2	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	< 5	21	< 5	7.7
Copper	5	mg/kg	< 5	44	16	9.6
Lead	5	mg/kg	< 5	530	160	37
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	31	12	< 5
Zinc	5	mg/kg	< 5	130	21	39

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	SS-53_0.0-0.1 Soil S18-Se28432 Sep 20, 2018	SS-30_0.0-0.1 Soil S18-Se28435 Sep 20, 2018	SS-32_0.0-0.1 Soil S18-Se28436 Sep 20, 2018	SS-36_0.0-0.1 Soil S18-Se28437 Sep 20, 2018
% Clay	1	%	-	-	4.7	-
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	-	-	140	-
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	-	6.4	-
% Moisture	1	%	6.9	9.9	9.8	8.6
Heavy Metals						
Arsenic	2	mg/kg	< 2	4.9	4.8	5.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	12	11	15	13
Copper	5	mg/kg	8.5	48	20	16
Lead	5	mg/kg	37	150	27	17
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	5.2	< 5	10	13
Zinc	5	mg/kg	37	520	71	54

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	SS-53_0.0-0.1 Soil S18-Se28432 Sep 20, 2018	Soil S18-Se28435	SS-32_0.0-0.1 Soil S18-Se28436 Sep 20, 2018	SS-36_0.0-0.1 Soil S18-Se28437 Sep 20, 2018
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	-	-	17	-

Client Sample ID			SS-40_0.0-0.1
Sample Matrix			Soil
Eurofins mgt Sample No.			S18-Se28438
Date Sampled			Sep 20, 2018
Test/Reference	LOR	Unit	
% Moisture	1	%	12
Heavy Metals			
Arsenic	2	mg/kg	7.9
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	18
Copper	5	mg/kg	7.4
Lead	5	mg/kg	19
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	< 5
Zinc	5	mg/kg	17

Report Number: 618880-S

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Sep 24, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C36			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 24, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 24, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
BTEX	Melbourne	Sep 24, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Sep 24, 2018	14 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Melbourne	Sep 24, 2018	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Melbourne	Sep 24, 2018	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Clay	Brisbane	Sep 24, 2018	6 Day
- Method: LTM-GEN-7040			
pH (1:5 Aqueous extract at 25°C as rec.)	Melbourne	Sep 24, 2018	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Metals M8	Melbourne	Sep 24, 2018	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Melbourne	Sep 24, 2018	7 Day
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	Sep 25, 2018	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
% Moisture	Melbourne	Sep 21, 2018	14 Day

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Sep 20, 2018 6:00 PM

 Report #:
 618880
 Due:
 Sep 27, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х										
Bris	bane Laborator	y - NATA Site#	20794			Х												
Pert	h Laboratory - N	NATA Site # 237	'36															
Exte	rnal Laboratory	1		1														
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID													
1	SS-29_0.0-0.1	Sep 20, 2018		Soil	S18-Se28412									Х		Х		
2	SS-29_2.6-2.7	Sep 20, 2018		Soil	S18-Se28413						Х			Х	Х	Х		Х
3	QA20180920- JC01	Sep 20, 2018		Soil	S18-Se28414									Х		Х		
4	SS-31_0.2-0.3	Sep 20, 2018		Soil	S18-Se28415									Х		Х		
5	SS-33_0.0-0.1	Sep 20, 2018		Soil	S18-Se28416		Х				Х	Х	Х	Х	Х	Х		Х
6	SS-35_0.2-0.3	Sep 20, 2018		Soil	S18-Se28417	Х				Х				Х		Х	Х	
7	SS-37_0.2-0.3	Sep 20, 2018		Soil	S18-Se28418									Х		Х		

S18-Se28419

S18-Se28420

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Χ

Χ

Page 9 of 22
Report Number: 618880-S

SS-34_0.0-0.1 Sep 20, 2018

SS-41_0.2-0.3 Sep 20, 2018

Soil

Soil

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Sep 20, 2018 6:00 PM

 Report #:
 618880
 Due:
 Sep 27, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Contact Name: Claudia Bennett

		Sai	mple Detail		% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	ХЭТВ	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 14271					Х	Х	Х	Χ	Х	Х	Χ	Χ	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217			Х	Х										
		y - NATA Site #			Х												
Pert	<mark>h Laboratory - N</mark>	NATA Site # 237		ı													
10	SS-42_0.0-0.1	- ' - '	Soil	S18-Se28421									Χ		Χ		
11	SS-43_0.0-0.1		Soil	S18-Se28422									Χ		Χ		
12	SS-44_0.0-0.1		Soil	S18-Se28423									Χ		Χ		
13	SS-45_0.0-0.1		Soil	S18-Se28424									Х		Х		
14	SS-48_0.2-0.3	1	Soil	S18-Se28425									Х		Χ		
15	SS-46_0.0-0.1	Sep 20, 2018	Soil	S18-Se28426									Χ		Χ		
16	SS-47_0.0-0.1	Sep 20, 2018	Soil	S18-Se28427									Χ		Χ		\square
17	SS-49_0.2-0.3		Soil	S18-Se28428									Χ		Χ		\square
18	SS-50_0.0-0.1	Sep 20, 2018	Soil	S18-Se28429									Χ		Χ		\square
19	SS-51_0.0-0.1	Sep 20, 2018	Soil	S18-Se28430									Χ		Χ		\square
20	SS-52_0.0-0.1	Sep 20, 2018	Soil	S18-Se28431							Χ	Х	Χ		Χ		
21	SS-53_0.0-0.1	Sep 20, 2018	Soil	S18-Se28432									Χ		Χ		

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Sep 20, 2018 6:00 PM

 Report #:
 618880
 Due:
 Sep 27, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

		Sar	mple Detail			% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 1427	1					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 18	8217				Х	Х										
Bris	bane Laborator	y - NATA Site #	20794			Х												
Pert	h Laboratory - N	IATA Site # 237	36															
22	TS	Sep 20, 2018		Nater	S18-Se28433										Х			
23	ТВ	Sep 20, 2018		Nater	S18-Se28434										Х			
24	SS-30_0.0-0.1	Sep 20, 2018		Soil	S18-Se28435		Х							Х		Х		
25	SS-32_0.0-0.1			Soil	S18-Se28436	Х				Х				Х		Х	Х	
26	SS-36_0.0-0.1			Soil	S18-Se28437									Х		Х		
27	SS-40_0.0-0.1			Soil	S18-Se28438									Х		Х		
28	SS-29_0.2-0.3			Soil	S18-Se28556				Х									
29	SS-29_1.0-1.1	Sep 20, 2018		Soil	S18-Se28557				Х									
30	SS-29_1.6-1.7	<u> </u>		Soil	S18-Se28558				Х									
31	SS-29_2.0-2.1	Sep 20, 2018		Soil	S18-Se28559				Х									
32	SS-31_0.0-0.1	Sep 20, 2018		Soil	S18-Se28560				Х									
33	SS-33_0.2-0.3	Sep 20, 2018		Soil	S18-Se28561				Х									

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Sep 20, 2018 6:00 PM

 Report #:
 618880
 Due:
 Sep 27, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	71					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217				Х	Х										
	bane Laborator					Х												
Pert	h Laboratory - N	NATA Site # 237	36	I														
34	SS-35_0.0-0.1			Soil	S18-Se28562				Х									
35	SS-35_1.0-1.1	Sep 20, 2018		Soil	S18-Se28563				Х									
36	SS-35_1.6-1.7	Sep 20, 2018		Soil	S18-Se28564				Х									
37	SS-37_0.0-0.1	Sep 20, 2018		Soil	S18-Se28565				Х									
38	SS-37_0.9-1.0	Sep 20, 2018		Soil	S18-Se28566				Х									
39	SS-37_1.4-1.5	Sep 20, 2018		Soil	S18-Se28567				Х									
40	SS-34_0.2-0.3	Sep 20, 2018		Soil	S18-Se28568			Х										
41	QA20180920- JC02	Sep 20, 2018		Soil	S18-Se28569				Х									
42	SS-41_0.0-0.1	Sep 20, 2018		Soil	S18-Se28570				Х									
43	SS-41_1.0-1.1	Sep 20, 2018		Soil	S18-Se28571				Х									
44	SS-42_0.2-0.3	Sep 20, 2018		Soil	S18-Se28572				Х									

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Sep 20, 2018 6:00 PM

 Report #:
 618880
 Due:
 Sep 27, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

		Sa	mple Detail		% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	ХЭТВ	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 14271					Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ
Sydi	ney Laboratory	- NATA Site # 1	8217			Х	Х										
Bris	bane Laborator	y - NATA Site #	20794		Х												
Pert	h Laboratory - N	ATA Site # 237	36	,													
45	SS-42_1.0-1.1	Sep 20, 2018	Soil	S18-Se28573				Х									
46	SS-44_0.2-0.3		Soil	S18-Se28574				Х									
47	SS-45_0.2-0.3		Soil	S18-Se28575				Х									
48	SS-45_1.3-1.4	Sep 20, 2018	Soil	S18-Se28576				Х									
49	SS-48_0.0-0.1	Sep 20, 2018	Soil	S18-Se28577				Х									
50	SS-49_0.0-0.1	Sep 20, 2018	Soil	S18-Se28578				Х									
51	SS-49_0.9-1.0	Sep 20, 2018	Soil	S18-Se28579				Х									
52	SS-50_0.2-0.3	Sep 20, 2018	Soil	S18-Se28580				Х								ш	
53	SS-52_0.2-0.3	Sep 20, 2018	Soil	S18-Se28581				Х									
54	SS-53_0.2-0.3		Soil	S18-Se28582				Х									
55	SS-30_0.2-0.3		Soil	S18-Se28583				Х								ш	
56	SS-39_0.0-0.1	Sep 20, 2018	Soil	S18-Se28602				Х									

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Sep 20, 2018 6:00 PM

 Report #:
 618880
 Due:
 Sep 27, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

Sample Detail	% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melbourne Laboratory - NATA Site # 1254 & 14271				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Sydney Laboratory - NATA Site # 18217		Х	Х										
Brisbane Laboratory - NATA Site # 20794	X												
Perth Laboratory - NATA Site # 23736													
57 SS-39_0.2-0.3 Sep 20, 2018 Soil S18-Se2	8603			Х									
Test Counts	2	2	1	29	2	2	2	2	25	4	25	2	2

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Report Number: 618880-S

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	<u> </u>	•	'		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xvlenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank	1				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	IIIg/Rg	100	100	1 455	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&i)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene		< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
	mg/kg	< 0.5	0.5	Pass	
Fluorene Fluorene	mg/kg	1			
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5 0.5	Pass Pass	
\	mg/kg	< 0.5			
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene Math ad Blank	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides		.04	0.4	Dana	
Chlordanes - Total 4.4'-DDD	mg/kg	< 0.1	0.1	Pass	
	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank	i iiig/kg			1 455	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1010	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232 Aroclor-1242					
	mg/kg	< 0.1	0.1	Pass	
Aroclor 1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank		I . I		_	
% Clay	%	< 1	1	Pass	
Method Blank		l l			
Heavy Metals				_	
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	77	70-130	Pass	
TRH C10-C14	%	80	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	78	70-130	Pass	
Toluene	%	82	70-130	Pass	
Ethylbenzene	%	96	70-130	Pass	
m&p-Xylenes	%	91	70-130	Pass	
Xylenes - Total	%	94	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	121	70-130	Pass	
TRH C6-C10	%	79	70-130	Pass	
TRH >C10-C16	%	78	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	92	70-130	Pass	
Acenaphthylene	%	106	70-130	Pass	
Anthracene	%	113	70-130	Pass	
-			+ +		

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Benzo(a)pyrene			%	91	70-130	Pass	
Benzo(b&j)fluoranthene			%	90	70-130	Pass	
Benzo(g.h.i)perylene			%	87	70-130	Pass	
Benzo(k)fluoranthene			%	114	70-130	Pass	
Chrysene			%	90	70-130	Pass	
Dibenz(a.h)anthracene			%	72	70-130	Pass	
Fluoranthene			%	118	70-130	Pass	
Fluorene			%	97	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	79	70-130	Pass	
Naphthalene			%	109	70-130	Pass	
Phenanthrene			%	99	70-130	Pass	
Pyrene			%	114	70-130	Pass	
LCS - % Recovery			70	117	70 130	1 433	
Organochlorine Pesticides							
4.4'-DDD			%	125	70-130	Pass	
				125			
4.4'-DDE			%	128	70-130	Pass	
4.4'-DDT			%	105	70-130	Pass	
a-BHC			%	109	70-130	Pass	
Aldrin			%	123	70-130	Pass	
b-BHC			%	113	70-130	Pass	
d-BHC			%	84	70-130	Pass	
Dieldrin			%	127	70-130	Pass	
Endosulfan I			%	120	70-130	Pass	
Endosulfan II			%	111	70-130	Pass	
Endosulfan sulphate			%	117	70-130	Pass	
Endrin			%	120	70-130	Pass	
Endrin aldehyde			%	128	70-130	Pass	
Endrin ketone			%	121	70-130	Pass	
g-BHC (Lindane)			%	112	70-130	Pass	
Heptachlor			%	117	70-130	Pass	
Heptachlor epoxide			%	118	70-130	Pass	
Hexachlorobenzene			%	106	70-130	Pass	
Methoxychlor			%	106	70-130	Pass	
LCS - % Recovery							
Polychlorinated Biphenyls							
Aroclor-1260			%	100	70-130	Pass	
LCS - % Recovery				•			
% Clay			%	93	70-130	Pass	
LCS - % Recovery				•			
Heavy Metals							
Arsenic			%	95	80-120	Pass	
Cadmium			%	98	80-120	Pass	
Chromium			%	105	80-120	Pass	
Copper			%	103	80-120	Pass	
Lead			%	102	80-120	Pass	
Mercury			%	101	75-125	Pass	
Nickel			%	103	80-120	Pass	
Zinc		0.1	%	107	80-120	Pass	0
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbons -	1999 NEPM Fracti	ions		Result 1			
TRH C6-C9			%		70 120	Door	
TRH C6-C9 TRH C10-C14	M18-Se31848 M18-Se31843	NCP NCP	% %	77 87	70-130 70-130	Pass Pass	
				. ×/		P300	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
BTEX				Result 1			
Benzene	M18-Se31838	NCP	%	77	70-130	Pass	
Toluene	M18-Se31848	NCP	%	77	70-130	Pass	
Ethylbenzene	M18-Se31848	NCP	%	82	70-130	Pass	
m&p-Xylenes	M18-Se31848	NCP	%	80	70-130	Pass	
o-Xylene	M18-Se31848	NCP	%	84	70-130	Pass	
Xvlenes - Total	M18-Se31848	NCP	%	82	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbo	ns - 2013 NEPM Fract	ions		Result 1			
Naphthalene	M18-Se31848	NCP	%	116	70-130	Pass	
TRH C6-C10	M18-Se31848	NCP	%	89	70-130	Pass	
TRH >C10-C16	M18-Se31843	NCP	%	82	70-130	Pass	
	W110-3631043	INCF	/0	02	70-130	Fass	
Spike - % Recovery				Dogult 1	T	I	
Polycyclic Aromatic Hydrocarb		NCD	0/	Result 1	70.420	Doos	
Acenaphthene	M18-Se33452	NCP	%	74	70-130	Pass	
Acethorage	M18-Se33452	NCP	%	85	70-130	Pass	
Anthracene	M18-Se33452	NCP	%	89	70-130	Pass	
Benz(a)anthracene	M18-Se33452	NCP	%	73	70-130	Pass	
Benzo(a)pyrene	M18-Se33452	NCP	%	87	70-130	Pass	
Benzo(b&j)fluoranthene	M18-Se33452	NCP	%	88	70-130	Pass	
Benzo(g.h.i)perylene	M18-Se33452	NCP	%	87	70-130	Pass	
Benzo(k)fluoranthene	M18-Se33452	NCP	%	101	70-130	Pass	
Chrysene	M18-Se33452	NCP	%	72	70-130	Pass	
Dibenz(a.h)anthracene	M18-Se33452	NCP	%	75	70-130	Pass	
Fluoranthene	M18-Se33452	NCP	%	93	70-130	Pass	
Fluorene	M18-Se33452	NCP	%	78	70-130	Pass	
Indeno(1.2.3-cd)pyrene	M18-Se33452	NCP	%	78	70-130	Pass	
Naphthalene	M18-Se33452	NCP	%	89	70-130	Pass	
Phenanthrene	M18-Se33452	NCP	%	80	70-130	Pass	
Pyrene	M18-Se33452	NCP	%	95	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
4.4'-DDD	M18-Se33044	NCP	%	118	70-130	Pass	
4.4'-DDE	M18-Se33044	NCP	%	127	70-130	Pass	
4.4'-DDT	M18-Se33044	NCP	%	116	70-130	Pass	
a-BHC	M18-Se33044	NCP	%	103	70-130	Pass	
Aldrin	M18-Se33044	NCP	%	113	70-130	Pass	
b-BHC	M18-Se33044	NCP	%	106	70-130	Pass	
d-BHC	M18-Se33044	NCP	%	114	70-130	Pass	
Dieldrin	M18-Se33044	NCP	%	124	70-130	Pass	
Endosulfan I	M18-Se33044	NCP	%	113	70-130	Pass	
Endosulfan II	M18-Se33044	NCP	%	112	70-130	Pass	
	M18-Se33044 M18-Se33044						
Endosulfan sulphate		NCP	%	125	70-130	Pass	
Endrin aldahuda	M18-Se33044	NCP	%	114	70-130	Pass	
Endrin aldehyde	M18-Se33044	NCP	%	107	70-130	Pass	
Endrin ketone	M18-Se33044	NCP	%	122	70-130	Pass	
g-BHC (Lindane)	M18-Se33044	NCP	%	107	70-130	Pass	
Heptachlor	M18-Se33044	NCP	%	115	70-130	Pass	
Heptachlor epoxide	M18-Se33044	NCP	%	110	70-130	Pass	
Hexachlorobenzene	M18-Se33044	NCP	%	99	70-130	Pass	
Methoxychlor	M18-Se33044	NCP	%	130	70-130	Pass	
Spike - % Recovery							
Heavy Metals		1		Result 1			
Arsenic	S18-Se28423	CP	%	98	75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Cadmium	S18-Se28423	СР	%	101			75-125	Pass	
Chromium	S18-Se28423	СР	%	105			75-125	Pass	
Copper	S18-Se28423	СР	%	114			75-125	Pass	
Lead	S18-Se28423	СР	%	98			75-125	Pass	
Mercury	S18-Se28423	СР	%	97			70-130	Pass	
Nickel	S18-Se28423	СР	%	99			75-125	Pass	
Zinc	S18-Se28423	СР	%	142			75-125	Fail	Q08
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	A18-Se28039	NCP	%	14	14	1.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M18-Se31847	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M18-Se29740	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M18-Se29740	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M18-Se29740	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate				•					
BTEX				Result 1	Result 2	RPD			
Benzene	M18-Se31847	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M18-Se31847	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M18-Se31847	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M18-Se31847	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M18-Se31847	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	M18-Se31847	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate	1010 0001047	1101	ilig/kg	1 0.0	\ 0.0		0070	1 455	
Total Recoverable Hydrocarbons -	. 2013 NEPM Fract	ione		Result 1	Result 2	RPD			
Naphthalene	M18-Se31847	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M18-Se31847	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	M18-Se29740	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M18-Se29740	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	M18-Se29740	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate	W110-3629740	INCF	ilig/kg	1 < 100	_ < 100		30 /6	rass_	
Polycyclic Aromatic Hydrocarbons	 s			Result 1	Result 2	RPD			
Acenaphthene	M18-Se30270	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M18-Se30270	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M18-Se30270	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M18-Se30270	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M18-Se30270	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&i)fluoranthene	M18-Se30270	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M18-Se30270	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M18-Se30270	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M18-Se30270	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M18-Se30270	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M18-Se30270	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M18-Se30270	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	1	NCP		1					
Indeno(1.2.3-cd)pyrene	M18-Se30270	†	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M18-Se30270	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M18-Se30270	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M18-Se30270	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate					1				
				Result 1	Result 2	RPD			
% Clay	M18-Se32954	NCP	%	5.0	3.8	29	30%	Pass	
Conductivity (1:5 aqueous extract at 25°C as rec.)	M18-Se31089	NCP	uS/cm	160	160	<1	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	M18-Se31089	NCP	pH Units	7.8	7.8	pass	30%	Pass	
Duplicate									
Cation Exchange Capacity				Result 1	Result 2	RPD			
Cation Exchange Capacity	S18-Se28417	CP	meq/100g	2.5	2.7	9.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-Se28422	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S18-Se28422	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-Se28422	CP	mg/kg	11	8.0	28	30%	Pass	
Copper	S18-Se28422	CP	mg/kg	8.1	6.4	23	30%	Pass	
Lead	S18-Se28422	CP	mg/kg	29	22	25	30%	Pass	
Mercury	S18-Se28422	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S18-Se28422	CP	mg/kg	8.2	6.9	18	30%	Pass	
Zinc	S18-Se28422	CP	mg/kg	37	33	13	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-Se28423	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S18-Se28423	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-Se28423	CP	mg/kg	24	25	2.0	30%	Pass	
Copper	S18-Se28423	CP	mg/kg	18	18	2.0	30%	Pass	
Lead	S18-Se28423	CP	mg/kg	58	59	2.0	30%	Pass	
Mercury	S18-Se28423	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S18-Se28423	CP	mg/kg	6.8	7.0	3.0	30%	Pass	
Zinc	S18-Se28423	CP	mg/kg	450	450	<1	30%	Pass	

Report Number: 618880-S

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N02

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference Q08

Authorised By

Nibha Vaidva Analytical Services Manager Chris Bennett Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Jonathon Angell Senior Analyst-Inorganic (QLD) Joseph Edouard Senior Analyst-Organic (VIC) Julie Kav Senior Analyst-Inorganic (VIC) Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins. Impt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mgt be liable for consequential damages including, but not limited to, lost profits, damages for relative to meet deadlines and lost production arising from this report. This document shall be reproduced or expense included on the person of the reproduced or expense in dilated and relates only to the identity estimates indicated otherwise, the tests were, the feature of the person of the pers

Report Number: 618880-S

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention: Claudia Bennett

618880-W Report PEAT ISLAND Project name Project ID 54933

Received Date Sep 20, 2018

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			R20TS Water S18-Se28433 Sep 20, 2018	TB Water S18-Se28434 Sep 20, 2018
Test/Reference	LOR	Unit		
BTEX				
Benzene	0.001	mg/L	88	< 0.001
Toluene	0.001	mg/L	88	< 0.001
Ethylbenzene	0.001	mg/L	91	< 0.001
m&p-Xylenes	0.002	mg/L	88	< 0.002
o-Xylene	0.001	mg/L	96	< 0.001
Xylenes - Total	0.003	mg/L	91	< 0.003
4-Bromofluorobenzene (surr.)	1	%	107	127

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeBTEXMelbourneSep 22, 201814 Day

- Method: TRH C6-C40 - LTM-ORG-2010

Report Number: 618880-W

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Sep 20, 2018 6:00 PM

 Report #:
 618880
 Due:
 Sep 27, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melb	ourne Laborato	ory - NATA Site					Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ		
Sydi	ney Laboratory	- NATA Site # 1			Х	Х												
Bris	bane Laborator	y - NATA Site#	20794			Х												
Pert	h Laboratory - N	NATA Site # 237	'36															
Exte	rnal Laboratory	,																
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID													
1	SS-29_0.0-0.1	Sep 20, 2018		Soil	S18-Se28412									Х		Х		
2	SS-29_2.6-2.7	Sep 20, 2018		Soil	S18-Se28413						Х			Х	Х	Х		Χ
3	QA20180920- JC01	Sep 20, 2018		Soil	S18-Se28414									Х		Х		
4	SS-31_0.2-0.3	Sep 20, 2018		Soil	S18-Se28415									Х		Х		
5	SS-33_0.0-0.1	Sep 20, 2018		Soil	S18-Se28416		Х				Х	Х	Х	Х	Х	Х		Χ
6	SS-35_0.2-0.3	Sep 20, 2018		Soil	S18-Se28417	Х				Х				Х		Х	Х	
7	SS-37_0.2-0.3	Sep 20, 2018		Soil	S18-Se28418									Х		Х		
8	SS-34_0.0-0.1	Sep 20, 2018		Soil	S18-Se28419									Х		Х		
9	SS-41_0.2-0.3	Sep 20, 2018		Soil	S18-Se28420									Х		Х		

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 3 of 11

Date Reported:Sep 28, 2018

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

 Order No.:
 Received:
 Sep 20, 2018 6:00 PM

 Report #:
 618880
 Due:
 Sep 27, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

		Saı	mple Detail			% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Mell	ourne Laborato	rne Laboratory - NATA Site # 1254 & 14271							Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ
Syd	ney Laboratory	Laboratory - NATA Site # 18217																
Bris	bane Laboratory	rne Laboratory - NATA Site # 1254 & 14271 r Laboratory - NATA Site # 18217 ne Laboratory - NATA Site # 20794																
Pert	h Laboratory - N	NATA Site # 237																
10	SS-42_0.0-0.1	Sep 20, 2018		Soil	S18-Se28421									Х		Х		
11	_	Sep 20, 2018		Soil	S18-Se28422									Х		Χ		
12	SS-44_0.0-0.1	Sep 20, 2018		Soil	S18-Se28423									Х		Χ		
13	SS-45_0.0-0.1	Sep 20, 2018		Soil	S18-Se28424									Х		Х		
14	SS-48_0.2-0.3	Sep 20, 2018		Soil	S18-Se28425									Χ		Χ		
15	SS-46_0.0-0.1	Sep 20, 2018		Soil	S18-Se28426									Х		Х		
16	SS-47_0.0-0.1	Sep 20, 2018		Soil	S18-Se28427									Х		Х		
17	SS-49_0.2-0.3	Sep 20, 2018		Soil	S18-Se28428									Х		Х		
18	SS-50_0.0-0.1	Sep 20, 2018		Soil	S18-Se28429									Х		Х		
19	SS-51_0.0-0.1	Sep 20, 2018		Soil	S18-Se28430									Х		Х		
20	SS-52_0.0-0.1	Sep 20, 2018		Soil	S18-Se28431							Х	Х	Х		Х		
21	SS-53_0.0-0.1	Sep 20, 2018		Soil	S18-Se28432									Χ		Χ		

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +613 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Sep 20, 2018 6:00 PM

 Report #:
 618880
 Due:
 Sep 27, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

		Sample Detai	I		% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Mel	oourne Laborato	ory - NATA Site # 1254 & 1					Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	
Syd	ney Laboratory	- NATA Site # 18217			Х	Х											
Bris	bane Laborator	y - NATA Site # 20794		Х													
Pert	h Laboratory - N	NATA Site # 23736															
22	TS	Sep 20, 2018	Water	S18-Se28433										Х			
23	ТВ	Sep 20, 2018	Water	S18-Se28434										Х			
24	SS-30_0.0-0.1	Sep 20, 2018	Soil	S18-Se28435		Х							Х		Х		
25	SS-32_0.0-0.1	Sep 20, 2018	Soil	S18-Se28436	Х				Х				Х		Х	Х	
26	SS-36_0.0-0.1	Sep 20, 2018	Soil	S18-Se28437									Х		Х		
27	SS-40_0.0-0.1	Sep 20, 2018	Soil	S18-Se28438									Х		Х		
28	SS-29_0.2-0.3	Sep 20, 2018	Soil	S18-Se28556				Х								<u> </u>	\square
29	SS-29_1.0-1.1	Sep 20, 2018	Soil	S18-Se28557				Х								<u> </u>	\square
30	SS-29_1.6-1.7	Sep 20, 2018	Soil	S18-Se28558				Х								<u> </u>	\square
31	SS-29_2.0-2.1	Sep 20, 2018	Soil	S18-Se28559				Х								<u> </u>	\square
32	SS-31_0.0-0.1	Sep 20, 2018	Soil	S18-Se28560				Х								<u> </u>	
33	SS-33_0.2-0.3	Sep 20, 2018	Soil	S18-Se28561				Х									

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Sep 20, 2018 6:00 PM

 Report #:
 618880
 Due:
 Sep 27, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

			% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons		
Mell	ourne Laborato	ory - NATA Site					Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 1			Х	Х											
	bane Laborator			Х													
Pert	h Laboratory - N	NATA Site # 237															
34	SS-35_0.0-0.1	<u> </u>	Soil	S18-Se28562				Х									
35	SS-35_1.0-1.1		Soil	S18-Se28563				Х									
36	SS-35_1.6-1.7	Sep 20, 2018	Soil	S18-Se28564				Х									
37	SS-37_0.0-0.1	Sep 20, 2018	Soil	S18-Se28565				Х									
38	SS-37_0.9-1.0	Sep 20, 2018	Soil	S18-Se28566				Х									
39	SS-37_1.4-1.5	Sep 20, 2018	Soil	S18-Se28567				Х									
40	SS-34_0.2-0.3	Sep 20, 2018	Soil	S18-Se28568			Х										
41	QA20180920- JC02	Sep 20, 2018	Soil	S18-Se28569				Х									
42	SS-41_0.0-0.1	Sep 20, 2018	Soil	S18-Se28570				Х									
43	SS-41_1.0-1.1	Sep 20, 2018	Soil	S18-Se28571				Х									
44	SS-42_0.2-0.3	Sep 20, 2018	Soil	S18-Se28572				Х									

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Sep 20, 2018 6:00 PM

 Report #:
 618880
 Due:
 Sep 27, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

		Sai	mple Detail		% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	ХЭТВ	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site					Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 1			Х	Х											
Bris	bane Laborator	y - NATA Site #		Х													
Pert	h Laboratory - N	NATA Site # 237	ı														
45	SS-42_1.0-1.1	Sep 20, 2018	Soil	S18-Se28573				Х									
46	SS-44_0.2-0.3		Soil	S18-Se28574				Х									
47	SS-45_0.2-0.3		Soil	S18-Se28575				Х									
48	SS-45_1.3-1.4		Soil	S18-Se28576				Х									\vdash
49	SS-48_0.0-0.1		Soil	S18-Se28577				Х									
50	SS-49_0.0-0.1	Sep 20, 2018	Soil	S18-Se28578				Х									\vdash
51	SS-49_0.9-1.0	<u> </u>	Soil	S18-Se28579				Х									\vdash
52	SS-50_0.2-0.3		Soil	S18-Se28580				Х									
53	SS-52_0.2-0.3		Soil	S18-Se28581				Х									
54	SS-53_0.2-0.3		Soil	S18-Se28582				Х									
55	SS-30_0.2-0.3	Sep 20, 2018	Soil	S18-Se28583				Х									
56	SS-39_0.0-0.1	Sep 20, 2018	Soil	S18-Se28602				Х									

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Sep 20, 2018 6:00 PM

 Report #:
 618880
 Due:
 Sep 27, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

Sample Detail	% Clay	Asbestos - WA guidelines	CANCELLED	HOLD	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melbourne Laboratory - NATA Site # 1254 & 14271				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Sydney Laboratory - NATA Site # 18217		Х	Х										
Brisbane Laboratory - NATA Site # 20794	Х												
Perth Laboratory - NATA Site # 23736													
57 SS-39_0.2-0.3 Sep 20, 2018 Soil S18-Se28603				Х									
Test Counts	2	2	1	29	2	2	2	2	25	4	25	2	2

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 9 of 11

ABN : 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 618880-W

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
ВТЕХ									
Benzene			mg/L	< 0.001			0.001	Pass	
Toluene			mg/L	< 0.001			0.001	Pass	
Ethylbenzene			mg/L	< 0.001			0.001	Pass	
m&p-Xylenes			mg/L	< 0.002			0.002	Pass	
o-Xylene			mg/L	< 0.001			0.001	Pass	
Xylenes - Total			mg/L	< 0.003			0.003	Pass	
LCS - % Recovery									
втех									
Benzene			%	94			70-130	Pass	
Toluene			%	95			70-130	Pass	
Ethylbenzene			%	90			70-130	Pass	
m&p-Xylenes			%	93			70-130	Pass	
Xylenes - Total			%	93			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
ВТЕХ				Result 1					
Benzene	B18-Se26628	NCP	%	104			70-130	Pass	
Toluene	B18-Se26628	NCP	%	100			70-130	Pass	
Ethylbenzene	B18-Se26628	NCP	%	104			70-130	Pass	
m&p-Xylenes	B18-Se26628	NCP	%	104			70-130	Pass	
o-Xylene	B18-Se26628	NCP	%	104			70-130	Pass	
Xylenes - Total	B18-Se26628	NCP	%	104			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	B18-Se26627	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	B18-Se26627	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	B18-Se26627	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	B18-Se26627	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	B18-Se26627	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	B18-Se26627	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	

Report Number: 618880-W

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

R20 This sample is a Trip Spike and therefore all results are reported as a percentage

Authorised By

Nibha Vaidya Analytical Services Manager Harry Bacalis Senior Analyst-Volatile (VIC)

Chillian Contraction of the Cont

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Img shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report, In on case shall Eurofins I mg be liable for consequential claims, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall be reported used except in full and relates only to the tiens tested. Unless indicated otherwise, the tests were, the test serves, indicated otherwise, the tests were, the test serves in full and relates only to the tiens tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 618880-W

710201	-1.023						IA	BORA	ATO	RY BATCH NO.:				
PROJECT NO.: 5		-1 -1						_	_	CB.				
PROJECT NAME:										NEPM (2013)				
DATE NEEDED B	02 9245 020	O Porth: 0	9 9/199 N1	00 Bris	shane: 07 3112 2688		_			, , , , , , , , , , , , , , , , , , , ,				
PHONE: Sydney:	UZ 8245 USC	. /1) admin	cw@ibca	com alli	(2) Shurrows @il	osg.com.	au: (3)(CK	en nett @jbsg.cor	n.au			
COMMENTS / SPECIAL	HANDLING / STOP	RAGE OR DISPOSA	L:	com.au,	(2)	oog.co.m.		3	T				TYPE ASBE	
COMMINICIALLY OF ECIME	in in the little of the little	7177 70471 774						Metals		98			ANAL	YSIS
							9	3	4	000/RB			DENTIFICATION	4
					W-1		PFA	Heary	SIE	77		-11	NTIFIC	NEPM/WA
SAMPLE	ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	pH	or	-	Q)	08			OD.	Z
3548 6	0-0-1	Soil	21.9.18		J+B			X	4					\vdash
5554	548 0-0-1 50il 21.9.18]+B 554 0-0-1 PFAS Jav 555 0-0-1 Vials Vials 2/NS 210918 2xV,1xA, 1xM												+	+
5555	3548 0-0-1 50il 21.9-18 J+B 3554 0-0-1 PFAS Jar 3555 0-0-1 Vials TB RINS 210918 2xV,1xA, 1xM											-	-	-
				Vial5		-	141	X			++			
TB		1			Vials		\vdash	獭	×			++	+	-
	118		4		2x V, 1xA, 1xM			X				-	+	+
		4	20-9-18		6	-	-	X	-	×X		-	+	\vdash
							-		-			-	+	\vdash
							-						-	\vdash
							-					-	+	\vdash
,							-						+	\vdash
							-					-	+	\vdash
							-					-	-	\vdash
							\perp					-	+	\vdash
							\perp					-	-	+
						_	\perp		_				+	\vdash
							+						-	\vdash
							+						-	+
				+			25551/50 21/		FOR RECE	IVING	ARII			
	RELINQUISHED BY: METHOD OF SHIPMENT: NAME: DATE: (2) 9 CONSIGNMENT NOTE NO.							IAME:	10	RECEIVED BY:	OOLER SEAL - Yes			
NAME:	DATE:	21/9/18	CON	SIGNIVIEN	II NOTE NO.		D	ATE:	u	100 1- 4 1-10				
OF: JBS&G		24		NSPORT C			0	F: t	Ler		OOLER SEAL - Yes		lr	tact
NAME:	DATE:		CON	ISIGNMEN	IT NOTE NO.			IAME:)F:		DATE:	JOELN SLAL - 165.	HU		cut ii
OF:			TRA	NSPORT C	0					CC	OOLER TEMP	deg C	EDTA P	roud. CT
Container & Preser	vative Codes: P =	Plastic: J = Soil Ja	; B = Glass Bot	tle; N = Niti	ric Acid Prsvd.; C = Sodium Hydroxide Prsvd; V	C = Hydrochl	loric A	cid Prs	vd Vi	al; VS = Sulfuric Acid Prsvd Vial; S = Sulfurio	c Acid Prsvd; Z = Zinc	rrsvd; E =	EDTA PE	5VU, 51

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: Scott Burrows Project name: PEAT ISLAND

Project ID: 54933

COC number: Not provided

Turn around time: 5 Day

Sep 21, 2018 3:37 PM Date/Time received:

Eurofins | mgt reference: 618949

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 14.1 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- XSplit sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.

Custody Seals intact (if used). Notes^{N/A}

ASB bag received for sample SS48 0-0.1 placed on hold in Sydney.

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Scott Burrows - SBurrows@jbsg.com.au.

Note: A copy of these results will also be delivered to the general JBS & G Australia (NSW) P/L email address.

Environmental Laboratory Water Analysis Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

Order No.:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Due:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Sep 21, 2018 3:37 PM

Sep 28, 2018

5 Day

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933 Report #: 618949 Phone: 02 8245 0300 Priority: Fax:

Contact Name: Scott Burrows

		Sa	mple Detail			Metals M8	втех	Eurofins mgt Suite B13	Moisture Set	Moisture Set	Total Recoverable Hydrocarbons	Per- and Polyfluoroalkyl Substances (PFASs)	
Melk	ourne Laborat	ory - NATA Site	# 1254 & 142		Х	Х	Х	Х	Х	Х			
Sydi	ney Laboratory	- NATA Site # 1	8217										
Bris	bane Laborator	y - NATA Site #	20794						Х	Х		Х	
Pert	h Laboratory - I	NATA Site # 237	'36										
Exte	rnal Laboratory	/											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	SS48 0-0.1	Sep 21, 2018		Soil	S18-Se28908	Х			Х				
2	SS54 0-0.1	Sep 21, 2018		Soil	S18-Se28909					Х		Х	
3	SS55 0-0.1	Sep 21, 2018	S18-Se28910					Х		Х			
4	TS	Sep 21, 2018	S18-Se28911		Х								
5	ТВ	Sep 21, 2018		S18-Se28912		Х					\sqcup		
6	RINS 210918	Sep 21, 2018		S18-Se28913	Х						\sqcup		
7	RINS 200918	Sep 21, 2018		Water	S18-Se28914	Х	Х	Х			Х		
Test	Counts					3	3	1	3	3	1	2	

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/hational standards.

Report618949-SProject namePEAT ISLAND

Project ID 54933 Received Date Sep 21, 2018

Client Sample ID			SS48 0-0.1	SS54 0-0.1	SS55 0-0.1
Sample Matrix			Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Se28908	S18-Se28909	S18-Se28910
Date Sampled			Sep 21, 2018	Sep 21, 2018	Sep 21, 2018
Test/Reference	LOR	Unit	-		
Perfluoroalkyl carboxylic acids (PFCAs)	_				
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	-	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	-	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	-	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	-	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	-	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	-	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	-	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	-	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	-	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	-	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA)N11	5	ug/kg	-	< 5	< 5
13C4-PFBA (surr.)	1	%	-	115	132
13C5-PFPeA (surr.)	1	%	-	91	113
13C5-PFHxA (surr.)	1	%	-	102	115
13C4-PFHpA (surr.)	1	%	-	95	119
13C8-PFOA (surr.)	1	%	-	84	111
13C5-PFNA (surr.)	1	%	-	78	114
13C6-PFDA (surr.)	1	%	-	62	108
13C2-PFUnDA (surr.)	1	%	-	61	104
13C2-PFDoDA (surr.)	1	%	-	41	92
13C2-PFTeDA (surr.)	1	%	-	44	95
Perfluoroalkyl sulfonamido substances					
Perfluorooctane sulfonamide (FOSA)N11	5	ug/kg	-	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N- MeFOSA) ^{N11}	5	ug/kg	_	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	-	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	-	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	5	ug/kg	-	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	-	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	10	ug/kg	-	< 10	< 10
13C8-FOSA (surr.)	1	%	-	21	79
D3-N-MeFOSA (surr.)	1	%	-	38	73
D5-N-EtFOSA (surr.)	1	%	-	38	81

Report Number: 618949-S

Client Sample ID			SS48 0-0.1	SS54 0-0.1	SS55 0-0.1
Sample Matrix			Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Se28908	S18-Se28909	S18-Se28910
Date Sampled			Sep 21, 2018	Sep 21, 2018	Sep 21, 2018
Test/Reference	LOR	Unit			
Perfluoroalkyl sulfonamido substances					
D7-N-MeFOSE (surr.)	1	%	-	34	65
D9-N-EtFOSE (surr.)	1	%	-	29	51
D5-N-EtFOSAA (surr.)	1	%	-	36	74
D3-N-MeFOSAA (surr.)	1	%	-	26	77
Perfluoroalkyl sulfonic acids (PFSAs)		,,,			
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	_	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	-	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	-	< 5	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	_	< 5	< 5
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	_	N095.4	< 5
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	-	< 5	< 5
13C3-PFBS (surr.)	1	%	-	105	124
18O2-PFHxS (surr.)	1	%	-	99	123
13C8-PFOS (surr.)	1	%	-	72	100
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)		1 /-			
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	-	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	-	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	-	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N15}	5	ug/kg	-	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	-	184	162
13C2-6:2 FTSA (surr.)	1	%	-	135	136
13C2-8:2 FTSA (surr.)	1	%	-	62	131
PFASs Summations		_			
Sum (PFHxS + PFOS)*	5	ug/kg	-	5.4	< 5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	-	5.4	< 5
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	-	5.4	< 5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	-	< 10	< 10
Sum of PFASs (n=28)*	50	ug/kg	-	< 50	< 50
Heavy Metals					
Arsenic	2	mg/kg	< 2	-	-
Cadmium	0.4	mg/kg	< 0.4	-	-
Chromium	5	mg/kg	13	-	-
Copper	5	mg/kg	< 5	-	-
Lead	5	mg/kg	9.1	-	-
Mercury	0.1	mg/kg	< 0.1	-	-
Nickel	5	mg/kg	8.1	-	-
Zinc	5	mg/kg	17	-	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Sep 24, 2018	180 Day
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Sep 24, 2018	180 Day
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Sep 24, 2018	180 Day
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Sep 24, 2018	180 Day
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Metals M8	Melbourne	Sep 26, 2018	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Brisbane	Sep 21, 2018	14 Day

- Method: LTM-GEN-7080 Moisture

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933 Order No.: Received: Sep 21, 2018 3:37 PM Report #: 618949

Due: Sep 28, 2018

> Priority: 5 Day

Contact Name: Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail								Moisture Set	Moisture Set	Total Recoverable Hydrocarbons	Per- and Polyfluoroalkyl Substances (PFASs)
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	Х	
Sydr	ney Laboratory	- NATA Site # 1	8217									
Brisl	oane Laborator	y - NATA Site #	20794						Х	Х		Х
		NATA Site # 237	36									
Exte	rnal Laboratory	,		1								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	SS48 0-0.1	Sep 21, 2018		Soil	S18-Se28908	Х			Х			
2	SS54 0-0.1	Sep 21, 2018		Soil	S18-Se28909					Х		Х
3	SS55 0-0.1	Sep 21, 2018		Soil	S18-Se28910					Х		Х
4	4 TS Sep 21, 2018 Water S18-Se28911											
5	TB Sep 21, 2018 Water S18-Se28912											
6	RINS 210918	Sep 21, 2018		Water	S18-Se28913	Х						
7	7 RINS 200918 Sep 21, 2018 Water S18-Se28914										Х	
Test	Counts			3	3	1	3	3	1	2		

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Page 4 of 11

Date Reported:Sep 28, 2018

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 5 of 11

ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 618949-S

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA)	ug/kg	< 5		5	Pass	
Perfluoropentanoic acid (PFPeA)	ug/kg	< 5		5	Pass	
Perfluorohexanoic acid (PFHxA)	ug/kg	< 5		5	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/kg	< 5		5	Pass	
Perfluorooctanoic acid (PFOA)	ug/kg	< 5		5	Pass	
Perfluorononanoic acid (PFNA)	ug/kg	< 5		5	Pass	
Perfluorodecanoic acid (PFDA)	ug/kg	< 5		5	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/kg	< 5		5	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/kg	< 5		5	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/kg	< 5		5	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/kg	< 5		5	Pass	
Method Blank	ug/ng				1 400	
Perfluoroalkyl sulfonamido substances				Т		
Perfluoroctane sulfonamide (FOSA)	ug/kg	< 5		5	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/kg ug/kg	< 5		5	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/kg ug/kg	< 5		5	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-	ug/kg	- 23		3	F 455	
MeFOSE)	ug/kg	< 5		5	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	ug/kg	< 5		5	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/kg	< 10		10	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/kg	< 10		10	Pass	
Method Blank					1	
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS)	ug/kg	< 5		5	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/kg	< 5		5	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/kg	< 5		5	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	< 5		5	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/kg	< 5		5	Pass	
Perfluorodecanesulfonic acid (PFDS)	ug/kg ug/kg	< 5		5	Pass	
Method Blank	l ug/kg				1 033	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			T T			
` '	//			- F	Pass	
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/kg	< 5		5		
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/kg	< 10		10	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/kg	< 5		5	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	ug/kg	< 5		5	Pass	
Method Blank			T T		l	
Heavy Metals					_	
Arsenic	mg/kg	< 2		2	Pass	
Cadmium	mg/kg	< 0.4		0.4	Pass	
Chromium	mg/kg	< 5		5	Pass	
Copper	mg/kg	< 5		5	Pass	
Lead	mg/kg	< 5		5	Pass	
Mercury	mg/kg	< 0.1		0.1	Pass	
Nickel	mg/kg	< 5		5	Pass	
Zinc	mg/kg	< 5		5	Pass	
LCS - % Recovery						
Perfluoroalkyl carboxylic acids (PFCAs)	•					
Perfluorobutanoic acid (PFBA)	%	95		50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	89		50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	87		50-150	Pass	

Too			Unito	Booult 1		Acceptance	Pass	Qualifying
Tes	<u> </u>		Units	Result 1		Limits	Limits	Code
Perfluoroheptanoic acid (PFHpA)			%	87		50-150	Pass	
Perfluorooctanoic acid (PFOA)			%	92		50-150	Pass	
Perfluorononanoic acid (PFNA)			%	91		50-150	Pass	
Perfluorodecanoic acid (PFDA)			%	102		50-150	Pass	
Perfluoroundecanoic acid (PFUnI			%	101		50-150	Pass	
Perfluorododecanoic acid (PFDol	,		%	108		50-150	Pass	
Perfluorotridecanoic acid (PFTrD	/		%	96		50-150	Pass	
Perfluorotetradecanoic acid (PFT	eDA)		%	92		50-150	Pass	
LCS - % Recovery				T	T	T	Г	
Perfluoroalkyl sulfonamido sub							_	
Perfluorooctane sulfonamide (FO	•		%	102		50-150	Pass	
N-methylperfluoro-1-octane sulfor	,		%	92		50-150	Pass	
N-ethylperfluoro-1-octane sulfona			%	88		50-150	Pass	
2-(N-methylperfluoro-1-octane su MeFOSE)	lfonamido)-ethanol (N	-	%	93		50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfo	namido)-ethanol (N-F	tFOSE)	%	116		50-150	Pass	
N-ethyl-perfluorooctanesulfonami	, ,		%	95		50-150	Pass	
N-methyl-perfluorooctanesulfonar			%	93		50-150	Pass	
LCS - % Recovery			,,,			00 .00		
Perfluoroalkyl sulfonic acids (Pl	FSAs)							
Perfluorobutanesulfonic acid (PFI			%	91		50-150	Pass	
Perfluoropentanesulfonic acid (Pf			%	88		50-150	Pass	
Perfluorohexanesulfonic acid (PF			%	87		50-150	Pass	
Perfluoroheptanesulfonic acid (Pf	,		%	100		50-150	Pass	
Perfluorooctanesulfonic acid (PF0	. ,		%	93		50-150	Pass	
Perfluorodecanesulfonic acid (PF			%	89		50-150	Pass	
LCS - % Recovery	/		7.5				1 3.00	
n:2 Fluorotelomer sulfonic acids	s (n:2 FTSAs)							
1H.1H.2H.2H-perfluorohexanesul			%	106		50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulf	,		%	83		50-150	Pass	
1H.1H.2H.2H-perfluorodecanesul	fonic acid (8:2 FTSA)		%	89		50-150	Pass	
1H.1H.2H.2H-perfluorododecane	sulfonic acid (10:2 FT	SA)	%	121		50-150	Pass	
LCS - % Recovery	·	,						
Heavy Metals								
Arsenic			%	116		80-120	Pass	
Cadmium			%	111		80-120	Pass	
Chromium			%	120		80-120	Pass	
Copper			%	117		80-120	Pass	
Lead			%	120		80-120	Pass	
Mercury			%	99		75-125	Pass	
Nickel			%	116		80-120	Pass	
Zinc			%	113		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Heavy Metals				Result 1				
Arsenic	M18-Se32689	NCP	%	117		75-125	Pass	
Cadmium	M18-Se32689	NCP	%	116		75-125	Pass	
Chromium	M18-Se32689	NCP	%	123		75-125	Pass	
Copper	M18-Se32689	NCP	%	120		75-125	Pass	
Lead	M18-Se32689	NCP	%	124		75-125	Pass	
Mercury	M18-Se32689	NCP	%	100		70-130	Pass	
Nickel	M18-Se32689	NCP	%	119		75-125	Pass	
Zinc	M18-Se32689	NCP	%	114		75-125	Pass	
Spike - % Recovery								

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Perfluoroalkyl carboxylic acids (PF	CAs)			Result 1			
Perfluorobutanoic acid (PFBA)	B18-Se25823	NCP	%	97	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	B18-Se25823	NCP	%	88	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	B18-Se25823	NCP	%	93	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	B18-Se25823	NCP	%	96	50-150	Pass	
Perfluorooctanoic acid (PFOA)	B18-Se25823	NCP	%	101	50-150	Pass	
Perfluorononanoic acid (PFNA)	B18-Se25823	NCP	%	99	50-150	Pass	
Perfluorodecanoic acid (PFDA)	B18-Se25823	NCP	%	99	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	B18-Se25823	NCP	%	97	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	B18-Se25823	NCP	%	92	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	B18-Se25823	NCP	%	83	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	B18-Se25823	NCP	%	90	50-150	Pass	
Spike - % Recovery				T T			
Perfluoroalkyl sulfonamido substa	nces			Result 1			
Perfluorooctane sulfonamide (FOSA)	B18-Se25823	NCP	%	102	50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	B18-Se25823	NCP	%	95	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	B18-Se25823	NCP	%	91	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	B18-Se25823	NCP	%	106	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	B18-Se25823	NCP	%	114	50-150	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	B18-Se25823	NCP	%	97	50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	B18-Se25823	NCP	%	86	50-150	Pass	
Spike - % Recovery				T			
Perfluoroalkyl sulfonic acids (PFS)	As)			Result 1			
Perfluorobutanesulfonic acid (PFBS)	B18-Se25823	NCP	%	97	50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	B18-Se25823	NCP	%	100	50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	B18-Se25823	NCP	%	103	50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	B18-Se25823	NCP	%	102	50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	B18-Se25823	NCP	%	128	50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	B18-Se25823	NCP	%	93	50-150	Pass	
Spike - % Recovery				T T		T	
n:2 Fluorotelomer sulfonic acids (r	n:2 FTSAs)	1		Result 1			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	B18-Se25823	NCP	%	91	50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	B18-Se25823	NCP	%	71	50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	B18-Se25823	NCP	%	86	50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	B18-Se25823	NCP	%	127	50-150	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals		ı		Result 1	Result 2	RPD			
Arsenic	M18-Se30484	NCP	mg/kg	7.8	7.8	<1	30%	Pass	
Cadmium	M18-Se30484	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M18-Se30484	NCP	mg/kg	21	22	4.0	30%	Pass	
Copper	M18-Se30484	NCP	mg/kg	6.1	5.5	10	30%	Pass	
Lead	M18-Se30484	NCP	mg/kg	14	15	2.0	30%	Pass	
Mercury	M18-Se30484	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M18-Se30484	NCP	mg/kg	5.3	5.7	6.0	30%	Pass	
Zinc	M18-Se30484	NCP	mg/kg	37	36	2.0	30%	Pass	
Duplicate									
Perfluoroalkyl carboxylic acids (PF	,			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate				<u> </u>					
Perfluoroalkyl sulfonamido substa	nces			Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	B18-Se25002	NCP	ug/kg	< 10	< 10	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	B18-Se25002	NCP	ug/kg	< 10	< 10	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonic acids (PFS)	As)	1		Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass	

Duplicate										
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			Result 1	Result 2	RPD				
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass		
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	B18-Se25002	NCP	ug/kg	< 10	< 10	<1	30%	Pass		
1H.1H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass		
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	B18-Se25002	NCP	ug/kg	< 5	< 5	<1	30%	Pass		

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

N09 Quantification of linear and branched isomers has been conducted as a single total response using the relative response factor for the corresponding linear/branched standard.

Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds.

N11

Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation). N15

Authorised By

Nibha Vaidya Analytical Services Manager Chris Bennett Senior Analyst-Metal (VIC) Jonathon Angell Senior Analyst-Organic (QLD)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins. Impt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In on case shall Eurofins I mg be liable for consequential damages including, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall be reported used to the reported used resides indicated otherwise, the tests were, performed on the samples as receiving the reported used to the report used to the report us

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Report618949-WProject namePEAT ISLAND

Project ID 54933 Received Date Sep 21, 2018

Client Sample ID			TS	тв	RINS 210918	RINS 200918
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			S18-Se28911	S18-Se28912	S18-Se28913	S18-Se28914
Date Sampled			Sep 21, 2018	Sep 21, 2018	Sep 21, 2018	Sep 21, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM						
TRH C6-C9	0.02	mg/L	-	-	-	< 0.02
TRH C10-C14	0.05	mg/L	-	-	-	< 0.05
TRH C15-C28	0.1	mg/L	-	-	-	< 0.1
TRH C29-C36	0.1	mg/L	-	-	-	< 0.1
TRH C10-36 (Total)	0.1	mg/L	-	-	-	< 0.1
BTEX	<u>'</u>					
Benzene	0.001	mg/L	78	< 0.001	-	< 0.001
Toluene	0.001	mg/L	81	< 0.001	-	< 0.001
Ethylbenzene	0.001	mg/L	89	< 0.001	-	< 0.001
m&p-Xylenes	0.002	mg/L	88	< 0.002	-	< 0.002
o-Xylene	0.001	mg/L	89	< 0.001	-	< 0.001
Xylenes - Total	0.003	mg/L	89	< 0.003	-	< 0.003
4-Bromofluorobenzene (surr.)	1	%	120	114	-	111
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.01	mg/L	-	-	-	< 0.01
TRH C6-C10	0.02	mg/L	-	-	-	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	-	-	-	< 0.02
TRH >C10-C16	0.05	mg/L	-	-	-	< 0.05
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	-	-	-	< 0.05
TRH >C16-C34	0.1	mg/L	-	-	-	< 0.1
TRH >C34-C40	0.1	mg/L	-	-	-	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	-	-	-	< 0.1
Organochlorine Pesticides	·					
Chlordanes - Total	0.001	mg/L	-	-	-	< 0.001
4.4'-DDD	0.0001	mg/L	=	-	-	< 0.0001
4.4'-DDE	0.0001	mg/L	-	-	-	< 0.0001
4.4'-DDT	0.0001	mg/L	-	-	-	< 0.0001
a-BHC	0.0001	mg/L	-	-	-	< 0.0001
Aldrin	0.0001	mg/L	-	-	-	< 0.0001
b-BHC	0.0001	mg/L	-	-	-	< 0.0001
d-BHC	0.0001	mg/L	-	-	-	< 0.0001
Dieldrin	0.0001	mg/L	-	-	-	< 0.0001
Endosulfan I	0.0001	mg/L	-	-	-	< 0.0001
Endosulfan II	0.0001	mg/L	-	-	-	< 0.0001
Endosulfan sulphate	0.0001	mg/L	-	-	-	< 0.0001

Client Sample ID			TS	ТВ	RINS 210918	RINS 200918
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			S18-Se28911	S18-Se28912	S18-Se28913	S18-Se28914
Date Sampled			Sep 21, 2018	Sep 21, 2018	Sep 21, 2018	Sep 21, 2018
Test/Reference	LOR	Unit	•		•	
Organochlorine Pesticides	ļ -					
Endrin	0.0001	mg/L	-	-	-	< 0.0001
Endrin aldehyde	0.0001	mg/L	-	-	-	< 0.0001
Endrin ketone	0.0001	mg/L	-	-	-	< 0.0001
g-BHC (Lindane)	0.0001	mg/L	-	-	-	< 0.0001
Heptachlor	0.0001	mg/L	-	-	-	< 0.0001
Heptachlor epoxide	0.0001	mg/L	-	-	-	< 0.0001
Hexachlorobenzene	0.0001	mg/L	-	-	-	< 0.0001
Methoxychlor	0.0001	mg/L	-	-	-	< 0.0001
Toxaphene	0.01	mg/L	-	-	-	< 0.01
Aldrin and Dieldrin (Total)*	0.0001	mg/L	-	-	-	< 0.0001
DDT + DDE + DDD (Total)*	0.0001	mg/L	-	-	-	< 0.0001
Vic EPA IWRG 621 OCP (Total)*	0.001	mg/L	-	-	-	< 0.001
Vic EPA IWRG 621 Other OCP (Total)*	0.001	mg/L	-	-	-	< 0.001
Dibutylchlorendate (surr.)	1	%	-	-	-	55
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	65
Polychlorinated Biphenyls						
Aroclor-1016	0.001	mg/L	-	-	-	< 0.001
Aroclor-1221	0.001	mg/L	-	-	-	< 0.001
Aroclor-1232	0.001	mg/L	-	-	-	< 0.001
Aroclor-1242	0.001	mg/L	-	-	-	< 0.001
Aroclor-1248	0.001	mg/L	-	-	-	< 0.001
Aroclor-1254	0.001	mg/L	-	-	-	< 0.001
Aroclor-1260	0.001	mg/L	-	-	-	< 0.001
Total PCB*	0.001	mg/L	-	-	-	< 0.001
Dibutylchlorendate (surr.)	1	%	-	-	-	55
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	65
Heavy Metals						
Arsenic	0.001	mg/L	-	-	< 0.001	< 0.001
Cadmium	0.0002	mg/L	-	-	< 0.0002	< 0.0002
Chromium	0.001	mg/L	-	-	< 0.001	< 0.001
Copper	0.001	mg/L	-	-	< 0.001	< 0.001
Lead	0.001	mg/L	-	-	< 0.001	< 0.001
Mercury	0.0001	mg/L	-	-	< 0.0001	< 0.0001
Nickel	0.001	mg/L	-	-	< 0.001	< 0.001
Zinc	0.005	mg/L	-	-	< 0.005	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Sep 25, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C36			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 24, 2018	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 25, 2018	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
BTEX	Melbourne	Sep 24, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Metals M8	Melbourne	Sep 24, 2018	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Eurofins mgt Suite B13			
Organochlorine Pesticides	Melbourne	Sep 25, 2018	7 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Melbourne	Sep 25, 2018	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			

Order No.:

Report #:

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Received: Sep 21, 2018 3:37 PM 618949

Due: Sep 28, 2018

Priority: 5 Day

Contact Name: Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail								Moisture Set	Moisture Set	Total Recoverable Hydrocarbons	Per- and Polyfluoroalkyl Substances (PFASs)
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	Х	
Sydr	ney Laboratory	- NATA Site # 1	8217									
Brisl	oane Laborator	y - NATA Site #	20794						Х	Х		Х
		NATA Site # 237	36									
Exte	rnal Laboratory	,		1								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID							
1	SS48 0-0.1	Sep 21, 2018		Soil	S18-Se28908	Х			Х			
2	SS54 0-0.1	Sep 21, 2018		Soil	S18-Se28909					Х		Х
3	SS55 0-0.1	Sep 21, 2018		Soil	S18-Se28910					Х		Х
4	TS Sep 21, 2018 Water S18-Se28911											
5	TB Sep 21, 2018 Water S18-Se28912											
6	RINS 210918	Sep 21, 2018		Water	S18-Se28913	Х						
7	7 RINS 200918 Sep 21, 2018 Water S18-Se28914										Х	
Test	Counts			3	3	1	3	3	1	2		

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Page 4 of 10

Date Reported:Sep 28, 2018

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 5 of 10

ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 618949-W

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ctions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions				
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/L	< 0.001	0.001	Pass	
4.4'-DDD	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDE	mg/L	< 0.0001	0.0001	Pass	
4.4'-DDT	mg/L	< 0.0001	0.0001	Pass	
a-BHC	mg/L	< 0.0001	0.0001	Pass	
Aldrin	mg/L	< 0.0001	0.0001	Pass	
b-BHC	mg/L	< 0.0001	0.0001	Pass	
d-BHC	mg/L	< 0.0001	0.0001	Pass	
Dieldrin	mg/L	< 0.0001	0.0001	Pass	
Endosulfan I	mg/L	< 0.0001	0.0001	Pass	
Endosulfan II	mg/L	< 0.0001	0.0001	Pass	
Endosulfan sulphate	mg/L	< 0.0001	0.0001	Pass	
Endrin	mg/L	< 0.0001	0.0001	Pass	
Endrin aldehyde	mg/L	< 0.0001	0.0001	Pass	
Endrin ketone	mg/L	< 0.0001	0.0001	Pass	
g-BHC (Lindane)	mg/L	< 0.0001	0.0001	Pass	
Heptachlor	mg/L	< 0.0001	0.0001	Pass	
Heptachlor epoxide	mg/L	< 0.0001	0.0001	Pass	
Hexachlorobenzene	mg/L	< 0.0001	0.0001	Pass	
Methoxychlor	mg/L	< 0.0001	0.0001	Pass	
Toxaphene	mg/L	< 0.01	0.01	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/L	< 0.001	0.001	Pass	
Aroclor-1221	mg/L	< 0.001	0.001	Pass	
Aroclor-1232	mg/L	< 0.001	0.001	Pass	
Aroclor-1242	mg/L	< 0.001	0.001	Pass	
Aroclor-1248	mg/L	< 0.001	0.001	Pass	
Aroclor-1254	mg/L	< 0.001	0.001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Aroclor-1260	mg/L	< 0.001	0.001	Pass	
Total PCB*	mg/L	< 0.001	0.001	Pass	
Method Blank	1 9				
Heavy Metals					
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery	1 ···g/=			1 3.00	
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions				
TRH C6-C9	%	111	70-130	Pass	
TRH C10-C14	%	85	70-130	Pass	
LCS - % Recovery			1 70 100	. 400	
BTEX					
Benzene	%	103	70-130	Pass	
Toluene	%	105	70-130	Pass	
Ethylbenzene	%	119	70-130	Pass	
m&p-Xylenes	%	116	70-130	Pass	
Xylenes - Total	%	115	70-130	Pass	
LCS - % Recovery	70	110	10-130	1 033	
	tions	Т	Т		
Total Recoverable Hydrocarbons - 2013 NEPM Frac Naphthalene	%	107	70-130	Pass	
TRH C6-C10		118			
	%	82	70-130	Pass	
TRH >C10-C16	%	02	70-130	Pass	
LCS - % Recovery		T			
Organochlorine Pesticides	0/	444	70.400	Dana	
Chlordanes - Total	%	114	70-130	Pass	
4.4'-DDD	%	120	70-130	Pass	
4.4'-DDE	%	103	70-130	Pass	
4.4'-DDT	%	92	70-130	Pass	
a-BHC	%	91	70-130	Pass	
Aldrin	%	89	70-130	Pass	
b-BHC	%	97	70-130	Pass	
d-BHC	%	90	70-130	Pass	
Dieldrin	%	109	70-130	Pass	
Endosulfan I	%	96	70-130	Pass	
Endosulfan II	%	110	70-130	Pass	
Endosulfan sulphate	%	103	70-130	Pass	
Endrin	%	101	70-130	Pass	
Endrin aldehyde	%	104	70-130	Pass	
Endrin ketone	%	109	70-130	Pass	
g-BHC (Lindane)	%	90	70-130	Pass	
Heptachlor	%	96	70-130	Pass	
Heptachlor epoxide	%	116	70-130	Pass	
Hexachlorobenzene	%	95	70-130	Pass	
Methoxychlor	%	107	70-130	Pass	
LCS - % Recovery					
Heavy Metals	ı				
Arsenic	%	90	80-120	Pass	
Cadmium	%	91	80-120	Pass	

					T		1		
Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Chromium			%	91			80-120	Pass	
Copper			%	92			80-120	Pass	
Lead			%	91			80-120	Pass	
Mercury			%	95			75-125	Pass	
Nickel			%	92			80-120	Pass	
Zinc			%	92			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1					
TRH C10-C14	M18-Se29971	NCP	%	75			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	tions		Result 1					
TRH >C10-C16	M18-Se29971	NCP	%	75			70-130	Pass	
Spike - % Recovery				•					
Organochlorine Pesticides				Result 1					
Chlordanes - Total	M18-Se13337	NCP	%	81			70-130	Pass	
4.4'-DDD	M18-Se13337	NCP	%	71			70-130	Pass	
4.4'-DDE	M18-Se13337	NCP	%	74			70-130	Pass	
4.4'-DDT	M18-Se13337	NCP	%	85			70-130	Pass	
a-BHC	M18-Se13337	NCP	%	85			70-130	Pass	
Aldrin	M18-Se13337	NCP	%	87			70-130	Pass	
b-BHC	M18-Se13337	NCP	%	85			70-130	Pass	
d-BHC	M18-Se13337	NCP	%	75			70-130	Pass	
Dieldrin	M18-Se13337	NCP	%	87			70-130	Pass	
Endosulfan I	M18-Se13337	NCP	%	81			70-130	Pass	
Endosulfan II	M18-Se13337	NCP	%	86			70-130	Pass	
Endosulfan sulphate	M18-Se13337	NCP	%	80			70-130	Pass	
Endrin	M18-Se13337	NCP	%	72			70-130	Pass	
Endrin aldehyde	M18-Se13337	NCP	%	79			70-130	Pass	
Endrin ketone	M18-Se13337	NCP	%	77			70-130	Pass	
g-BHC (Lindane)	M18-Se13337	NCP	%	87			70-130	Pass	
Heptachlor	M18-Se13337	NCP	%	82			70-130	Pass	
Heptachlor epoxide	M18-Se13337	NCP	%	77			70-130	Pass	
Hexachlorobenzene	M18-Se13337	NCP	%	92			70-130	Pass	
Methoxychlor	M18-Se13337	NCP	%	82			70-130	Pass	
•		QA		02			Acceptance	Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions	ı	Result 1	Result 2	RPD			
TRH C10-C14	M18-Se29970	NCP	mg/L	32	5.7	22	30%	Pass	
TRH C15-C28	M18-Se29970	NCP	mg/L	62	10	27	30%	Pass	
TRH C29-C36	M18-Se29970	NCP	mg/L	0.3	< 0.1	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	M18-Se29970	NCP	mg/L	53	9.1	25	30%	Pass	
TRH >C16-C34	M18-Se29970	NCP	mg/L	35	7.1	28	30%	Pass	
TRH >C34-C40	M18-Se29970	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	M18-Se19125	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
	M18-Se19125	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
4.4'-DDD	11110 0010120				. —				
4.4'-DDD 4.4'-DDE	M18-Se19125	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
		NCP NCP	mg/L mg/L	< 0.0001 < 0.0001	< 0.0001 < 0.0001	<1 <1	30% 30%	Pass Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Aldrin	M18-Se19125	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
b-BHC	M18-Se19125	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
d-BHC	M18-Se19125	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Dieldrin	M18-Se19125	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan I	M18-Se19125	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan II	M18-Se19125	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endosulfan sulphate	M18-Se19125	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin	M18-Se19125	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin aldehyde	M18-Se19125	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Endrin ketone	M18-Se19125	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
g-BHC (Lindane)	M18-Se19125	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Heptachlor	M18-Se19125	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Heptachlor epoxide	M18-Se19125	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Hexachlorobenzene	M18-Se19125	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	•
Methoxychlor	M18-Se19125	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Authorised By

N02

Nibha Vaidva Analytical Services Manager Chris Bennett Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CHAIN OF CUSTODY

Container & Preservative Codes: P = Plastic; J = Soil Jar; B = Glass Bottle; N = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd VC = Hydrochloric Acid Prsvd VC = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd VC = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd VC = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd VC = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd VC = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd VC = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd VC = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd VC = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd VC = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd VC = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd VC = Nitric Acid Prsvd VC =	OF:	NAME: DATE:	OF: JBS&G	NAME: 3/16 DATE: 19.8.18	RELINQ	-1.0-1.1	07-03	35-22 0-0.1	11 -0.2.0.3	55-21 0-0-1	1 0.4-1.0	0.2-03	\$5-20_0.0.1	4.0.6.0.4	.0.2-0.3	55-19-0-0.1	55-18,0.9-1.0	QA 1	QAZ 0180414-5001	1 -0.2-0.3	55-18-0-0-1	10.9-1.0	-0.2-0.3	SS-17-0-0-1 So.	SAMPLE ID MATRIX		COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:	PHONE: Sydney: 02 8245 0300 Perth: 08 9488 0100 Brisbane: 07 3112 2688	DATE NEEDED BY: Stade	SAME THE	Cht C dumin
oil Jar; B = Glass Bottle; N	TRANSPORT CO	CONSIGN	TRANSPORT CO.	CONSIGN		\ \																		19.8.18	DATE		JISPOSAL:	rth: 08 9488 0100	一位	Peat Island	0
= Nitric Acid Prsvd	ORT CO	CONSIGNMENT NOTE NO.	ORT CO.	CONSIGNMENT NOTE NO.	MET																			CA	TIME		m.au; (2)) Brisbane:			
.; C = Sodium Hydroxide Prsvd; VC		ς.).	METHOD OF SHIPMENT:	\																		Sar +Bag + Inc	TYPE & PRESERVATIVE		(0)	07 3112 2688 Sby			
= Hydrochloric Aci	0	Z	우:	D.N.			X			X		X				X		19	柳		X			X	PH Ha	es Meta	bsg.com.au;	Desco.	Q	,S	-
id Prsvd Vial; VS = S	OF HURCHIUS	NAME: TARK	<	NAME: MONC	REC											X		Pless for							PA TP B	H/BIEY IEY	(3)	689.	QC LEVEL: NEPM (2013)	SAMPLERS: 3	LABORATORY BATCH NO .:
ulfuric Acid Prsvd Vial;		C DATE: 92/9	-	16/0/2	RECEIVED BY: /					×		X						enter to							AS. SE Ph	ASS BESTOS LENSUM enols	jbsg.com.au	02.00	M (2013)	0	SAICH NO.:
S = Sulfuric Acid Prsvd; 2	COOLER TEMP deg C	and the	COOLER TEMP deg C	COOLER SEAL												×		Foundation							Oc.	PLESIVER PLESIVER CEC ACK	ibsg.com.au				THE PARTY AND ADDRESS NAMED
Z = Zinc Prsvd; E = EDT	P deg C	COOLER SEAL - Yes No	P deg C	COOLER SEAL - Yes No	FOR RECEIVI						p																				
Vial; VS = Sulfuric Acid Prsvd Vial; S = Sulfuric Acid Prsvd; Z = Zinc Prsvd; E = EDTA Prsvd; ST = Sterile Bottle; O = Other		Intact Broken		Intact Broken	FOR RECEIVING LAB USE ONLY:					X		×												-	NEPM/	ASBESTOS ANALYSIS	TYPE OF				

#619070

CHAIN OF CUSTODY

PROJECT NO : 87782 54933		LABORATORY BATCH NO.:	
PROJECT NAME: BRENBIAM Peak	at Island	SAMPLERS: JC	
5	1	QC LEVEL: NEPM (2013)	
PHONE: Sydney: 02 8245 0300 Perth	Perth: 08 9488 0100 Brisbane: 07 3112 2688	CD8000000000000000000000000000000000000)
SEND REPORT & INVOICE TO: (1) admi	w@jbsg.com	@jbsg.com	4
COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:	OSAL:	EY Ass	TYPE C ASBES
SAMPLE ID MATRIX	DATE TIME TYPE & PRESERVATIVE	BT ASE SEI	DENTIFI NEPM/V
SS-22-19-20 Soil	19.8.18 Sar + Bag + Ile		
55-23,0-0.1	<	×	
20.2-0.3			
0.9-1.0			
55-24-0-0-1			
-0.2-0.3		×	
1			
33.725-0.0.)		X X X	X
10:1:0:3			
2000 ca 10-5 co 2		1	
0.4	4-	(
55-26-0-0.1	Bay (No jur)		
1 -0.2 -0.3	3 + 10	×	
55-27-0-01		*	
-0.2.0.3			×
-0.9-1.0			< 7
55-28 0-01			>
-0.2-0.3	< > - < > - < > - < > - < > - < > < > <	**	
RELINQ	METHOD OF SHIPMENT:	RECEIV	FOR RECEIVING LAB USE ONLY:
8). 8. b. i. a. b. M. S. b. i. a. b.	CONSIGNMENT NOTE NO.	DATE: WONG 1 9/0 COOLE	COOLER SEAL — Yes No Intact Broken
NAME: DATE:	TRANSPORT CO.		COOLER TEMP deg C
WHITE.	CONSIGNIMENT NOTE NO.	NAME: DATE: COOLE	COOLER SEAL — Yes No Intact Broken
OF:	TRANSPORT CO	COOLE	COOLER TEMP deg C
MSO FormsO13 – Chain of Custody - Generic	", b = Glass Bottle; N = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; V	SO FormsO13 - Chain of Custody - Generic	Prsvd; Z = Zinc Prsvd; E = EDTA Prsvd; ST = Sterile Bottle; O = Other

IMSO FormsO13 - Chain of Custody - Generic

CHAIN OF CUSTODY

PROJECT NO.: 54782		LABORATORY BATCH NO.:	
PROJECT NAME: 1505, 5 TF		SAMPLERS: JC	
DATE NEEDED BY:		QC LEVEL: NEPM (2013)	
PHONE: Sydney: 02 8245 0300 Pert	PHONE: Sydney: 02 8245 0300 Perth: 08 9488 0100 Brisbane: 07 3112 2688		
SEND REPORT & INVOICE TO: (1) adn	SEND REPORT & INVOICE TO: (1) adminnsw@jbsg.com.au; (2) 😂 🗟 🖟 🐭@jbsg.com.au; (3) 🚎	osg.com.au; (3) క్రామాన్లు@jbsg.com.au	sg.com.au
COMMENTS / SPECIAL HANDLING / STORAGE OR DISPOSAL:	sposal:	y Mitals; H H/BIEY EY ASS BESTOS LENZUM 20014	TYPE C ASBES ANALY ICATION
SAMPLE ID MATRIX	IX DATE TIME TYPE & PRESERVATIVE	PA TP BT PF ASI	
@\$20180914-5001 501	1 19.8-18 Just + Bagn + 3 C		
QA 11 -5002) # O		
QC 20180919-2001 \$	4	×	
)	
RELINQ	METHOD OF SHIPMENT:	RECEIVED BY: /	FOR RECEIVING LAB USE ONLY:
NAME: SIM DATE:	CONSIGNMENT NOTE NO.	DATE: WALL 19/9	COOLER SEAL - Yes No Intact Broken
8G	TRANSPORT CO.		COOLER TEMP deg C
NAME: DATE:	CONSIGNMENT NOTE NO.	NAME: DATÉ:	COOLER SEAL - Yes No Intact Broken
OF:	TRANSPORT CO		COOLER TEMP deg C
Container & Preservative Codes: P = Plastic; J = Soil IMSO FormsO13 – Chain of Custody - Generic	Jar; B = Glass Bottle; N = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC =	- Hydrochloric Acid Prsvd Vial; VS = Sulfuric Acid Prsvd Vial; S =	Container & Preservative Codes: P = Plastic; J = Soil Jar; B = Glass Bottle; N = Nitric Acid Prsvd.; C = Sodium Hydroxide Prsvd; VC = Hydrochloric Acid Prsvd Vial; VS = Sulfuric Acid Prsvd Vial; S = Sulfuric Acid Prsvd; Z = Zinc Prsvd; E = EDTA Prsvd; ST = Sterile Bottle; O = Other Solid Prsvd Vial; SO FormsO13 - Chain of Custody - Generic
The second charles of charles and a charles			

Melbourne

Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: Scott Burrows Project name: PEAT ISLAND

Project ID: 54930

COC number: Not provided

Turn around time: 5 Day

Sep 19, 2018 5:29 PM Date/Time received:

Eurofins | mgt reference: 619070

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 10.6 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- **7** All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

SS-19 0-0.1 & S-19 0.2-0.3 RECEIVED BROKEN, SALVAGED WHAT SAMPLE IS LEFT IN JAR

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Scott Burrows - SBurrows@jbsg.com.au.

Note: A copy of these results will also be delivered to the general JBS & G Australia (NSW) P/L email address.

Environmental Laboratory Water Analysis Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54930

 Order No.:
 Received:
 Sep 19, 2018 5:29 PM

 Report #:
 619070
 Due:
 Sep 26, 2018

 Report #:
 619070
 Due:
 Sep 26, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Scott Burrows

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Metals IWRG 621 : Metals M12	втех	Moisture Set	Total Recoverable Hydrocarbons	
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271			Х	Х	Х	Х	Х	Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 1	8217			Х									
Bris	bane Laborator	y - NATA Site #	20794												
Pert	h Laboratory - N	NATA Site # 237	'36												
Exte	rnal Laboratory	<u>, </u>													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	SS-17_0-0.1	Sep 19, 2018		Soil	M18-Se30064						Х		Х		
2	SS-18_0-0.1	Sep 19, 2018		Soil	M18-Se30065						Х		Х		
3	SS-19_0-0.1	Sep 19, 2018		Soil	M18-Se30066				Х	Х	Х	Х	Х	Х	
4	SS-20_0.2-0.3	Sep 19, 2018		Soil	M18-Se30067	Х					Х		Х		
5	SS-21_0-0.1	Sep 19, 2018		Soil	M18-Se30068	Х					Х		Х		
6	SS-22_0.2-0.3	Sep 19, 2018		Soil	M18-Se30069						Х		Х		
7	SS-23_0-0.1	Sep 19, 2018		Soil	M18-Se30070						Х	Х	Х	Х	
8	SS-24_0.2-0.3	Sep 19, 2018		Soil	M18-Se30071						Х		Х		
9	SS-25_0-0.1	Sep 19, 2018		Soil	M18-Se30072	Х		Х	Х	Х	Х	Х	Х	Х	

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54930

Order No.: Received: Sep 19, 2018 5:29 PM

 Report #:
 619070
 Due:
 Sep 26, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Phone:02 8245 0300Priority:5 DayFax:Contact Name:Scott Burrows

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Metals IWRG 621 : Metals M12	втех	Moisture Set	Total Recoverable Hydrocarbons
Mell	oourne Laborato	ory - NATA Site	# 1254 & 142	71			Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217			Х								
Bris	bane Laboratory	y - NATA Site #	20794											
Pert	h Laboratory - N	ATA Site # 237	36											
10	SS-26_0.2-0.3	Sep 19, 2018		Soil	M18-Se30073						Х		Х	
11	SS-27_0.2-0.3	Sep 19, 2018		Soil	M18-Se30074	Х		Х			Х	Х	Х	Х
12	SS-27_0.9-1.0	Sep 19, 2018		Soil	M18-Se30075	Х					Х		Х	
13	SS-17_0.2-0.3	Sep 19, 2018		Soil	M18-Se30076		Х							
14	SS-17_0.9-1.0	Sep 19, 2018		Soil	M18-Se30077		Х							
15	SS-18_0.2-0.3	Sep 19, 2018		Soil	M18-Se30078		Х							
16	QA20180919- JC01	Sep 19, 2018		Soil	M18-Se30079		Х							
17	SS-18_0.9-1.0	Sep 19, 2018		Soil	M18-Se30080		Х							
18	SS-19_0.2-0.3	Sep 19, 2018		Soil	M18-Se30081		Х							
19	SS-19_0.6-0.7	Sep 19, 2018		Soil	M18-Se30082		Х							
20	SS-20_0-0.1	Sep 19, 2018		Soil	M18-Se30083		Х							

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

JBS & G Australia (NSW) P/L **Company Name:**

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54930 Order No.: Received: Sep 19, 2018 5:29 PM Report #:

619070 Due: Sep 26, 2018

Phone: 02 8245 0300 Priority: 5 Day **Contact Name:** Fax: Scott Burrows

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Metals IWRG 621 : Metals M12	втех	Moisture Set	Total Recoverable Hydrocarbons
	oourne Laborato			?71			Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217			Х								
Bris	bane Laborator	y - NATA Site #	20794											
Pert	h Laboratory - N	ATA Site # 237	36	,										
21	SS-20_0.9-1.0	Sep 19, 2018		Soil	M18-Se30084		Х							
22	SS-21_0.2-0.3	Sep 19, 2018		Soil	M18-Se30085		Х							
23	SS-22_0-0.1	Sep 19, 2018		Soil	M18-Se30086		Х							
24	SS-22_1.0-1.1	Sep 19, 2018		Soil	M18-Se30087		Х							
25	SS-22_1.9-2.0	Sep 19, 2018		Soil	M18-Se30088		Х							
26	SS-23_0.2-0.3	Sep 19, 2018		Soil	M18-Se30089		Х							
27	SS-23_0.9-1.0	Sep 19, 2018		Soil	M18-Se30090		Х							
28	SS-24_0-0.1	Sep 19, 2018		Soil	M18-Se30091		Х							
29	SS-24_0.9-1.0	Sep 19, 2018		Soil	M18-Se30092		Х							
30	SS-25_0.2-0.3	Sep 19, 2018		Soil	M18-Se30093		Х							
31	SS-25_1.0-1.1	Sep 19, 2018		Soil	M18-Se30094		Х							
32	QA20180919-	Sep 19, 2018		Soil	M18-Se30095		Х							

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54930

Order No.: Received: Sep 19, 2018 5:29 PM

 Report #:
 619070
 Due:
 Sep 26, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Scott Burrows

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Metals IWRG 621 : Metals M12	втех	Moisture Set	Total Recoverable Hydrocarbons
Mell	oourne Laborato	ory - NATA Site	# 1254 & 142	71			Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217			Х								
Bris	bane Laboratory	y - NATA Site #	20794											
Pert	h Laboratory - N	ATA Site # 237	36											
	JC02													
33	SS-26_0-0.1	Sep 19, 2018		Soil	M18-Se30096		Х							
34	SS-27_0-0.1	Sep 19, 2018		Soil	M18-Se30097		Х							
35	SS-28_0-0.1	Sep 19, 2018		Soil	M18-Se30098		Х							
36	SS-28_0.2-0.3	Sep 19, 2018		Soil	M18-Se30099		Х							
Test	Counts					5	24	2	2	2	12	4	12	4

Certificate of Analysis

NATA Accredited
Accreditation Number 1261
Site Number 1254

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention: Scott Burrows
Report 619070-AID
Project Name PEAT ISLAND

Project ID 54930

Received Date Sep 19, 2018

Date Reported Sep 26, 2018

Methodology:

Asbestos Fibre

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS4964 method for inhomogeneous samples is around 0.1 g/kg (0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis where required, this is considered to be at the nominal reporting limit of 0.01% (w / w). The examination of large sample sizes (500 mL is recommended) may improve the likelihood of identifying ACM in the > 2mm fraction. The NEPM screening level of 0.001% (w / w) asbestos in soil for FA (friable asbestos) and AF (asbestos fines) then applies where they are able to be quantified by gravimetric procedures. This quantitative screening is not generally applicable to FF (free fibres) and results of Trace Analysis are referred

NOTE: NATA News March 2014, p.7, states in relation to AS4964: "This is a qualitative method with a nominal reporting limit of 0.01%" and that currently in Australia "there is no validated method available for the quantification of asbestos". Accordingly, NATA Accreditation does not cover the performance of this service (indicated with an asterisk). This report is consistent with the analytical procedures and reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended) and the Western Australia Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, 2009, including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil, June 2011.

Report Number: 619070-AID

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name PEAT ISLAND

Project ID 54930

Date SampledSep 19, 2018Report619070-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
SS-20_0.2-0.3	18-Se30067	Sep 19, 2018	Approximate Sample 706g Sample consisted of: Tan fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SS-21_0-0.1	18-Se30068	Sep 19, 2018	Approximate Sample 495g Sample consisted of: Tan fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SS-25_0-0.1	18-Se30072	Sep 19, 2018	Approximate Sample 522g Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SS-27_0.2-0.3	18-Se30074	Sep 19, 2018	Approximate Sample 662g Sample consisted of: Beige fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SS-27_0.9-1.0	18-Se30075	Sep 19, 2018	Approximate Sample 687g Sample consisted of: Grey fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneySep 22, 2018Indefinite

Melbourne

Site # 1254 & 14271

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name:

PEAT ISLAND

Project ID: 54930

Order No.:

Report #:

619070 02 8245 0300

Phone: Fax:

Received: Sep 19, 2018 5:29 PM

Due: Sep 26, 2018 **Priority:** 5 Day

Contact Name: Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail								Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Metals IWRG 621 : Metals M12	втех	Moisture Set	Total Recoverable Hydrocarbons
Melk	Melbourne Laboratory - NATA Site # 1254 & 14271							Х	Х	Х	Х	Χ	Х	Χ
Sydi	Sydney Laboratory - NATA Site # 18217													
Bris	bane Laborator	y - NATA Site #	20794											
Pert	h Laboratory - N	NATA Site # 237	36											
Exte	rnal Laboratory													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	SS-17_0-0.1	Sep 19, 2018		Soil	M18-Se30064						Х		Х	
2	SS-18_0-0.1	Sep 19, 2018		Soil	M18-Se30065						Х		Х	
3	SS-19_0-0.1	Sep 19, 2018		Soil	M18-Se30066				Х	Х	Х	Х	Х	Х
4	4 SS-20_0.2-0.3 Sep 19, 2018 Soil M18-Se30067										Х		Х	
5	SS-21_0-0.1	Sep 19, 2018		Soil	M18-Se30068	Х					Х		Х	
6	SS-22_0.2-0.3	Sep 19, 2018		Soil	M18-Se30069						Х		Х	
7	SS-23_0-0.1	Sep 19, 2018		Soil	M18-Se30070						Х	Х	Х	Х
8	SS-24_0.2-0.3	Sep 19, 2018		Soil	M18-Se30071						Х		Х	
9	SS-25_0-0.1	Sep 19, 2018		Soil	M18-Se30072	Х		Х	Х	Х	Х	Х	Х	Х

Eurofins | mgt 2-5, Kingston Town Close, Oakleigh, VIC, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Page 4 of 9 Report Number: 619070-AID

Order No.:

Report #:

Phone:

Fax:

Melbourne 3-5 Kingston Town Close

Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 8245 0300

Sydney Unit F3, Building F Brisbane 16 Mars Road

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000

PEAT ISLAND

Project Name: Project ID:

54930

Received: Sep 19, 2018 5:29 PM 619070

Due: Sep 26, 2018 Priority: 5 Day

Contact Name: Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail							HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Metals IWRG 621 : Metals M12	втех	Moisture Set	Total Recoverable Hydrocarbons
Mell	ourne Laborato	ory - NATA Site	# 1254 & 142	271			Х	Х	Х	Х	Χ	Χ	Χ	Х
Syd	ney Laboratory	- NATA Site # 1	8217			Х								
Bris	bane Laboratory	y - NATA Site #	20794											
Pert	h Laboratory - N	ATA Site # 237	36											
10	SS-26_0.2-0.3	Sep 19, 2018		Soil	M18-Se30073						Χ		Χ	
11	SS-27_0.2-0.3	Sep 19, 2018		Soil	M18-Se30074	Х		Х			Χ	Χ	Χ	Х
12	SS-27_0.9-1.0	Sep 19, 2018		Soil	M18-Se30075	Х					Χ		Χ	
13	SS-17_0.2-0.3	Sep 19, 2018		Soil	M18-Se30076		Х							
14	SS-17_0.9-1.0	Sep 19, 2018		Soil	M18-Se30077		Х							
15	15 SS-18_0.2-0.3 Sep 19, 2018 Soil M18-Se30078						Х							
16 QA20180919- Sep 19, 2018 Soil M18-Se30079							Х							
17	SS-18_0.9-1.0	Sep 19, 2018		Soil	M18-Se30080		Х							
18	SS-19_0.2-0.3	Sep 19, 2018		Soil	M18-Se30081		Х							
19	SS-19_0.6-0.7	Sep 19, 2018		Soil	M18-Se30082		Х							
20	SS-20_0-0.1	Sep 19, 2018		Soil	M18-Se30083		Х							

Eurofins | mgt 2-5, Kingston Town Close, Oakleigh, VIC, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Page 5 of 9 Report Number: 619070-AID

PEAT ISLAND

Company Name:

Project Name:

Address:

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road

Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172

Phone: +61 7 3902 4600

2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 20794 NATA # 1261 Site # 23736

Perth

JBS & G Australia (NSW) P/L Order No.: Received: Sep 19, 2018 5:29 PM

Level 1, 50 Margaret St Report #: 619070 Due: Sep 26, 2018

Sydney Phone: 02 8245 0300 Priority: 5 Day

NSW 2000 Fax: **Contact Name:** Scott Burrows

Project ID: 54930 Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail							HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Metals IWRG 621 : Metals M12	втех	Moisture Set	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	71			Х	Х	Х	Х	Х	Х	Χ	Х
	ney Laboratory					Х								\vdash
	bane Laboratory													
Pert	h Laboratory - N	IATA Site # 237	736											
21	SS-20_0.9-1.0	Sep 19, 2018		Soil	M18-Se30084		Х							
22	SS-21_0.2-0.3	Sep 19, 2018		Soil	M18-Se30085		Х							
23	SS-22_0-0.1	Sep 19, 2018		Soil	M18-Se30086		Х							
24	SS-22_1.0-1.1	Sep 19, 2018		Soil	M18-Se30087		Х							
25	SS-22_1.9-2.0	Sep 19, 2018		Soil	M18-Se30088		Х							
26	SS-23_0.2-0.3	Sep 19, 2018		Soil	M18-Se30089		Х							
27	27 SS-23_0.9-1.0 Sep 19, 2018 Soil M18-Se30090						Х							ш
28	SS-24_0-0.1	Sep 19, 2018		Soil	M18-Se30091		Х							
29	SS-24_0.9-1.0	Sep 19, 2018		Soil	M18-Se30092		Х							ш
30	SS-25_0.2-0.3	Sep 19, 2018		Soil	M18-Se30093		Х							ш
31	SS-25_1.0-1.1	Sep 19, 2018		Soil	M18-Se30094		Х							
32	QA20180919-	Sep 19, 2018		Soil	M18-Se30095		Х							

Page 6 of 9

Melbourne 3-5 Kingston Town Close

Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F Brisbane

1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261

Site # 23736

Company Name: JBS & G Australia (NSW) P/L Order No.: Received: Sep 19, 2018 5:29 PM Address:

Level 1, 50 Margaret St Report #: 619070 Due: Sep 26, 2018

Sydney Phone: 02 8245 0300 Priority: 5 Day NSW 2000 Fax: **Contact Name:** Scott Burrows

Project Name: PEAT ISLAND

Project ID: 54930 Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail						Asbestos - WA guidelines	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Metals IWRG 621 : Metals M12	втех	Moisture Set	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	71			Х	Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217			Х								
Bris	bane Laboratory	y - NATA Site #	20794											
Pert	h Laboratory - N	ATA Site # 237	36											
	JC02													
33	SS-26_0-0.1	Sep 19, 2018		Soil	M18-Se30096		Х							
34	SS-27_0-0.1	Sep 19, 2018		Soil	M18-Se30097		Х							
35	SS-28_0-0.1	Sep 19, 2018		Soil	M18-Se30098		Х							
36	36 SS-28_0.2-0.3 Sep 19, 2018 Soil M18-Se30099						Х							
Test	est Counts							2	2	2	12	4	12	4

Eurofins | mgt 2-5, Kingston Town Close, Oakleigh, VIC, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Page 7 of 9

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Date Reported: Sep 26, 2018

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

WA DOH Western Australia Department of Health

NOHSC National Occupational Health and Safety Commission

ACM Bonded asbestos-containing material means any material containing more than 1% asbestos and comprises asbestos-containing-material which is in sound condition,

although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. Common examples of ACM include but are not limited to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on acoustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and ceiling plaster, ceiling tiles, and gasket materials. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it approximates the thickness of common asbestos cement sheeting and for fragments to be smaller than this would imply a high degree of damage and hence potential

for fibre release.

FA FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos

is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or

was previously bonded and is now significantly degraded (crumbling).

PACM Presumed Asbestos-Containing Material means thermal system insulation and surfacing material found in buildings, vessels, and vessel sections constructed no later

than 1980 that are assumed to contain greater than one percent asbestos but have not been sampled or analyzed to verify or negate the presence of asbestos.

Asbestos fines (AF) are defined as free fibres, or fibre bundles, smaller than 7mm. It is the free fibres which present the greatest risk to human health, although very small fibres (< 5 microns in length) are not considered to be such a risk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve.

(Note that for bonded ACM fragments to pass through a 7 mm x 7 mm sieve implies a substantial degree of damage which increases the potential for fibre release.)

AC Asbestos cement means a mixture of cement and asbestos fibres (typically 90:10 ratios).

Report Number: 619070-AID

Comments

Se30068: Sample received was less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Laxman Dias Senior Analyst-Asbestos (NSW)

Authorised by:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final Report – this report replaces any previously issued Report

Date Reported: Sep 26, 2018

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In on case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall not be reproduced everyein full and are fetted sonly to the identities storied, to the fetter steated. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 619070-AID

⁻ Indicates Not Requested

^{*} Indicates NATA accreditation does not cover the performance of this service

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Report619070-SProject namePEAT ISLAND

Project ID 54930 Received Date Sep 19, 2018

Client Sample ID			SS-17_0-0.1	SS-18_0-0.1	SS-19_0-0.1	SS-20_0.2-0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Se30064	M18-Se30065	M18-Se30066	M18-Se30067
Date Sampled			Sep 19, 2018	Sep 19, 2018	Sep 19, 2018	Sep 19, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	•				
TRH C6-C9	20	mg/kg	-	-	< 20	-
TRH C10-C14	20	mg/kg	-	-	< 20	-
TRH C15-C28	50	mg/kg	-	-	< 50	-
TRH C29-C36	50	mg/kg	-	-	< 50	-
TRH C10-36 (Total)	50	mg/kg	-	-	< 50	-
BTEX						
Benzene	0.1	mg/kg	-	-	< 0.1	-
Toluene	0.1	mg/kg	-	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	-	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	-	-	< 0.2	-
o-Xylene	0.1	mg/kg	-	-	< 0.1	-
Xylenes - Total	0.3	mg/kg	-	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	-	-	91	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	-	-	< 0.5	-
TRH C6-C10	20	mg/kg	-	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	=	< 20	-
TRH >C10-C16	50	mg/kg	-	=	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	=	< 50	-
TRH >C16-C34	100	mg/kg	-	-	< 100	=
TRH >C34-C40	100	mg/kg	-	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	-	-	< 100	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	-	-	< 0.05	=
a-BHC	0.05	mg/kg	-	-	< 0.05	-
Aldrin	0.05	mg/kg	-	-	< 0.05	-
b-BHC	0.05	mg/kg	-	-	< 0.05	-
d-BHC	0.05	mg/kg	-	-	< 0.05	-
Dieldrin	0.05	mg/kg	-	-	< 0.05	=
Endosulfan I	0.05	mg/kg	-	-	< 0.05	=
Endosulfan II	0.05	mg/kg	-	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	-

Client Sample ID			SS-17_0-0.1	SS-18_0-0.1	SS-19_0-0.1	SS-20_0.2-0.3
Sample Matrix			Soil	Soil	Soil	Soil
•						
Eurofins mgt Sample No.			M18-Se30064	M18-Se30065	M18-Se30066	M18-Se30067
Date Sampled			Sep 19, 2018	Sep 19, 2018	Sep 19, 2018	Sep 19, 2018
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Endrin	0.05	mg/kg	-	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05	-
Endrin ketone	0.05	mg/kg	-	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.05	-
Heptachlor	0.05	mg/kg	-	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05	-
Methoxychlor	0.05	mg/kg	-	-	< 0.05	-
Toxaphene	1	mg/kg	-	-	< 1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	-	87	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	57	-
Organophosphorus Pesticides						
Azinphos-methyl	0.2	mg/kg	-	-	< 0.2	-
Bolstar	0.2	mg/kg	-	=	< 0.2	=
Chlorfenvinphos	0.2	mg/kg	-	-	< 0.2	-
Chlorpyrifos	0.2	mg/kg	-	-	< 0.2	-
Chlorpyrifos-methyl	0.2	mg/kg	-	=	< 0.2	=
Coumaphos	2	mg/kg	-	-	< 2	-
Demeton-S	0.2	mg/kg	-	-	< 0.2	-
Demeton-O	0.2	mg/kg	-	=	< 0.2	=
Diazinon	0.2	mg/kg	-	=	< 0.2	=
Dichlorvos	0.2	mg/kg	-	-	< 0.2	-
Dimethoate	0.2	mg/kg	-	-	< 0.2	-
Disulfoton	0.2	mg/kg	-	=	< 0.2	=
EPN	0.2	mg/kg	-	-	< 0.2	-
Ethion	0.2	mg/kg	-	-	< 0.2	-
Ethoprop	0.2	mg/kg	-	-	< 0.2	-
Ethyl parathion	0.2	mg/kg	-	-	< 0.2	-
Fenitrothion	0.2	mg/kg	-	-	< 0.2	-
Fensulfothion	0.2	mg/kg	-	-	< 0.2	-
Fenthion	0.2	mg/kg	-	-	< 0.2	-
Malathion	0.2	mg/kg	-	-	< 0.2	-
Merphos	0.2	mg/kg	-	-	< 0.2	-
Methyl parathion	0.2	mg/kg	-	-	< 0.2	-
Mevinphos	0.2	mg/kg	-	-	< 0.2	-
Monocrotophos	2	mg/kg	-	-	< 2	-
Naled	0.2	mg/kg	-	-	< 0.2	-
Omethoate	2	mg/kg	-	-	< 2	-
Phorate	0.2	mg/kg	-	-	< 0.2	-
Pirimiphos-methyl	0.2	mg/kg	-	-	< 0.2	-
Pyrazophos	0.2	mg/kg	-	-	< 0.2	-
Ronnel	0.2	mg/kg	-	-	< 0.2	-
Terbufos	0.2	mg/kg	-	-	< 0.2	-
Tetrachlorvinphos	0.2	mg/kg	-	-	< 0.2	-
Tokuthion	0.2	mg/kg	-	-	< 0.2	-

Client Sample ID			SS-17_0-0.1	SS-18_0-0.1	SS-19_0-0.1	SS-20_0.2-0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Se30064	M18-Se30065	M18-Se30066	M18-Se30067
Date Sampled			Sep 19, 2018	Sep 19, 2018	Sep 19, 2018	Sep 19, 2018
Test/Reference	LOR	Unit				
Organophosphorus Pesticides						
Trichloronate	0.2	mg/kg	-	-	< 0.2	-
Triphenylphosphate (surr.)	1	%	-	-	104	-
Heavy Metals						
Arsenic	2	mg/kg	2.2	3.5	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	82	17	7.3	< 5
Copper	5	mg/kg	< 5	< 5	< 5	< 5
Lead	5	mg/kg	8.6	10	20	5.7
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Molybdenum	5	mg/kg	< 5	< 5	< 5	< 5
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Selenium	2	mg/kg	< 2	< 2	< 2	< 2
Silver	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tin	10	mg/kg	< 10	< 10	< 10	< 10
Zinc	5	mg/kg	9.9	< 5	< 5	< 5
% Moisture	1	%	4.3	11	23	5.6

Client Sample ID			SS-21_0-0.1	SS-22_0.2-0.3	SS-23_0-0.1	SS-24_0.2-0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Se30068	M18-Se30069	M18-Se30070	M18-Se30071
Date Sampled			Sep 19, 2018	Sep 19, 2018	Sep 19, 2018	Sep 19, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	-	-	< 20	-
TRH C10-C14	20	mg/kg	-	=	< 20	-
TRH C15-C28	50	mg/kg	-	=	< 50	-
TRH C29-C36	50	mg/kg	-	=	< 50	-
TRH C10-36 (Total)	50	mg/kg	-	=	< 50	-
BTEX						
Benzene	0.1	mg/kg	-	-	< 0.1	-
Toluene	0.1	mg/kg	-	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	-	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	-	-	< 0.2	-
o-Xylene	0.1	mg/kg	-	-	< 0.1	-
Xylenes - Total	0.3	mg/kg	-	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	-	-	99	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	-	-	< 0.5	-
TRH C6-C10	20	mg/kg	-	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	-	< 20	-
TRH >C10-C16	50	mg/kg	-	-	< 50	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	-	< 50	-
TRH >C16-C34	100	mg/kg	-	-	< 100	-
TRH >C34-C40	100	mg/kg	-	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	-	-	< 100	-

Client Sample ID			SS-21_0-0.1	SS-22_0.2-0.3	SS-23_0-0.1	SS-24_0.2-0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Se30068	M18-Se30069	M18-Se30070	M18-Se30071
Date Sampled			Sep 19, 2018	Sep 19, 2018	Sep 19, 2018	Sep 19, 2018
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	5.8	3.6	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	21	20	< 5	< 5
Copper	5	mg/kg	< 5	< 5	< 5	< 5
Lead	5	mg/kg	13	12	6.7	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Molybdenum	5	mg/kg	< 5	< 5	< 5	< 5
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Selenium	2	mg/kg	< 2	< 2	< 2	< 2
Silver	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tin	10	mg/kg	< 10	< 10	< 10	< 10
Zinc	5	mg/kg	< 5	< 5	< 5	< 5
% Moisture	1	%	10	16	4.7	11

Client Sample ID			SS-25_0-0.1	SS-26_0.2-0.3	SS-27_0.2-0.3	SS-27_0.9-1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Se30072	M18-Se30073	M18-Se30074	M18-Se30075
Date Sampled			Sep 19, 2018	Sep 19, 2018	Sep 19, 2018	Sep 19, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	-	< 20	-
TRH C10-C14	20	mg/kg	< 20	-	< 20	-
TRH C15-C28	50	mg/kg	< 50	-	< 50	-
TRH C29-C36	50	mg/kg	< 50	-	< 50	-
TRH C10-36 (Total)	50	mg/kg	< 50	-	< 50	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	92	-	93	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	-
TRH >C10-C16	50	mg/kg	< 50	-	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	< 50	-
TRH >C16-C34	100	mg/kg	< 100	-	< 100	-
TRH >C34-C40	100	mg/kg	< 100	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	< 100	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	-	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5	-

Client Sample ID			SS-25_0-0.1	SS-26_0.2-0.3	SS-27_0.2-0.3	SS-27_0.9-1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Se30072	M18-Se30073	M18-Se30074	M18-Se30075
Date Sampled			Sep 19, 2018	Sep 19, 2018	Sep 19, 2018	Sep 19, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	-					
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	_	< 0.5	_
Benz(a)anthracene	0.5	mg/kg	< 0.5	_	< 0.5	_
Benzo(a)pyrene	0.5	mg/kg	< 0.5	_	< 0.5	_
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	_	< 0.5	_
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	_	< 0.5	_
Chrysene	0.5	mg/kg	< 0.5	_	< 0.5	_
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	_	< 0.5	_
Fluoranthene	0.5	mg/kg	< 0.5	_	< 0.5	_
Fluorene	0.5	mg/kg	< 0.5	_	< 0.5	_
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	_	< 0.5	_
Naphthalene	0.5	mg/kg	< 0.5	_	< 0.5	_
Phenanthrene	0.5	mg/kg	< 0.5	_	< 0.5	_
Pyrene	0.5	mg/kg	< 0.5	_	< 0.5	_
Total PAH*	0.5	mg/kg	< 0.5	_	< 0.5	_
2-Fluorobiphenyl (surr.)	1	%	82	_	88	_
p-Terphenyl-d14 (surr.)	1	%	71	_	84	_
Organochlorine Pesticides		70	, ,		0-1	
Chlordanes - Total	0.1	mg/kg	< 0.1	_		
4.4'-DDD	0.05	mg/kg	< 0.05		-	<u> </u>
4.4'-DDE	0.05	mg/kg	< 0.05		-	
4.4'-DDT	0.05	mg/kg	< 0.05		-	
a-BHC	0.05	mg/kg	< 0.05	_	_	_
Aldrin	0.05	mg/kg	< 0.05	_	_	_
b-BHC	0.05	mg/kg	< 0.05	_	_	_
d-BHC	0.05	mg/kg	< 0.05	_	_	_
Dieldrin	0.05	mg/kg	< 0.05	_	_	_
Endosulfan I	0.05	mg/kg	< 0.05	_	_	_
Endosulfan II	0.05	mg/kg	< 0.05	_	_	_
Endosulfan sulphate	0.05	mg/kg	< 0.05	_	-	_
Endrin	0.05	mg/kg	< 0.05	_	_	_
Endrin aldehyde	0.05	mg/kg	< 0.05	_	_	_
Endrin ketone	0.05	mg/kg	< 0.05	_	_	_
g-BHC (Lindane)	0.05	mg/kg	< 0.05	_	_	_
Heptachlor	0.05	mg/kg	< 0.05	_	_	_
Heptachlor epoxide	0.05	mg/kg	< 0.05	_	_	_
Hexachlorobenzene	0.05	mg/kg	< 0.05	_	_	_
Methoxychlor	0.05	mg/kg	< 0.05	_	-	_
Toxaphene	1	mg/kg	< 1	_	_	_
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	
Vic EPA IWRG 621 OCP (Total)*	0.03	mg/kg	< 0.03	-	-	
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	-	-
Dibutylchlorendate (surr.)	1	%	126	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	134	-	-	-

Client Sample ID			SS-25_0-0.1	SS-26_0.2-0.3	SS-27_0.2-0.3	SS-27_0.9-1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Se30072	M18-Se30073	M18-Se30074	M18-Se30075
Date Sampled			Sep 19, 2018	Sep 19, 2018	Sep 19, 2018	Sep 19, 2018
Test/Reference	LOR	Unit	,,	, and a second	, , , , , , , , , , , , , , , , , , , ,	
Organophosphorus Pesticides	LOIX	Offic				
Azinphos-methyl	0.2	mg/kg	< 0.2	_		
Bolstar	0.2	mg/kg	< 0.2		_	
Chlorfenvinphos	0.2	mg/kg	< 0.2	-	_	_
Chlorpyrifos	0.2	mg/kg	< 0.2	_	_	_
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	_	_	_
Coumaphos	2	mg/kg	< 2	-	_	_
Demeton-S	0.2	mg/kg	< 0.2	-	-	-
Demeton-O	0.2	mg/kg	< 0.2	-	-	-
Diazinon	0.2	mg/kg	< 0.2	-	-	-
Dichlorvos	0.2	mg/kg	< 0.2	-	-	-
Dimethoate	0.2	mg/kg	< 0.2	-	-	-
Disulfoton	0.2	mg/kg	< 0.2	-	-	-
EPN	0.2	mg/kg	< 0.2	-	-	-
Ethion	0.2	mg/kg	< 0.2	-	-	-
Ethoprop	0.2	mg/kg	< 0.2	-	-	-
Ethyl parathion	0.2	mg/kg	< 0.2	-	-	-
Fenitrothion	0.2	mg/kg	< 0.2	-	-	-
Fensulfothion	0.2	mg/kg	< 0.2	-	-	-
Fenthion	0.2	mg/kg	< 0.2	-	-	-
Malathion	0.2	mg/kg	< 0.2	-	-	-
Merphos	0.2	mg/kg	< 0.2	-	-	-
Methyl parathion	0.2	mg/kg	< 0.2	-	-	-
Mevinphos	0.2	mg/kg	< 0.2	-	-	-
Monocrotophos	2	mg/kg	< 2	-	-	-
Naled	0.2	mg/kg	< 0.2	-	-	-
Omethoate	2	mg/kg	< 2	-	-	-
Phorate	0.2	mg/kg	< 0.2	-	-	-
Pirimiphos-methyl	0.2	mg/kg	< 0.2	-	-	-
Pyrazophos	0.2	mg/kg	< 0.2	-	-	-
Ronnel	0.2	mg/kg	< 0.2	-	-	-
Terbufos	0.2	mg/kg	< 0.2	-	-	-
Tetrachlorvinphos	0.2	mg/kg	< 0.2	-	-	-
Triables note	0.2	mg/kg	< 0.2	-	-	-
Triphopylphoppheto (ours.)	0.2	mg/kg %	< 0.2	-	-	-
Triphenylphosphate (surr.) Heavy Metals		70	117	-	-	-
	2		2.7	. 0	2.2	6.6
Arsenic Cadmium	0.4	mg/kg	2.7 < 0.4	< 2 < 0.4	2.2 < 0.4	6.6 < 0.4
Chromium	5	mg/kg mg/kg	6.0	8.5	8.2	9.6
Copper	5	mg/kg	< 5	< 5	< 5	11
Lead	5	mg/kg	10	8.4	16	63
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Molybdenum	5	mg/kg	< 5	< 5	< 5	< 5
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Selenium	2	mg/kg	< 2	< 2	< 2	< 2
Silver	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Tin	10	mg/kg	< 10	< 10	< 10	< 10
Zinc	5	mg/kg	32	8.0	21	150
	, -	, 5 5				
% Moisture	1	%	25	4.1	20	22

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C36	Testing Site Melbourne	Extracted Sep 25, 2018	Holding Time 14 Day
Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: TRH C6-C40 - LTM-ORG-2010	Melbourne	Sep 25, 2018	14 Day
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 25, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010 BTEX	Melbourne	Sep 25, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010 Polycyclic Aromatic Hydrocarbons	Melbourne	Sep 25, 2018	14 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water Organochlorine Pesticides	Melbourne	Sep 25, 2018	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water	Mallaguma	•	,
Organophosphorus Pesticides - Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS	Melbourne	Sep 25, 2018	14 Day
Metals IWRG 621 : Metals M12 - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS	Melbourne	Sep 25, 2018	28 Day
% Moisture	Melbourne	Sep 22, 2018	14 Day

- Method: LTM-GEN-7080 Moisture

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Due:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Sep 19, 2018 5:29 PM

Sep 26, 2018

Scott Burrows

5 Day

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54930

Report #: Phone: Fax:

Order No.:

619070

02 8245 0300 Priority: Contact Name:

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271								Organochlorine Pesticides	Organophosphorus Pesticides	Metals IWRG 621 : Metals M12	втех	Moisture Set	Total Recoverable Hydrocarbons
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271			Х	Х	Х	Х	Х	Х	Х	Х
Sydı	ney Laboratory	- NATA Site # 1	8217			Х								
Bris	oane Laboratory	y - NATA Site#	20794											
Pert	n Laboratory - N	NATA Site # 237	36											
Exte	rnal Laboratory	,												
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	SS-17_0-0.1	Sep 19, 2018		Soil	M18-Se30064						Х		Х	
2	SS-18_0-0.1	Sep 19, 2018		Soil	M18-Se30065						Х		Х	
3	SS-19_0-0.1	Sep 19, 2018		Soil	M18-Se30066				Х	Х	Х	Х	Х	Х
4	SS-20_0.2-0.3	Sep 19, 2018		Soil	M18-Se30067	Х					Х		Х	
5	SS-21_0-0.1	Sep 19, 2018		Soil	M18-Se30068	Х					Х		Х	
6	SS-22_0.2-0.3	Sep 19, 2018		Soil	M18-Se30069						Х		Х	
7	SS-23_0-0.1	Sep 19, 2018		Soil	M18-Se30070						Х	Х	Х	Х
8	SS-24_0.2-0.3	Sep 19, 2018		Soil	M18-Se30071						Х		Х	
9	SS-25_0-0.1	Sep 19, 2018		Soil	M18-Se30072	Х		Х	Х	Х	Х	Х	Х	Χ

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 619070-S

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54930

Date Reported:Sep 26, 2018

Order No.: Received: Sep 19, 2018 5:29 PM

Report #: 619070 Due: Sep 26, 2018 Phone: 02 8245 0300 Priority: 5 Day

Fax: **Contact Name:** Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Asbestos - WA guidelines	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Metals IWRG 621 : Metals M12	втех	Moisture Set	Total Recoverable Hydrocarbons			
Mell	oourne Laborato	ory - NATA Site #	1254 & 14271			Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 182	217		Х								
Bris	bane Laboratory	y - NATA Site # 2	0794										
Pert	h Laboratory - N	IATA Site # 2373	6										
10	SS-26_0.2-0.3	Sep 19, 2018	Soil	M18-Se30073						Х		Х	
11	SS-27_0.2-0.3	Sep 19, 2018	Soil	M18-Se30074	Х		Х			Х	Х	Х	Х
12	SS-27_0.9-1.0	Sep 19, 2018	Soil	M18-Se30075	Х					Х		Х	
13	SS-17_0.2-0.3	Sep 19, 2018	Soil	M18-Se30076		Х							
14	SS-17_0.9-1.0	Sep 19, 2018	Soil	M18-Se30077		Х							
15	SS-18_0.2-0.3	Sep 19, 2018	Soil	M18-Se30078		Х							
16	QA20180919- JC01	Sep 19, 2018	Soil	M18-Se30079		х							
17	SS-18_0.9-1.0	Sep 19, 2018	Soil	M18-Se30080		Х							
18	SS-19_0.2-0.3	Sep 19, 2018	Soil	M18-Se30081		Х							
19	SS-19_0.6-0.7	Sep 19, 2018	Soil	M18-Se30082		Х							
20	SS-20_0-0.1	Sep 19, 2018	Soil	M18-Se30083		Х							

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

Page 9 of 21 Report Number: 619070-S

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54930 Order No.: Received: Sep 19, 2018 5:29 PM Report #: 619070

Due: Sep 26, 2018

> Priority: 5 Day **Contact Name:** Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Metals IWRG 621 : Metals M12	втех	Moisture Set	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	71			Х	Х	Х	Х	Х	Χ	Χ	Х
	ney Laboratory					Х								
	bane Laboratory													
Pert	h Laboratory - N	IATA Site # 237	736	T										
21	SS-20_0.9-1.0	Sep 19, 2018		Soil	M18-Se30084		Х							
22	SS-21_0.2-0.3	Sep 19, 2018		Soil	M18-Se30085		Х							
23	SS-22_0-0.1	Sep 19, 2018		Soil	M18-Se30086		Х							
24	SS-22_1.0-1.1	Sep 19, 2018		Soil	M18-Se30087		Х							
25	SS-22_1.9-2.0	Sep 19, 2018		Soil	M18-Se30088		Х							
26	SS-23_0.2-0.3	Sep 19, 2018		Soil	M18-Se30089		Х							
27	SS-23_0.9-1.0	Sep 19, 2018		Soil	M18-Se30090		Х							
28	SS-24_0-0.1	Sep 19, 2018		Soil	M18-Se30091		Х							
29	SS-24_0.9-1.0	Sep 19, 2018		Soil	M18-Se30092		Х							
30	SS-25_0.2-0.3	Sep 19, 2018		Soil	M18-Se30093		Х							
31	SS-25_1.0-1.1	Sep 19, 2018		Soil	M18-Se30094		Х							
32	QA20180919-	Sep 19, 2018		Soil	M18-Se30095		Х							

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 619070-S

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54930 Order No.: Received: Sep 19, 2018 5:29 PM Report #: 619070

Due: Sep 26, 2018

Priority: 5 Day **Contact Name:** Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Organophosphorus Pesticides	Metals IWRG 621 : Metals M12	втех	Moisture Set	Total Recoverable Hydrocarbons
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71			Х	Х	Х	Х	Х	Х	Χ	Х
Sydi	ney Laboratory	- NATA Site # 1	8217			Х								
Bris	pane Laborator	y - NATA Site #	20794											
Pert	Laboratory - N	IATA Site # 237	36											
	JC02													
33	SS-26_0-0.1	Sep 19, 2018		Soil	M18-Se30096		Х							
34	SS-27_0-0.1	Sep 19, 2018		Soil	M18-Se30097		Х							
35	SS-28_0-0.1	Sep 19, 2018		Soil	M18-Se30098		Х							
36	SS-28_0.2-0.3	Sep 19, 2018		Soil	M18-Se30099		Х							
Test	Counts					5	24	2	2	2	12	4	12	4

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Page 11 of 21

Date Reported:Sep 26, 2018

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
mg/kg	< 20	20	Pass	
mg/kg	< 20	20	Pass	
mg/kg	< 50	50	Pass	
mg/kg	< 50	50	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.2	0.2	Pass	
	< 0.1	0.1	Pass	
	< 0.3	0.3	Pass	
1 3 3			•	
ma/ka	< 0.5	0.5	Pass	
	1			
	1			
199	1.00			
ma/ka	< 0.5	0.5	Pass	
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	1			
	t		_	
	1			
	1			
IIIg/kg	Z 0.5	0.5	Fass	
ma/ka	< 0.1	0.1	Page	
mg/kg	< 0.05	0.05	Pass	
	mg/kg mg/kg	mg/kg < 20	mg/kg	mg/kg < 20 20 Pass mg/kg < 20

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank					
Organophosphorus Pesticides			T		
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	<u> </u>
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	-
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos	mg/kg	< 0.2	0.2	Pass	-
Dimethoate	mg/kg	< 0.2	0.2	Pass	
Disulfoton	mg/kg	< 0.2	0.2	Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	0.2	Pass	
Monocrotophos	mg/kg	< 2	2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank	1 1119/119	, , ,,,,	0.2		
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium				Pass	
	mg/kg	< 5	5		
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Molybdenum	mg/kg	< 5	5	Pass	
Nickel	mg/kg	< 5	5	Pass	
Selenium	mg/kg	< 2	2	Pass	
Silver	mg/kg	< 0.2	0.2	Pass	
Tin	mg/kg	< 10	10	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery	, ,				
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	86	70-130	Pass	
TRH C10-C14	%	81	70-130	Pass	
LCS - % Recovery	7.5		10.700	1 555	
BTEX					
Benzene	%	82	70-130	Pass	
Toluene	%	78	70-130	Pass	
Ethylbenzene	%	88	70-130	Pass	
m&p-Xylenes	%	87	70-130	Pass	
Xylenes - Total	%	88	70-130	Pass	
LCS - % Recovery	/0	1 00	10-130	1 033	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
	%	77	70.120	Pass	
Naphthalene		77	70-130	1	
TRH C6-C10	%	84	70-130	Pass	
TRH >C10-C16	%	84	70-130	Pass	
LCS - % Recovery		T T		T	
Polycyclic Aromatic Hydrocarbons				_	
Acenaphthene	%	75	70-130	Pass	
Acenaphthylene	%	84	70-130	Pass	
Anthracene	%	87	70-130	Pass	
Benz(a)anthracene	%	86	70-130	Pass	
Benzo(a)pyrene	%	88	70-130	Pass	
Benzo(b&j)fluoranthene	%	83	70-130	Pass	
Benzo(g.h.i)perylene	%	102	70-130	Pass	
Benzo(k)fluoranthene	%	94	70-130	Pass	
Chrysene	%	94	70-130	Pass	
Dibenz(a.h)anthracene	%	95	70-130	Pass	
Fluoranthene	%	93	70-130	Pass	
Fluorene	%	90	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	97	70-130	Pass	
Naphthalene	%	83	70-130	Pass	
Phenanthrene	%	91	70-130	Pass	
Pyrene	%	96	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides					
4.4'-DDD	%	116	70-130	Pass	
4.4'-DDE	%	130	70-130	Pass	
4.4'-DDT	%	86	70-130	Pass	
a-BHC	%	125	70-130	Pass	
Aldrin	%	128	70-130	Pass	
b-BHC	%	125	70-130	Pass	
d-BHC	%	103	70-130	Pass	
Dieldrin	%	129	70-130	Pass	
Endosulfan I	%	127	70-130	Pass	
Endosulfan II	%	126	70-130	Pass	
	%	120	70-130	Pass	
Endosulfan sulphate	0/.				

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde			%	129	70-130	Pass	
Endrin ketone			%	130	70-130	Pass	
g-BHC (Lindane)			%	122	70-130	Pass	
Heptachlor			%	118	70-130	Pass	
Heptachlor epoxide			%	123	70-130	Pass	
Hexachlorobenzene			%	123	70-130	Pass	
Methoxychlor			%	95	70-130	Pass	
LCS - % Recovery							
Organophosphorus Pesticides							
Diazinon			%	85	70-130	Pass	
Dimethoate			%	74	70-130	Pass	
Ethion			%	72	70-130	Pass	
Fenitrothion			%	78	70-130	Pass	
Methyl parathion			%	83	70-130	Pass	
Mevinphos			%	73	70-130	Pass	
LCS - % Recovery			/0	13	10-130	1 455	
Heavy Metals				T			
			0/	81	90 120	Pass	
Arsenic			% %	82	80-120 80-120	Pass	
Chromium							
Conner			%	89	80-120	Pass	
Copper			%	85	80-120	Pass	
Lead			%	89	80-120	Pass	
Mercury			%	88	75-125	Pass	
Molybdenum			%	84	80-120	Pass	
Nickel			%	87	80-120	Pass	
Selenium			%	103	80-120	Pass	
Silver			%	83	80-120	Pass	
Tin			%	81	80-120	Pass	
						Pass Pass	
Tin Zinc Test	Lab Sample ID	QA Source	%	81	80-120	Pass	Qualifying Code
Tin Zinc Test Spike - % Recovery	•	Source	% %	81 85 Result 1	80-120 80-120 Acceptance	Pass Pass Pass	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons	- 1999 NEPM Frac	Source	% % Units	81 85 Result 1	80-120 80-120 Acceptance Limits	Pass Pass Pass Limits	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9	•	Source	% %	81 85 Result 1	80-120 80-120 Acceptance	Pass Pass Pass	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery	- 1999 NEPM Frac	Source	% % Units	81 85 Result 1 Result 1	80-120 80-120 Acceptance Limits	Pass Pass Pass Limits	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9	- 1999 NEPM Frac M18-Se27562	source tions NCP	% Units	81 85 Result 1 Result 1 80	80-120 80-120 Acceptance Limits 70-130	Pass Pass Pass Limits Pass	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery	- 1999 NEPM Frac	source tions NCP	% Wnits	81 85 Result 1 Result 1 80 Result 1 73	80-120 80-120 Acceptance Limits 70-130	Pass Pass Pass Limits	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX	- 1999 NEPM Frac M18-Se27562	tions NCP NCP NCP	% Units %	81 85 Result 1 Result 1 80	80-120 80-120 Acceptance Limits 70-130	Pass Pass Pass Limits Pass	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene	- 1999 NEPM Fract M18-Se27562	source tions NCP NCP NCP NCP	% Wnits	81 85 Result 1 Result 1 80 Result 1 73	80-120 80-120 Acceptance Limits 70-130	Pass Pass Limits Pass Pass	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene	- 1999 NEPM Fract M18-Se27562 M18-Se27562 M18-Se27562	tions NCP NCP NCP	% Units %	81 85 Result 1 Result 1 80 Result 1 73 76	80-120 80-120 Acceptance Limits 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene	- 1999 NEPM Fract M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562	source tions NCP NCP NCP NCP	% Units % % % %	81 85 Result 1 80 Result 1 73 76 92	80-120 80-120 Acceptance Limits 70-130 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass Pass Pass	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes	- 1999 NEPM Fract M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562	NCP NCP NCP NCP NCP	% Units % % % % % %	81 85 Result 1 80 Result 1 73 76 92 95	80-120 80-120 Acceptance Limits 70-130 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene	- 1999 NEPM Fract M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562	NCP NCP NCP NCP NCP NCP NCP NCP	% Units % % % % % % % %	Result 1 80 Result 1 73 76 92 95 99	80-120 80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total	- 1999 NEPM Fract M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562	NCP NCP NCP NCP NCP NCP NCP NCP	% Units % % % % % % % %	Result 1 80 Result 1 73 76 92 95 99	80-120 80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery	- 1999 NEPM Fract M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562	NCP NCP NCP NCP NCP NCP NCP NCP	% Units % % % % % % % %	81 85 Result 1 80 Result 1 73 76 92 95 99 96	80-120 80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylenes Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbons	- 1999 NEPM Fract M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units % % % % % % % %	81 85 Result 1 Result 1 80 Result 1 73 76 92 95 99 96 Result 1	80-120 80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbons Naphthalene TRH C6-C10	M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units % % % % % % %	81 85 Result 1 80 Result 1 73 76 92 95 99 96 Result 1 91	80-120 80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbons Naphthalene	M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units % % % % % % %	81 85 Result 1 80 Result 1 73 76 92 95 99 96 Result 1 91	80-120 80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbons Naphthalene TRH C6-C10 Spike - % Recovery Organochlorine Pesticides	- 1999 NEPM Fract M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units % % % % % % %	81 85 Result 1 80 Result 1 73 76 92 95 99 96 Result 1 91 78	80-120 80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbons Naphthalene TRH C6-C10 Spike - % Recovery Organochlorine Pesticides 4.4'-DDD	- 1999 NEPM Fract M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 P18-Se26851	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units % % % % % % % % % %	81 85 Result 1 Result 1 80 Result 1 73 76 92 95 99 96 Result 1 91 78 Result 1 106	80-120 80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylenes vylenes - Total Spike - % Recovery Total Recoverable Hydrocarbons Naphthalene TRH C6-C10 Spike - % Recovery Organochlorine Pesticides 4.4'-DDD	- 1999 NEPM Fract M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units % % % % % % % % % % % %	81 85 Result 1 Result 1 80 Result 1 73 76 92 95 99 96 Result 1 91 78 Result 1 106 107	80-120 80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbons Naphthalene TRH C6-C10 Spike - % Recovery Organochlorine Pesticides 4.4'-DDD 4.4'-DDE 4.4'-DDT	- 1999 NEPM Fract M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units % % % % % % % % % % % %	81 85 Result 1 80 Result 1 73 76 92 95 99 96 Result 1 91 78 Result 1 91 78	80-120 80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbons Naphthalene TRH C6-C10 Spike - % Recovery Organochlorine Pesticides 4.4'-DDD 4.4'-DDE 4.4'-DDT a-BHC	- 1999 NEPM Fract M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units % % % % % % % % % % % % % %	81 85 Result 1 80 Result 1 73 76 92 95 99 96 Result 1 91 78 Result 1 106 107 97 110	80-120 80-120 80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass P	Qualifying Code
Tin Zinc Test Spike - % Recovery Total Recoverable Hydrocarbons TRH C6-C9 Spike - % Recovery BTEX Benzene Toluene Ethylbenzene m&p-Xylenes o-Xylene Xylenes - Total Spike - % Recovery Total Recoverable Hydrocarbons Naphthalene TRH C6-C10 Spike - % Recovery Organochlorine Pesticides 4.4'-DDD 4.4'-DDE 4.4'-DDT	- 1999 NEPM Fract M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562 M18-Se27562	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% Units % % % % % % % % % % % %	81 85 Result 1 80 Result 1 73 76 92 95 99 96 Result 1 91 78 Result 1 91 78	80-120 80-120 Acceptance Limits 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Limits Pass Pass Pass Pass Pass Pass Pass Pa	Qualifying Code

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Dieldrin	P18-Se26851	NCP	%	101	70-130	Pass	
Endosulfan I	P18-Se26851	NCP	%	95	70-130	Pass	
Endosulfan II	P18-Se26851	NCP	%	95	70-130	Pass	
Endosulfan sulphate	P18-Se26851	NCP	%	100	70-130	Pass	
Endrin	P18-Se26851	NCP	%	107	70-130	Pass	
Endrin aldehyde	P18-Se26851	NCP	%	107	70-130	Pass	
Endrin ketone	P18-Se26851	NCP	%	98	70-130	Pass	
g-BHC (Lindane)	P18-Se26851	NCP	%	106	70-130	Pass	
Heptachlor	P18-Se26851	NCP	%	109	70-130	Pass	
Heptachlor epoxide	P18-Se26851	NCP	%	102	70-130	Pass	
Hexachlorobenzene	P18-Se26851	NCP	%	110	70-130	Pass	
Methoxychlor	P18-Se26851	NCP	%	93	70-130	Pass	
Spike - % Recovery		,					
Total Recoverable Hydrocarbo	ons - 1999 NEPM Fract	tions		Result 1			
TRH C10-C14	M18-Se30070	СР	%	74	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	tions		Result 1			
TRH >C10-C16	M18-Se30070	СР	%	74	70-130	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocar	bons			Result 1			
Acenaphthene	M18-Se27627	NCP	%	76	70-130	Pass	
Acenaphthylene	M18-Se27627	NCP	%	84	70-130	Pass	
Anthracene	M18-Se27627	NCP	%	95	70-130	Pass	
Benz(a)anthracene	M18-Se27627	NCP	%	87	70-130	Pass	
Benzo(a)pyrene	M18-Se27627	NCP	%	94	70-130	Pass	
Benzo(b&j)fluoranthene	M18-Se27627	NCP	%	92	70-130	Pass	
Benzo(g.h.i)perylene	M18-Se27627	NCP	%	106	70-130	Pass	
Benzo(k)fluoranthene	M18-Se27627	NCP	%	96	70-130	Pass	
Chrysene	M18-Se27627	NCP	%	93	70-130	Pass	
Dibenz(a.h)anthracene	M18-Se27627	NCP	%	101	70-130	Pass	
Fluoranthene	M18-Se27627	NCP	%	109	70-130	Pass	
Fluorene	M18-Se27627	NCP	%	94	70-130	Pass	
Indeno(1.2.3-cd)pyrene	M18-Se27627	NCP	%	108	70-130	Pass	
Naphthalene	M18-Se27627	NCP	%	83	70-130	Pass	
Phenanthrene	M18-Se27627	NCP	%	99	70-130	Pass	
Pyrene	M18-Se27627	NCP	%	113	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	M18-Se30072	СР	%	89	75-125	Pass	
Cadmium	M18-Se30072	CP	%	89	75-125	Pass	
Chromium	M18-Se30072	CP	%	95	75-125	Pass	
Copper	M18-Se30072	CP	%	94	75-125	Pass	
Lead	M18-Se30072	CP	%	92	75-125	Pass	
Mercury	M18-Se30072	CP	%	92	70-130	Pass	
Molybdenum	M18-Se30072	CP	%	88	75-125	Pass	
Nickel	M18-Se30072	CP	%	90	75-125	Pass	
Selenium	M18-Se30072	CP	%	85	75-125	Pass	
Silver	M18-Se30072	CP	%	84	75-125	Pass	
Tin	M18-Se30072	CP	%	86	75-125	Pass	
Zinc	M18-Se30072	CP	%	84	75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									550.5
Total Recoverable Hydrocarbon	s - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M18-Se27894	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M18-Se26552	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M18-Se26552	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M18-Se26552	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	M18-Se27894	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M18-Se27894	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M18-Se27894	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M18-Se27894	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M18-Se27894	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	M18-Se27894	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	M18-Se27894	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M18-Se27894	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	M18-Se26552	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate				1	1 1				
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	M18-Se30351	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	M18-Se30351	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	M18-Se30351	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	M18-Se30351	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	M18-Se30351	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M18-Se30351	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	M18-Se30351	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	M18-Se30351	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	M18-Se30351	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	M18-Se30351	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	M18-Se30351	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	M18-Se30351	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	M18-Se30351	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	M18-Se30351	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	M18-Se30351	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	M18-Se30351	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	M18-Se30351	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	M18-Se30351	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	M18-Se30351	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	M18-Se30351	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	M18-Se30351	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate Organish conherus Posticidos				Dog::lt 4	Dec. It C	DDD			
Organophosphorus Pesticides	M40 C-04050	NCD	m a /l	Result 1	Result 2	RPD	200/	Dess	
Azinphos-methyl	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chloreurifoe	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos methyl	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos Dometon S	M18-Se31253	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O Diazinon	M18-Se31253 M18-Se31253	NCP NCP	mg/kg mg/kg	< 0.2 < 0.2	< 0.2 < 0.2	<1 <1	30% 30%	Pass Pass	
	・ いこひ・つせ イエノウイ					- 1	3117/0	F 225	i

.									
Duplicate							I		
Organophosphorus Pesticides				Result 1	Result 2	RPD		_	
Dimethoate	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenitrothion	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	M18-Se31253	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	M18-Se31253	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	M18-Se31253	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate				T	1		ı	1	
	-	1	1	Result 1	Result 2	RPD			
% Moisture	M18-Se30069	CP	%	16	16	1.0	30%	Pass	
Duplicate				1					
Heavy Metals	F		1	Result 1	Result 2	RPD			
Arsenic	M18-Se30071	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	M18-Se30071	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M18-Se30071	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	M18-Se30071	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	M18-Se30071	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Mercury	M18-Se30071	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Molybdenum	M18-Se30071	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Nickel	M18-Se30071	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Selenium	M18-Se30071	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Silver	M18-Se30071	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tin	M18-Se30071	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Zinc	M18-Se30071	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	3			Result 1	Result 2	RPD			
Acenaphthene	M18-Se31253	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M18-Se31253	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M18-Se31253	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M18-Se31253	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M18-Se31253	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M18-Se31253	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M18-Se31253	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M18-Se31253	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M18-Se31253	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M18-Se31253	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Polycyclic Aromatic Hydroca	rbons			Result 1	Result 2	RPD			
Fluorene	M18-Se31253	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M18-Se31253	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M18-Se31253	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M18-Se31253	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M18-Se31253	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M18-Se30072	CP	mg/kg	2.7	2.6	6.0	30%	Pass	
Cadmium	M18-Se30072	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M18-Se30072	CP	mg/kg	6.0	6.0	1.0	30%	Pass	
Copper	M18-Se30072	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	M18-Se30072	CP	mg/kg	10	9.9	4.0	30%	Pass	
Mercury	M18-Se30072	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Molybdenum	M18-Se30072	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Nickel	M18-Se30072	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Selenium	M18-Se30072	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Silver	M18-Se30072	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tin	M18-Se30072	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Zinc	M18-Se30072	CP	mg/kg	32	32	1.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Nibha Vaidya Analytical Services Manager Chris Bennett Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC) Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins. Ingit shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg be liable for consequential damages including, but not limited to, lost profits, damages for infallate to meet deadlines and lots production arising from this report. This document shall be reported used except in full and retrietates only to the letters tested. Unliess indicated otherwise, the tests were performed on the samples as received.

EURO FINT.

to

CHAIN OF CUSTODY								
SAMPHEEN PEAT 12 AND	18115				CHAIN O	F CUSTODY		
#ERDER BIT ALL AND ALL		al-				5	0 1	
Second Pertin : 08 4488 0100 Brisbane: 07 3112 2888 Second	ATE NEEDED BY:	dard T	AT			EPM (2013)		
SAMPLE ID SEAMULE	HONE: Sydney: 02 8245 05	300 Perth: 0	8 9488 01	00 Brisl		The Source of the State of the		
SAMPLE D SAMPLE D MATTER DATE TIME TIME RESERVATIVE DH 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MMENTS / SPECIAL HANDLING / STC	O: (1) AUMINING	sw@jpsg.	com.au;		3) CBU K K CO K		
SAMPLE ID SOLUTION 1-01-0-0-1 SOLUTION SOL						246/L	ASBESTOS ANALYSIS ANALYSIS ANALYSIS	
1.0] 0.0-0.1 Soll 19.9/13 TAR + BAG#*ICE XX	SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	HO DAL		NOTES:
02-04-0.5 03-04-05 03-04-05 05-04	1-0-0-1	7105	18.9.13		1 + BAG + 1	XXX		
22_0_0.0.1 02_0_0.0.0.1 03_0_0.0.1 03_0_0.0.1 03_0_0.0.1 03_0_0.0.1 03_0_0.0.1 03_0_0.0.1 03_0_0.0.1 03_0_0.0.1 03_0_0.0.1 03_0_0.0.1 03_0_0.0.1 03_0_0.0.1 03_0_0.0.1 03_0_0.0.1 03_0_0.0.1 03_0_0.0.1 03_0_0.0.1 04_0.0.2 05_0_0.0.1 05_0_0.0.1 06	01-0.4-0.	-	_					
22-0-0.1 02-0.4-0.5 03-0.4-0.5 04-0.4-0.5 05-0-0.1 3AR + BAL + ICE XX 05-0-0.1 3AR + BAL + ICE XX SUBCAIT-ROIL SUBCAIL S	0			1				
02 = 0.4 - 0.5 -03 = 0.4 - 0.5 -04 = 0.4 - 0.5 -05 = 0	0 2			1	7	_		
03-04-02.0 03-04-02.0 03-04-02.0 03-04-02.0 05-0-0.1 05-0	02=0.4-0	10	Ž					
03-04-02-0 03-14-3-0 03-14-3-0 03-14-3-0 03-14-3-0 03-14-3-0 03-14-0-0 03-14	-03-0			7				
03-1,9-3.0 04-0-0.1 3AR + BAL + 1CE XX 05-0-0.1 13AR + BAC + 1CE XX 05-0-0.1 13AR + BAC + 1CE XX 05-0-0.1 13AR + BAC + 1CE XX 05-0-0.1 13AR + BAC + 1CE XX 14BA + BAC + 1CE XX 15AR + BAC + 1CE XX XX 15AR + BAC + 1CE XX XX 15AR + BAC + 1CE XX XX XX 15AR + BAC + 1CE XX XX XX 15AR + BAC + 1CE XX XX XX XX XX XX XX XX XX	-03-69-	0		1	+			
24 - 2 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	-03-1.9)			+			
04 0.4-0.5 05 0.4-0.5 13AR + BAC + 1 CE XX 20 2-0-0.1 12 2 2 4-0.5 2	040-				+ BAG			
SAR + BAC + 1CE XX	-04 0.4-D	10			AIC	***		
25 6.4-0.5	-05-0				+ BAC+ 1			
	-05 B.							
5. 0.4-0.5 5. 0.4-0.5	20180919-49					XX		
3. 0.4-0.5 3. 0.4-0.5 3. 0.4-0.5 3. 0.4-0.5 3. 0.4-0.5 3. 0.4-0.5 3. 0.4-0.5 3. 0.4-0.5 3. 0.4-0.5 3. 0.4-0.5 4. 0.4	C20180719-401					SE FORWARD T	GALIROLA	
3.3.4-3.5 L LOCALEN LOCATION OF SHIPMENT: RELINQUISHED BY: RELINQUISHED BY: RELINQUISHED BY: RECEIVED Y: RECEIVED BY: RECEIVED BY: RECEIVED BY: RECEIVED BY: RECEIVED BY: RECEIVED BY: RECEIVE BY: RECEIVE BY: RECEIVE BY: RECEIVE BY: RECEIVE BY: RECEIVE BY: RECEIVE BY: RECEIVE BY: RECEIVE BY: RECEIVE BY: RECEIVE BY: RECEIVE BY: RECEIVE BY: RECEIVE BY: RECEIVE BY: RECEIVE BY: RECEIVE BY: RECEIVE	0							
RELINQUISHED BY: RELINQUISHED BY: A TRANSPORT CO. DATE: CONSIGNMENT NOTE NO. DATE: COOLER SEAL - Yes No A TRANSPORT CO. DATE: COOLER SEAL - Yes No OF: OF: DATE: COOLER SEAL - Yes No OF: OF: OF: DATE: COOLER SEAL - Yes No OF: OF: DATE: COOLER SEAL - Yes No	0.9-1							
RELINQUISHED BY: RELINQUISHED BY: RECEIVED BY: FOR RECEIVING FOR RECEIVED BY: RECEIVED BY: FOR RECEIVED BY: RECEIVED BY: FOR RECEIVED BY: FOR RECEIVED BY: COOLER SEAL - Yes No	-3.4-5	4	7		+	X		
RELINQUISHED BY: RELINQUISHED BY: RECEIVED BY: RECEIVED BY: RECEIVED BY: RECEIVED BY: FOR RECEIVIN DATE: LANG OF: DATE: COOLER SEAL - Yes No ANG COOLER SEAL - Yes No OF: DATE: COOLER SEAL - Yes No	8	いなおり			-	X		
RELINQUISHED BY: RECEIVED BY: RECEIVED BY: RECEIVED BY: ROOLER SEAL - Yes No FOR RECEIVING BY: ROOLER SEAL - Yes No FOR RECEIVING BY: ROOLER SEAL - Yes No FOR RECEIVING BATE: COOLER TEMP deg C COOLER TEMP deg C DATE: COOLER SEAL - Yes No OF: DATE: COOLER SEAL - Yes No					7	X		
DATE: LANG PATE: COOLER SEAL - Yes No	RELINQUISHED	3Y:	П		METHOD OF SHIPMENT:	RECEIVED BY:	FOR RECEIVING LAB US	SE ONLY:
DATE: CONSIGNMENT NOTE NO. OF: OF: OF: OF: OF: OF: OF: OF: OF: OF:	DATE:	19.8.13		IGNMENT I	VOTE NO.	15/NOW		Broken
			CONS	GNMENT	NOTE NO.	SM DATE		Broken
TRANSPORT CO	OF:		TRAN	SPORT CO		102.8	COOLER TEMP deg C	

120619

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: Claudia Bennett PEAT ISLAND Project name:

Project ID: 54993

COC number: Not provided

Turn around time: 5 Day

Sep 19, 2018 5:29 PM Date/Time received:

Eurofins | mgt reference: 619071

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 11.1 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- **7** All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: Nibha Vaidya@eurofins.com

Results will be delivered electronically via e.mail to Claudia Bennett - CBennett@jbsg.com.au.

Note: A copy of these results will also be delivered to the general JBS & G Australia (NSW) P/L email address.

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Priority:

Due:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Sep 19, 2018 5:29 PM

Sep 26, 2018

5 Day

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54993

Report #: 619071 **Phone:** 02 8245 0300

Fax:

Order No.:

Contact Name: Claudia Bennett

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			HOLD	Polycyclic Aromatic Hydrocarbons	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217								
Bris	bane Laborator	y - NATA Site #	20794								
Pert	h Laboratory - N	NATA Site # 237	36								
Exte	rnal Laboratory										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	GW01_0.0-0.1	Sep 19, 2018		Soil	M18-Se30046			Х	Х	Х	Х
2	GW02_0.0-0.1	Sep 19, 2018		Soil	M18-Se30047			Х	Х	Х	Х
3	GW04_0.0-0.1	Sep 19, 2018		Soil	M18-Se30048			Х	Х	Х	Х
4	GW05_0.4-0.5	Sep 19, 2018		Soil	M18-Se30049			Х	Х	Х	Х
5	QA20180919- RG01	Sep 19, 2018		Soil	M18-Se30050			х	Х	Х	Х
6	GW03_3.4-3.4	Sep 19, 2018		Soil	M18-Se30051		Х	Х	Х	Х	Х
7	TS	Sep 19, 2018		Water	M18-Se30052				Х		<u> </u>
8	ТВ	Sep 19, 2018		Water	M18-Se30053				Х		<u> </u>
9	GW01_0.4-0.5	Sep 19, 2018		Soil	M18-Se30054	Х					

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54993

Order No.: Received: Sep 19, 2018 5:29 PM

 Report #:
 619071
 Due:
 Sep 26, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			HOLD	Polycyclic Aromatic Hydrocarbons	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х	Х	Х	Χ	Х
Sydı	ney Laboratory	- NATA Site # 1	8217								\vdash
Bris	bane Laborator	y - NATA Site #	20794								\vdash
Pert	h Laboratory - N		736	T	T						
10	GW01_0.9-1.0	Sep 19, 2018		Soil	M18-Se30055	Х					\vdash
11	GW02_0.4-0.5	Sep 19, 2018		Soil	M18-Se30056	Х					
12	GW03_0.0-0.1	Sep 19, 2018		Soil	M18-Se30057	Х					
13	GW03_1.9-2.0	Sep 19, 2018		Soil	M18-Se30058	Х					
14	GW03_2.9-3.0	Sep 19, 2018		Soil	M18-Se30059	Х					
15	GW04_0.4-0.5	Sep 19, 2018		Soil	M18-Se30060	Х					
16	GW05_0.0-0.1	Sep 19, 2018		Soil	M18-Se30061	Х					
17	GW03_0.4-0.5	Sep 19, 2018		Soil	M18-Se30062	Х					
18	GW03_0.9-1.0	Sep 19, 2018		Soil	M18-Se30063	Х					
Test	Counts					10	1	6	8	6	6

Certificate of Analysis

ilac

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention: Claudia Bennett

Report619071-SProject namePEAT ISLANDProject ID54993

Project ID 54993
Received Date Sep 19, 2018

Client Sample ID			GW01_0.0-0.1	GW02_0.0-0.1	GW04_0.0-0.1	GW05_0.4-0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Se30046	M18-Se30047	M18-Se30048	M18-Se30049
Date Sampled			Sep 19, 2018	Sep 19, 2018	Sep 19, 2018	Sep 19, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
ВТЕХ	•					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	87	59	92	51
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Heavy Metals						
Arsenic	2	mg/kg	< 2	< 2	2.4	5.7
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	16	7.9	7.9	6.4
Copper	5	mg/kg	18	< 5	19	22
Lead	5	mg/kg	7.6	9.9	130	68
Mercury	0.1	mg/kg	< 0.1	< 0.1	0.1	0.1
Nickel	5	mg/kg	27	< 5	< 5	< 5
Zinc	5	mg/kg	19	6.3	170	88
% Moisture	1	%	7.0	7.9	12	9.4

Client Sample ID			QA20180919- RG01	GW03_3.4-3.4
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			M18-Se30050	M18-Se30051
Date Sampled			Sep 19, 2018	Sep 19, 2018
Test/Reference	LOR	Unit	' '	
Total Recoverable Hydrocarbons - 1999 NEPM		0		
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50
TRH C29-C36	50	mg/kg	110	< 50
TRH C10-36 (Total)	50	mg/kg	110	< 50
BTEX		i iiig/ikg	110	1 00
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.1	mg/kg	< 0.1	< 0.1
o-Xylene	0.2	mg/kg	< 0.2	< 0.2
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	95	96
Total Recoverable Hydrocarbons - 2013 NEPM		/0	33	30
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C6-C10	20		< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20
TRH >C10-C10 less BTEX (FT)	50	mg/kg		
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50 < 50
TRH >C16-C34	100	mg/kg	< 50 110	< 100
TRH >C10-C34 TRH >C34-C40	100	mg/kg		< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100 110	< 100
Polycyclic Aromatic Hydrocarbons	100	mg/kg	110	< 100
	0.5			- O F
Benzo(a)pyrene TEQ (lower bound) * Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	< 0.5
, ,,,,	0.5	mg/kg	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	
Acenaphthulana	0.5	mg/kg	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	< 0.5
Anthracene Benz(a)anthracene	0.5	mg/kg	_	< 0.5 < 0.5
. ,	0.5	mg/kg	-	< 0.5
Benzo(a)pyrene Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg mg/kg	-	< 0.5
Benzo(k)fluoranthene	0.5		-	< 0.5
Chrysene	0.5	mg/kg mg/kg	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	_	< 0.5
Fluoranthene	0.5	mg/kg	_	< 0.5
Fluorene	0.5	mg/kg	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	_	< 0.5
Naphthalene	0.5		-	
Naphthalene Phenanthrene	0.5	mg/kg	-	< 0.5
	0.5	mg/kg	-	< 0.5
Pyrene Total PAH*	0.5	mg/kg	-	< 0.5
2-Fluorobiphenyl (surr.)	1	mg/kg %	-	< 0.5 93
z-riuorobipnenyi (surr.) p-Terphenyl-d14 (surr.)	1	%	-	128

Client Sample ID			QA20180919- RG01	GW03_3.4-3.4
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			M18-Se30050	M18-Se30051
Date Sampled			Sep 19, 2018	Sep 19, 2018
Test/Reference	LOR	Unit		
Heavy Metals				
Arsenic	2	mg/kg	2.4	6.3
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	9.5	40
Copper	5	mg/kg	31	< 5
Lead	5	mg/kg	90	19
Mercury	0.1	mg/kg	0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5
Zinc	5	mg/kg	170	11
% Moisture	1	%	12	11

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Sep 24, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C36			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 24, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Sep 24, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
BTEX	Melbourne	Sep 24, 2018	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Polycyclic Aromatic Hydrocarbons	Melbourne	Sep 24, 2018	14 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Melbourne	Sep 24, 2018	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Melbourne	Sep 22, 2018	14 Day

⁻ Method: LTM-GEN-7080 Moisture

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Tota
Moi
BTE
BTE
Poly

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54993

Order No.: Received: Sep 19, 2018 5:29 PM

 Report #:
 619071
 Due:
 Sep 26, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			אבס	lycyclic Aromatic Hydrocarbons	itals M8	ΕΧ	isture Set	tal Recoverable Hydrocarbons
Melk	ourne Laborato		Х	Х	Х	Х	Х	Х			
Sydi	Sydney Laboratory - NATA Site # 18217										
Bris	bane Laborator	y - NATA Site #	20794								
	h Laboratory - N		36								
Exte	rnal Laboratory	'									
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	GW01_0.0-0.1	Sep 19, 2018		Soil	M18-Se30046			Х	Х	Х	Х
2	GW02_0.0-0.1	Sep 19, 2018		Soil	M18-Se30047			Х	Х	Х	Х
3	GW04_0.0-0.1	Sep 19, 2018		Soil	M18-Se30048			Х	Х	Х	Х
4	GW05_0.4-0.5	Sep 19, 2018		Soil	M18-Se30049			Х	Х	Х	Х
5	QA20180919- RG01	Sep 19, 2018		Soil	M18-Se30050			х	Х	Х	Х
6	GW03_3.4-3.4	Sep 19, 2018		Soil	M18-Se30051		Х	Х	Х	Х	Х
7	TS	Sep 19, 2018		Water	M18-Se30052				Х		
8	ТВ	Sep 19, 2018		Water	M18-Se30053				Х		
9	GW01_0.4-0.5	Sep 19, 2018		Soil	M18-Se30054	Х					

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN : 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 619071-S

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54993

Order No.: Received: Sep 19, 2018 5:29 PM

 Report #:
 619071
 Due:
 Sep 26, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			HOLD	Polycyclic Aromatic Hydrocarbons	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217								
	bane Laborator										
	<mark>h Laboratory - N</mark>		736	T	T						
10	GW01_0.9-1.0			Soil	M18-Se30055	Х					
11	GW02_0.4-0.5	Sep 19, 2018		Soil	M18-Se30056	Х					
12	GW03_0.0-0.1	Sep 19, 2018		Soil	M18-Se30057	Х					
13	GW03_1.9-2.0	Sep 19, 2018		Soil	M18-Se30058	Х					
14	GW03_2.9-3.0	Sep 19, 2018		Soil	M18-Se30059	Х					
15	GW04_0.4-0.5	Sep 19, 2018		Soil	M18-Se30060	Х					
16	GW05_0.0-0.1	Sep 19, 2018		Soil	M18-Se30061	Х					
17	GW03_0.4-0.5	Sep 19, 2018		Soil	M18-Se30062	Х					
18	GW03_0.9-1.0	Sep 19, 2018		Soil	M18-Se30063	Х					
Test	Counts					10	1	6	8	6	6

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN: 50:005:085:521 Telephone: +61:3:8564:5000 Report Number: 619071-S

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptano Limits	e Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
ВТЕХ					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	<u> </u>				
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery	, 5				
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	99	70-130	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14			%	91	70-130	Pass	
LCS - % Recovery							
BTEX							
Benzene			%	94	70-130	Pass	
Toluene			%	92	70-130	Pass	
Ethylbenzene			%	94	70-130	Pass	
m&p-Xylenes			%	84	70-130	Pass	
Xylenes - Total			%	83	70-130	Pass	
LCS - % Recovery				•			
Total Recoverable Hydrocarbons - 2	2013 NEPM Fract	tions					
Naphthalene			%	97	70-130	Pass	
TRH C6-C10			%	93	70-130	Pass	
TRH >C10-C16			%	105	70-130	Pass	
LCS - % Recovery				100			
Polycyclic Aromatic Hydrocarbons							
Acenaphthene			%	108	70-130	Pass	
Acenaphthylene			%	101	70-130	Pass	
Anthracene			%	94	70-130	Pass	
Benz(a)anthracene			%	101	70-130	Pass	
Benzo(a)pyrene			%	105	70-130	Pass	
Benzo(b&j)fluoranthene			<u> </u>	97	70-130	Pass	
Benzo(g.h.i)perylene			%	85	70-130	Pass	
Benzo(k)fluoranthene			<u> </u>	124	70-130	Pass	
Chrysene			%	117	70-130	Pass	
•			%	i	1	Pass	
Dibenz(a.h)anthracene			%	75 119	70-130	Pass	
Fluoranthene			<u>%</u> %	104	70-130	Pass	
Fluorene					70-130		
Indeno(1.2.3-cd)pyrene			%	98	70-130	Pass	
Naphthalene			%	102	70-130	Pass	
Phenanthrene			%	93	70-130	Pass	
Pyrene			%	119	70-130	Pass	
LCS - % Recovery							
Heavy Metals			0/		00.100	_	
Arsenic			%	83	80-120	Pass	
Cadmium			%	85	80-120	Pass	
Chromium			%	91	80-120	Pass	
Copper			%	87	80-120	Pass	
Lead			%	90	80-120	Pass	
Mercury			%	99	75-125	Pass	
Nickel			%	90	80-120	Pass	
Zinc			%	87	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				T			
Total Recoverable Hydrocarbons -				Result 1			
TRH C10-C14	M18-Se29678	NCP	%	75	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons - 2		ions		Result 1			
TRH >C10-C16	M18-Se29678	NCP	%	79	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1			
TRH C6-C9	M18-Se30048	CP	%	90	70-130	Pass	
Spike - % Recovery							
втех				Result 1			
Benzene	M18-Se30048	CP	%	74	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Toluene	M18-Se30048	CP	%	74			70-130	Pass	
Ethylbenzene	M18-Se30048	CP	%	83			70-130	Pass	
m&p-Xylenes	M18-Se30048	CP	%	71			70-130	Pass	
o-Xylene	M18-Se30048	CP	%	75			70-130	Pass	
Xylenes - Total	M18-Se30048	CP	%	72			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	ions		Result 1					
Naphthalene	M18-Se30048	CP	%	85			70-130	Pass	
TRH C6-C10	M18-Se30048	СР	%	85			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	M18-Se30050	СР	%	94			75-125	Pass	
Cadmium	M18-Se30050	СР	%	90			75-125	Pass	
Chromium	M18-Se30050	СР	%	90			75-125	Pass	
Copper	M18-Se30050	СР	%	77			75-125	Pass	
Lead	M18-Se30050	СР	%	73			75-125	Fail	Q08
Mercury	M18-Se30050	CP	%	87			70-130	Pass	
Nickel	M18-Se30050	CP	%	90			75-125	Pass	
Zinc	M18-Se30050	CP	%	95			75-125	Pass	
Spike - % Recovery	11110 0000000	<u>.</u>	,,,				70 120	1 400	
Polycyclic Aromatic Hydrocarbo	ns			Result 1					
Acenaphthene	M18-Se27562	NCP	%	89			70-130	Pass	
Acenaphthylene	M18-Se27562	NCP	%	88			70-130	Pass	
Anthracene	M18-Se27562	NCP	<u> </u>	85			70-130	Pass	
	M18-Se27562	NCP	%	83			70-130	Pass	
Benz(a)anthracene Benzo(a)pyrene	M18-Se27562	NCP	%	90			70-130	Pass	
` '' '		NCP							
Benzo(b&j)fluoranthene	M18-Se27562	NCP	%	91 91			70-130	Pass	
Benzo(g.h.i)perylene	M18-Se27562		%				70-130	Pass	
Benzo(k)fluoranthene	M18-Se27562	NCP	%	103			70-130	Pass	
Chrysene	M18-Se27562	NCP	%	94			70-130	Pass	
Dibenz(a.h)anthracene	M18-Se27562	NCP	%	78			70-130	Pass	
Fluoranthene	M18-Se27562	NCP	%	97			70-130	Pass	
Fluorene	M18-Se27562	NCP	%	91			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M18-Se27562	NCP	%	103			70-130	Pass	
Naphthalene	M18-Se27562	NCP	%	89			70-130	Pass	
Phenanthrene	M18-Se27562	NCP	%	80			70-130	Pass	
Pyrene	M18-Se27562	NCP QA	% 	100			70-130 Acceptance	Pass Pass	Qualifying
Test	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code
Duplicate									
Total Recoverable Hydrocarbon	s - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	M18-Se29677	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M18-Se29677	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M18-Se29677	NCP	mg/kg	59	69	15	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	M18-Se29677	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M18-Se29677	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	M18-Se29677	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate			88						
Total Recoverable Hydrocarbons	s - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
				1.100011					

Dunliagta									
Duplicate				Dog::lt 4	Dogult C	DDD			
BTEX	M40 0 00047	0.0		Result 1	Result 2	RPD	000/	D	
Benzene	M18-Se30047	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M18-Se30047	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M18-Se30047	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M18-Se30047	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M18-Se30047	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	M18-Se30047	СР	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate Total Bases and La Hadranes and American	0040 NEDM 5	•		Door It 4	D It O	DDD			
Total Recoverable Hydrocarbons -				Result 1	Result 2	RPD	000/	D	
Naphthalene	M18-Se30047	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M18-Se30047	СР	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate				D 11.4	D				
0/ 14 1 /	1440 0 00047	0.0	0/	Result 1	Result 2	RPD	000/	_	
% Moisture	M18-Se30047	СР	%	7.9	7.8	1.0	30%	Pass	
Duplicate				T	I		T		
Heavy Metals	1440 0 00040	0.0		Result 1	Result 2	RPD	000/	_	
Arsenic	M18-Se30049	CP	mg/kg	5.7	7.5	27	30%	Pass	
Cadmium	M18-Se30049	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M18-Se30049	CP	mg/kg	6.4	6.6	3.0	30%	Pass	
Copper	M18-Se30049	CP	mg/kg	22	21	6.0	30%	Pass	
Lead	M18-Se30049	CP	mg/kg	68	74	10	30%	Pass	
Mercury	M18-Se30049	CP	mg/kg	0.1	0.1	12	30%	Pass	
Nickel	M18-Se30049	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	M18-Se30049	CP	mg/kg	88	91	3.0	30%	Pass	
Duplicate				T	т т		ı	T	
Heavy Metals		I	ī	Result 1	Result 2	RPD			
Arsenic	M18-Se30050	CP	mg/kg	2.4	2.5	2.0	30%	Pass	
Cadmium	M18-Se30050	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M18-Se30050	CP	mg/kg	9.5	8.6	10	30%	Pass	
Copper	M18-Se30050	CP	mg/kg	31	28	11	30%	Pass	
Lead	M18-Se30050	CP	mg/kg	90	80	11	30%	Pass	
Mercury	M18-Se30050	CP	mg/kg	0.1	0.1	7.0	30%	Pass	
Nickel	M18-Se30050	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	M18-Se30050	CP	mg/kg	170	170	<1	30%	Pass	
Duplicate				Ι	I I		I	T	
Polycyclic Aromatic Hydrocarbons					Result 2	RPD .		<u> </u>	
Acenaphthene	M18-Se29678	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M18-Se29678	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M18-Se29678	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M18-Se29678	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M18-Se29678	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M18-Se29678	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M18-Se29678	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M18-Se29678	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M18-Se29678	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M18-Se29678	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M18-Se29678	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M18-Se29678	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M18-Se29678	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M18-Se29678	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M18-Se29678	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M18-Se29678	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Comments

Sample Integrity

N/A
Yes
No

Qualifier Codes/Comments

Code	Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference Q08

Authorised By

N02

Nibha Vaidva Analytical Services Manager Chris Bennett Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins. Impt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In on case shall Eurofins I mg be liable for consequential damages including, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall be reported used to the reproduced except in full and reflects only to the tiens tested. Unless indicated otherwise, the tests were performed on the samples as receiving the samples as received in full and reflects only to the tiens tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention: Claudia Bennett

619071-W Report PEAT ISLAND Project name Project ID 54993

Received Date Sep 19, 2018

Client Sample ID			R20TS	ТВ				
Sample Matrix			Water	Water				
Eurofins mgt Sample No.		M18-Se						
Date Sampled			Sep 19, 2018	Sep 19, 2018				
Test/Reference	LOR	Unit						
втех								
Benzene	0.001	mg/L	98	< 0.001				
Toluene	0.001	mg/L	100	< 0.001				
Ethylbenzene	0.001	mg/L	100	< 0.001				
m&p-Xylenes	0.002	mg/L	97	< 0.002				
o-Xylene	0.001	mg/L	110	< 0.001				
Xylenes - Total	0.003	mg/L	100	< 0.003				
4-Bromofluorobenzene (surr.)	1	%	110	55				

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeBTEXMelbourneSep 22, 201814 Day

- Method: TRH C6-C40 - LTM-ORG-2010

Report Number: 619071-W

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +613 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54993

Order No.: Sep 19, 2018 5:29 PM

 Report #:
 619071
 Due:
 Sep 26, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Claudia Bennett

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			HOLD	Polycyclic Aromatic Hydrocarbons	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217								
Bris	bane Laborator	y - NATA Site #	20794								
Pert	h Laboratory - N	NATA Site # 237	36								
Exte	rnal Laboratory										
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	GW01_0.0-0.1	Sep 19, 2018		Soil	M18-Se30046			Х	Х	Х	Х
2	GW02_0.0-0.1	Sep 19, 2018		Soil	M18-Se30047			Х	Х	Х	Х
3	GW04_0.0-0.1	Sep 19, 2018		Soil	M18-Se30048			Х	Х	Х	Х
4	GW05_0.4-0.5	Sep 19, 2018		Soil	M18-Se30049			Х	Х	Х	Х
5	QA20180919- RG01	Sep 19, 2018		Soil	M18-Se30050			Х	Х	Х	Х
6	GW03_3.4-3.4	Sep 19, 2018		Soil	M18-Se30051		Х	Х	Х	Х	Х
7	TS	Sep 19, 2018		Water	M18-Se30052				Х		
8	ТВ	Sep 19, 2018		Water	M18-Se30053				Х		
9	GW01_0.4-0.5	Sep 19, 2018		Soil	M18-Se30054	Х					

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN: 50:005:085:521 Telephone: +61:3:8564:5000 Report Number: 619071-W

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

619071

02 8245 0300

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Due:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Sep 19, 2018 5:29 PM

Sep 26, 2018

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54993

Phone: Fax:

Order No.:

Report #:

Priority: 5 Day
Contact Name: Claudia Bennett

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			HOLD	Polycyclic Aromatic Hydrocarbons	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	Х
Sydı	ney Laboratory	- NATA Site # 1	8217								
Bris	bane Laboratory	y - NATA Site #	20794								
Pert	h Laboratory - N	ATA Site # 237	'36	I							
10	GW01_0.9-1.0	Sep 19, 2018		Soil	M18-Se30055	Х					
11	GW02_0.4-0.5	Sep 19, 2018		Soil	M18-Se30056	Х					
12	GW03_0.0-0.1	Sep 19, 2018		Soil	M18-Se30057	Χ					
13	GW03_1.9-2.0	Sep 19, 2018		Soil	M18-Se30058	Χ					
14	GW03_2.9-3.0	Sep 19, 2018		Soil	M18-Se30059	Х					
15	GW04_0.4-0.5	Sep 19, 2018		Soil	M18-Se30060	Х					
16	GW05_0.0-0.1	Sep 19, 2018		Soil	M18-Se30061	Х					
17	GW03_0.4-0.5	Sep 19, 2018		Soil	M18-Se30062	Х					
18	GW03_0.9-1.0	Sep 19, 2018		Soil	M18-Se30063	Х					
Test	Counts					10	1	6	8	6	6

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN : 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 619071-W

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 619071-W

Quality Control Results

-	Test		Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
BTEX									
Benzene			mg/L	< 0.001			0.001	Pass	
Toluene			mg/L	< 0.001			0.001	Pass	
Ethylbenzene			mg/L	< 0.001			0.001	Pass	
m&p-Xylenes			mg/L	< 0.002			0.002	Pass	
o-Xylene			mg/L	< 0.001			0.001	Pass	
Xylenes - Total			mg/L	< 0.003			0.003	Pass	
LCS - % Recovery									
BTEX									
Benzene			%	100			70-130	Pass	
Toluene			%	100			70-130	Pass	
Ethylbenzene			%	89			70-130	Pass	
m&p-Xylenes			%	89			70-130	Pass	
Xylenes - Total			%	89			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
BTEX				Result 1					
Benzene	B18-Se26664	NCP	%	97			70-130	Pass	
Toluene	B18-Se26664	NCP	%	103			70-130	Pass	
Ethylbenzene	B18-Se26664	NCP	%	110			70-130	Pass	
m&p-Xylenes	B18-Se26664	NCP	%	102			70-130	Pass	
o-Xylene	B18-Se26664	NCP	%	101			70-130	Pass	
Xylenes - Total	B18-Se26664	NCP	%	102			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	B18-Se26627	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	B18-Se26627	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	B18-Se26627	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	B18-Se26627	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	B18-Se26627	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	B18-Se26627	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

R20 This sample is a Trip Spike and therefore all results are reported as a percentage

Authorised By

Nibha Vaidya Analytical Services Manager Harry Bacalis Senior Analyst-Volatile (VIC)

fif fill

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 619071-W

016262

EUROFINS 1053.

PROJECT NO.: 5493		LABORATORY BATCH NO.: SAMPLERS: RL + RG																		
PROJECT NAME: Pear	t Isla	nd				SA	AMF	PIFR	5.	RI	2 1	0/-								
DATE NEEDED BY: S'TA M	DARD 1	AT.								PM (2								_		
PHONE: Sydney: 02 8245 030	00 Perth (8 9488 n	LOO Bris	bane: 07 3112 2688						-	-									
SEND REPORT & INVOICE TO	: (1) adminr	sw@ibsg	.com.au;	(2) Sburows@	Dibsg.com	ı.au:	(3)	C	he	nne	to	0	ibca	om a						
COMMENTS / SPECIAL HANDLING / STOR	AGE OR DISPOSA	ıL:			. j	1		_			T	<u>w</u>	Jusg.c	Joina	u		T	TYPE	E OE	
						D	,	Moto	0	S								ASBE	ESTOS LYSIS	
						0	3	1	8	esto										120110
SAMPLE ID						1	4	3	0	0								IDENTIFICATION	WA	620 HH8
55_560.0-0.1	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	pH	12	5	7	00	ASS								IDENT	NEPM/WA	NOTES:
00 00 00 00	2010	28.9.18		1x bag, 1x jar		X		X	X	X										
55-56-0.2-0.3				9 0				×												
95-57.0.0-0.1						X	X	X											\Box	
55-58-0.0-0.1								V												
55-58-0,2-0.3																				
SS_59L0.0-0.1								V												
SS-60, 0.0-0.1								X						11				-	-	
SS_61_0,0-0.1						×		×	X				-	+++	-			+	+	
SS-61_0.2-0.3						-			\sim				+			\vdash	++		\vdash	
85-62-0.0-0.1										-		-	-				-	-	-	
55-62-0.2-0.3								J	+	+		-				-	-	1		
55-63-0.0-0.1									-			+	-	-				-		
55-63-0.2-0.3								×	-				-	++	-			-	-	
55-64-0.0-0.1									+	-		-	-					\perp		
SS-64_0.2-0.3								~	-	-			-	+-					_	
55-65-0.0-0.1								X		-	-		-							- 1
55-65-0.2-0.3	V	1/		3//				X	X	-	-		-						_	
55-66-0-0.1		Y		V						-			-		-				_	
55-66-0.2-0.3	1	1			_		-	X	+						-				1	
RELINQUISHED BY:	V			METHOD OF SHIPMENT:		\vdash			DEC	SEN/ED	DV									
NAME: DATE:	218	CONSI	GNMENT N			NA	ME:	Fly	KEC 1	EIVED	BY:		C	OOI ER	CEAL					E ONLY: Broken
OF: JBS&G	3.9.18	TDANS	SPORT CO.			DA	TE:	Elvi	र्गाह	3								inta	ST	Broken
NAME: DATE:			GNMENT N	OTF NO		OF:	ME:	-wa	>+11	2	D.175		C	OOLER	TEMP	1-76 deg (2			
OF.	-10 19					OF:					DATE	:	C	OOLER :	SEAL - Y	/es N	Vo	Inta	ct	Broken
OF: Container & Preservative Codes: P = Plas	tic: I = Soil lar: B	TRANS	PORT CO	aid Denvid C. Collins III I all a									C	OOLER	ТЕМР	deg (3			
Container & Preservative Codes: P = Plas MSO FormsO13 – Chain of Custody - Ger	neric	- Jiass Duttle	, 14 - MITTIC A	Liu Pisva.; C = Soaium Hydroxide Prsvd; VC	= Hydrochlor	ric Acid	Prsv	d Vial;	VS =	Sulfuric	Acid Prsv	d Vial; S =	Sulfuri	c Acid Pr	svd; Z =	Zinc Prsvo	d; E = ED1	A Prsvo	d; ST =	Sterile Bottle; O = Other

016263

EURO FINJ 2 053.

CHAIN OF CUSTODY

PROJECT NO.: 5493	LABORATORY BATCH NO.:																						
PROJECT NAME: Peat	Island												T.	R	0	-					-		
DATE NEEDED BY: STAND	ARD TE	T -				0	CLF	VFI:	NFF	DM (2013	KZ	1	K	4	-					_		
PHONE: Sydney: 02 8245 030	00 Perth:	08 9488 01	00 Bris	bane: 07 3112 2688		1 4		V L L.	INL	141 (2013)						_					
SEND REPORT & INVOICE TO	: (1) admin	nsw@ibsg.	com.au:	(2) CSENNET @jb	sa com	211.	(2)	9 1	2110	Ro) LAT		-		Desir To								
COMMENTS / SPECIAL HANDLING / STOR	AGE OR DISPOS	AL:	oomaa,	(2)	sg.com	l λ	(3)	.9.6	SM.C	5		·····	@j	psg.co	om.a	u	_				TVDF	-	
						2		2	0	to										- 1	TYPE O ASBEST ANALY:	TOS	
						2	1.4	1	0	5	5									-	-	313	C04
						3	7	2	101	9	8						1				ICATIC	₹ ×	620 HH
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	рН	12	Ad	fla	18	As	6										IDENTIFICATION	NEPM/WA	NOTES:
55-66-0.5-0.6	501L	28.9.18		JAR + BAG + ICE		×	X	×	X	X						1		T			-	+	VOTES.
55-67-0-0.1				cs		V	×											+			=	+	
35-68-0-0-1				PFAS DAR + ICE				-		(×							+		\dashv	+	+	
35-69-0-0-1				1						1	~					+		-		+	+	+	
35-70-0-0-1									1		_	1	1			+		+			+	+	
55-71-0-0-1	4	4							+		X	+	1			-	-	+		-	+	+	
SS 73 0-0-1				1xB,1x20r + 102.		V	7	1		X	X	+-	-	-		+	-	+		+	+	+	
QA-CB 20180978				1			×		X		-	-		-		-	+			-	+	+	
QC-CB 20,80918							_	SE				10						1		-	_	+	
0(01 70180928						TL	EH	36		10	KU	JAA	20	10		-0	101	R	04	A	B	+	
QADI 20180928	1/2					11	-				-	+				-		-			-	+	
\$ SS72 0-0-1		Y			+	×		×		×		-		-	\vdash					_	_	\perp	
4, 30, 20	4	4		7		X		X	-	X	-	-				1					_		
									_	-	-												
										1													
31																							
RELINQUISHED BY: NAME: DATE:		CONCU	CAIRACAITA	METHOD OF SHIPMENT:					REC	EIVE	D BY:			100									ONLY:
(B) 2	8.9.18	CONSI	SNMENT N	NOTE NO.		NA DA	ME:	Elv	101					CC	OLER	SEAL	L – Yes	N	۱۰ ol	1	ntact		Broken
OF: JBS&G			PORT CO.			OF	: 1	Eur	tin	_				CC	OLER	TEM	P47	deg (
NAME: DATE:		CONSI	SNMENT N	IOTE NO.		NA	ME:		1	/	[DATE:									ntac	t	Broken
OF:		TRANS	PORT CO			OF	F:																
Container & Preservative Codes: P = Plas MSO FormsO13 = Chain of Custody = Co	tic; J = Soil Jar;	3 = Glass Bottle;	N = Nitric A	cid Prsvd.; C = Sodium Hydroxide Prsvd; VC = H	Hydrochlor	ic Acid	Prsvo	d Vial;	VS = 5	Sulfur	ic Acid	Prsvd	Vial; S =	Sulfurio	Acid P	rsvd;	Z = Zin	c Prsvo	: E = E	DTA F	rsvd:	ST = S	terile Bottle: O = Other

016264

EUROFINS. CHAIN OF CUSTODY

3 053

PROJECT NO .: 5+933	LABORATORY BATCH NO.:																					
PROJECT NAME: Pea	+ Islav	d.											0	^			-					
DATE NEEDED BY: STAN	DARD	TAT				10	CLE	VFI	· NF	DIM	2013	1	R	u	00	_ ,						
PHONE: Sydney: 02 8245 03	00 Perth:	08 9488 03	LOO Bris	bane: 07 3112 2688								_								- 2		
SEND REPORT & INVOICE TO): (1) admin	nsw@ibsg	.com.au:	(2) CBENNET @jbs	a com	2111	121	5 6	CUP	200	VIAC		0	.1	111111111			1		-		
COMMENTS / SPECIAL HANDLING / STO	RAGE OR DISPOS	AL:		(=, ===================================	g.com			70	CT9			······	@	Jbsg.	com	.au	1			(-	
Please forward	d QC	201309	128-	of to Envirolab		HEAVY METALS	830	PAHS	NEX TO				15				11/1	3		ASB	E OF ESTOS ALYSIS	620448
SAMPLE ID	MATRIX	DATE	TIME	TYPE & PRESERVATIVE	рН	140			土					-						ENTIFE	NEPM/WA	
GW-01	WATER.	28.9.18		2 x VILES, 1 x METAL IXAN				X	.		+	X		-			-	+	++	9	-	NOTES:
GW-02	1	T.		+ILE			A		X		-	+		-		-		-	++	+	1	* Heavy Mex
CW-03				1			×		×	-	-	+		-	-	1	-	-	-	-		= Fiftereo
GW-Ot						C	×	_	$\stackrel{\wedge}{\times}$		-	-			-	1	1	-	-	+	\sqcup	Standard
GW-05												+		_	_	-	0		-	_		
MW_01					-	^		×	×	+		-			+		- 1					
MW-02						X		Х	X	+		-			-							
MW-03						X		X	X	-	-	-		4	_			_	1			
QA20180928-01						<u>.</u>		X	X	-	-	+		-				_				
QC20180928-01						X	X	7	X													
RINS280918.				1 200715	_	P	_E	456	2	FOX	244	arc	T	2	EOUL	IR	OLI	18				
RIN-W20180928		1		1xBOTTLE + ICE, 2xU,1								_										
FIELD BLANK	1	1		1 x METAL + 1(6+2x),	XA	×		×	×													
TS/7B				1 x PFAS BOTTLE + ICE																		
1-715				2 × VILES					X.													
		-																				
BELLINOLIS S.																					\top	
RELINQUISHED BY: NAME: DATE:	10	CONS	CNINACNITAL	METHOD OF SHIPMENT:						CEIVE	D BY:							FOR	RECEIVI	ING LA	AB US	E ONLY:
OF: JBS&G B	8/9/19.	TRANS	GNMENT N	OTE NO.		DA	ME: TE: .	281	9/19	8					COOLE	R SEA	L-Ye	es N . 76 deg (lo	Inta	ct	Broken
NAME: DATE:			GNMENT N	OTE NO.		NA OF	ME:	> cur	ofin	15	D	ATE:		(COOLE	R TEN	VP	deg (Vo	Inta	ict	Broken
OF:	-H- 1 C-11 -	TRANS	SPORT CO			200								(COOLE	RTEN	ΛP	deg 0				
MSO Forms 013 - Chain of Custody - Co	suc; J = Soli Jar; E	s = Glass Bottle	; N = Nitric A	cid Prsvd.; C = Sodium Hydroxide Prsvd; VC = H	ydrochlor	ic Acid	Prsv	d Vial;	VS =	Sulfuri	c Acid I	Prsvd \	/ial; S =	Sulfu	ric Acid	Prsvd	; Z = Zi	nc Prsvo	d: E = ED7	A Prsv	d: ST =	Sterile Bottle: O = Othor

Melbourne

Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: Scott Burrows Project name: PEAT ISLAND

Project ID: 54933

COC number: 016262-016264

Turn around time: 5 Day

Sep 28, 2018 4:58 PM Date/Time received:

Eurofins | mgt reference: 620448

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt: 4.8 degrees Celsius.
- \mathbf{V} All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- **7** All samples were received in good condition.
- \square Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \mathbf{V} Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.

Notes^{N/A} Custody Seals intact (if used).

Triplicate samples sent to Envirolab for analysis. Additional PFAS tub for SS 68 0.1-0.2 received and placed on hold.

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: Nibha Vaidya@eurofins.com

Results will be delivered electronically via e.mail to Scott Burrows - SBurrows@jbsg.com.au.

Note: A copy of these results will also be delivered to the general JBS & G Australia (NSW) P/L email address.

Environmental Laboratory Soil Contamination Analysis

NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Sep 28, 2018 4:58 PM

 Report #:
 620448
 Due:
 Oct 8, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Scott Burrows

											Euro	ofins	mgt	Anal	ytical	Services Manager : Nibha Vaidya
As	공	공	Me	Me	ВТ	Eu	V _o	Mc	Mc	То	Eu	Eu	ВТ	JB	Pe	

		Sa	mple Detail			sbestos - WA guidelines	OLD	OLD	etals M8	etals M8 filtered	TEX	urofins mgt Suite B13	olatile Organics	oisture Set	oisture Set	otal Recoverable Hydrocarbons	rofins mgt Suite B7	urofins mgt Suite B7 (filtered metals)	TEXN and Volatile TRH	SS&G Suite 2	er- and Polyfluoroalkyl Substances (PFASs)
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	271			Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Sydi	ney Laboratory	- NATA Site # 1	8217			Х															
Bris	bane Laborator	y - NATA Site #	20794					Х						Χ	Χ						Х
Pert	h Laboratory - N	NATA Site # 237	' 36																		
Exte	rnal Laboratory	,																			
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																
1	SS_56_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01706	Х			Х		Х	Х		Х		Х					
2	SS_56_0.2-0.3	Sep 28, 2018		Soil	S18-Oc01707				Х					Χ							
3	SS_57_0.0-0.1			Soil	S18-Oc01708									Х			Х				
4	SS_58_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01709				Х					Χ						igsqcut	
5	SS_59_0.0-0.1	Sep 28, 2018		S18-Oc01710				Х					Χ								
6	SS_60_0.0-0.1	Sep 28, 2018		S18-Oc01711				Х					Χ								
7	SS_61_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01712				Х		Х	Х		Х		Х					
8	SS_62_0.2-0.3	Sep 28, 2018		Soil	S18-Oc01713				Х					Χ							
9	SS_63_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01714				Х		Х			Χ		Х					

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

 Order No.:
 Received:
 Sep 28, 2018 4:58 PM

 Report #:
 620448
 Due:
 Oct 8, 2018

 Report #:
 620448
 Due:
 Oct 8, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Scott Burrows

Asbes	ПОП	НОГР	Metals	Metals	втех	Eurofir	Volatile	Moistu	Moistu	Total F	Eurofir	Eurofir	BTEX	JBS&(Per- a		

Sample	e Detail		bestos - WA guidelines	סבס	סבס	etals M8	etals M8 filtered	EX	rofins mgt Suite B13	latile Organics	bisture Set	bisture Set	ital Recoverable Hydrocarbons	rofins mgt Suite B7	rofins mgt Suite B7 (filtered metals)	EXN and Volatile TRH	S&G Suite 2	er- and Polyfluoroalkyl Substances (PFASs)
Melbourne Laboratory - NATA Site # 12	54 & 14271			Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Sydney Laboratory - NATA Site # 18217	7		Х															
Brisbane Laboratory - NATA Site # 207	94				Х						Х	Х					<u> </u>	Х
Perth Laboratory - NATA Site # 23736																		Ш
10 SS_64_0.2-0.3 Sep 28, 2018	Soil	S18-Oc01715				Х					Х							
11 SS_65_0.0-0.1 Sep 28, 2018	Soil	S18-Oc01716				Х			Х		Х							
12 SS_66_0.0-0.1 Sep 28, 2018	Soil	S18-Oc01717				Х					Х							Ш
13 SS_66_0.5-0.6 Sep 28, 2018	Soil	S18-Oc01718	Х								Х						Х	Ш
14 SS_67_0.0-0.1 Sep 28, 2018	Soil	S18-Oc01719									Х			Х				
15 SS_68_0.0-0.1 Sep 28, 2018	Soil	S18-Oc01720										Х						Х
16 SS_69_0.0-0.1 Sep 28, 2018	Soil	S18-Oc01721										Х						Х
17 SS_70_0.0-0.1 Sep 28, 2018	Soil	S18-Oc01722										Х						Х
18 SS_71_0.0-0.1 Sep 28, 2018	Soil	S18-Oc01723										Х						Х
19 SS_73_0.0-0.1 Sep 28, 2018	Soil	S18-Oc01724	Х								Х						Х	Ш
20 QA20180928 Sep 28, 2018	Soil	S18-Oc01725	Х								Х						Х	
21 QA01 Sep 28, 2018	Soil	S18-Oc01726	Х			Х		Х			Х		Х					

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

01

Order No.: Received: Sep 28, 2018 4:58 PM Report #: 620448 Due: Oct 8, 2018

Phone: 02 8245 0300 Priority: 5 Day

Χ

Χ

Contact Name: Fax: Scott Burrows

		Sar	nple Detail			Asbestos - WA guidelines	HOLD	HOLD	Metals M8	Metals M8 filtered	втех	Eurofins mgt Suite B13	Volatile Organics	Moisture Set	Moisture Set	Total Recoverable Hydrocarbons	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)	BTEXN and Volatile TRH	JBS&G Suite 2	Per- and Polyfluoroalkyl Substances (PFASs)
Mel	bourne Laborate	ory - NATA Site	# 1254 & 142	271			Х		Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 18	3217			Х														<u> </u>	
		y - NATA Site #						Х						Х	Х					<u> </u>	Х
Per	h Laboratory - N	NATA Site # 237	36																	<u> </u>	
	20180928																			<u> </u>	
22		Sep 28, 2018		Soil	S18-Oc01727	Х			Х		Х			Х		Х				<u> </u>	
23	GW_01	Sep 28, 2018		Water	S18-Oc01728								Х					Х		<u> </u>	
24	GW_02	Sep 28, 2018		Water	S18-Oc01729													Х		<u> </u>	
25	GW_03	Sep 28, 2018		Water	S18-Oc01730								Х					Х		<u> </u>	
26	GW_04	Sep 28, 2018		Water	S18-Oc01731								Х					Х		<u> </u>	
27	GW_05	Sep 28, 2018		Water	S18-Oc01732													Х	<u> </u>	<u> </u>	
28	MW_01	Sep 28, 2018		Water	S18-Oc01733													Х	<u> </u>	<u> </u>	
29	MW_02	Sep 28, 2018		Water	S18-Oc01734													Х			
30	MW_03	Sep 28, 2018		Water	S18-Oc01735													Х			
31	QA20180928-	Sep 28, 2018		Water	S18-Oc01736								X					Х		1	

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Contact Name:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

 Order No.:
 Received:
 Sep 28, 2018 4:58 PM

 Report #:
 620448
 Due:
 Oct 8, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

		Sam		Asbestos - WA guidelines	HOLD	HOLD	Metals M8	Metals M8 filtered	втех	Eurofins mgt Suite B13	Volatile Organics	Moisture Set	Moisture Set	Total Recoverable Hydrocarbons	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)	BTEXN and Volatile TRH	JBS&G Suite 2	Per- and Polyfluoroalkyl Substances (PFASs)	
Mell	oourne Laborate	ory - NATA Site #	1254 & 14271			Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 182	217		Х															
Bris	bane Laborator	y - NATA Site # 2	0794				Х						Х	Х						Х
Pert	h Laboratory - N	NATA Site # 2373	6																	
32	RINS280918	Sep 28, 2018	Water	S18-Oc01737					Х											
33	RIN- W20180928	Sep 28, 2018	Water	S18-Oc01738													Х			
34	TS	Sep 28, 2018	Water	S18-Oc01739														Х		
35	ТВ	Sep 28, 2018	Water	S18-Oc01740														Х		
36	SS_58_0.2-0.3	Sep 28, 2018	Soil	S18-Oc01741		Х														
37	SS_62_0.2-0.3		Soil	S18-Oc01742		Х														
38	SS_62_0.0-0.1		Soil	S18-Oc01743		Х														
39	SS_63_0.2-0.3	Sep 28, 2018	Soil	S18-Oc01744		Х													\bigsqcup	
40	SS_64_0.0-0.1		Soil	S18-Oc01745		Х													\bigsqcup	
41	SS_65_0.2-0.3		Soil	S18-Oc01746		Х														
42	SS_66_0.2-0.3	Sep 28, 2018	Soil	S18-Oc01747		Х													Ш	

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Sep 28, 2018 4:58 PM

 Report #:
 620448
 Due:
 Oct 8, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Fax: Contact Name: Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sar	nple Detail			Asbestos - WA guidelines	HOLD	HOLD	Metals M8	Metals M8 filtered	втех	Eurofins mgt Suite B13	Volatile Organics	Moisture Set	Moisture Set	Total Recoverable Hydrocarbons	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)	BTEXN and Volatile TRH	JBS&G Suite 2	Per- and Polyfluoroalkyl Substances (PFASs)
Mell	ourne Laborato	ory - NATA Site	# 1254 & 142	71			Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 18	3217			Х															
Bris	bane Laboratory	y - NATA Site #	20794					Х						Х	Х						Х
Pert	h Laboratory - N	IATA Site # 237	36																		
43	FIELD BLANK	Sep 28, 2018		Water	S18-Oc01748			Х													
44	SS_68_0.1-0.2	Sep 28, 2018		Soil	S18-Oc01770			Х													
Test	Counts					6	9	9	13	1	5	3	4	22	22	5	2	10	2	3	4

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention: Scott Burrows
Report 620448-AID
Project Name PEAT ISLAND

Project ID 54933

Received Date Sep 28, 2018

Date Reported Oct 08, 2018

Methodology:

Asbestos Fibre Identification Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS4964 method for inhomogeneous samples is around 0.1 g/kg (0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis where required, this is considered to be at the nominal reporting limit of 0.01 % (w / w). The examination of large sample sizes(500 mL is recommended) may improve the likelihood of identifying ACM in the > 2mm fraction. The NEPM screening level of 0.001 % (w / w) asbestos in soil for FA(friable asbestos) and AF(asbestos fines) then applies where they are able to be quantified by gravimetric procedures. This quantitative screening is not generally applicable to FF(free fibres) and results of Trace Analysis are referred.

NOTE: NATA News March 2014, p.7, states in relation to AS4964: "This is a qualitative method with a nominal reporting limit of 0.01%" and that currently in Australia "there is no validated method available for the quantification of asbestos". Accordingly, NATA Accreditation does not cover the performance of this service (indicated with an asterisk). This report is consistent with the analytical procedures and reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended) and the Western Australia Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, 2009, including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil, June 2011.

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name PEAT ISLAND

Project ID 54933

Date SampledSep 28, 2018Report620448-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
SS_56_0.0-0.1	18-Oc01706	Sep 28, 2018	Approximate Sample 658g Sample consisted of: Brown fine-grained sandy soil	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SS_66_0.5-0.6	18-Oc01718	Sep 28, 2018	Approximate Sample 891g Sample consisted of: Brown fine-grained sandy soil	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SS_73_0.0-0.1	18-Oc01724	Sep 28, 2018	Approximate Sample 679g Sample consisted of: Brown fine-grained sandy soil	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
QA20180928	18-Oc01725	Sep 28, 2018	Approximate Sample 699g Sample consisted of: Brown fine-grained sandy soil	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
QA01 20180928	18-Oc01726	Sep 28, 2018	Approximate Sample 644g Sample consisted of: Brown fine-grained sandy soil	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SS_72_0.0-0.1	18-Oc01727	Sep 28, 2018	Approximate Sample 687g Sample consisted of: Brown fine-grained sandy soil	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyOct 02, 2018Indefinite

Report Number: 620448-AID

Order No.:

Report #:

Phone:

Fax:

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

620448

02 8245 0300

Sydney Unit F3, Building F Brisbane

Received:

Priority:

Contact Name:

Due:

1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Sep 28, 2018 4:58 PM

Oct 8, 2018

Scott Burrows

5 Day

Company Name:

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney

NSW 2000

Project Name: Project ID:

54933

PEAT ISLAND

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

			mple Detail			Asbestos - WA guidelines	HOLD	HOLD	Metals M8	Metals M8 filtered	втех	Eurofins mgt Suite B13	Volatile Organics	Moisture Set	Moisture Set	Total Recoverable Hydrocarbons	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)	BTEXN and Volatile TRH	JBS&G Suite 2	Per- and Polyfluoroalkyl Substances (PFASs)
	oourne Laborato			71			Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	
	ney Laboratory					Х															
Bris	bane Laboratory	y - NATA Site #	20794					Х						Х	Х						Х
	h Laboratory - N		36																		
	rnal Laboratory			1																	
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																
1	SS_56_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01706	Х			Х		Х	Х		Х		Х					
2	SS_56_0.2-0.3			Soil	S18-Oc01707				Х					Х							
3	SS_57_0.0-0.1			Soil	S18-Oc01708									Х			Х				
4	SS_58_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01709				Х					Х							
5	SS_59_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01710				Х					Х							
6	SS_60_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01711				Х					Х							
7	SS_61_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01712				Х		Х	Х		Х		Х					
8	SS_62_0.2-0.3	Sep 28, 2018		Soil	S18-Oc01713				Х					Х							
9	SS_63_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01714				Χ		Х			Х		Х					

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166

Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F Brisbane

16 Mars Road

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID:

54933

Order No.: Report #:

620448

02 8245 0300

Phone: Fax:

Priority:

Received:

Due:

Oct 8, 2018 5 Day

Sep 28, 2018 4:58 PM

Contact Name: Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Saı	nple Detail		Asbestos - WA guidelines	HOLD	ПОП	Metals M8	Metals M8 filtered	втех	Eurofins mgt Suite B13	Volatile Organics	Moisture Set	Moisture Set	Total Recoverable Hydrocarbons	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)	BTEXN and Volatile TRH	JBS&G Suite 2	Per- and Polyfluoroalkyl Substances (PFASs)
	oourne Laborato					Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
	ney Laboratory				Х															
	bane Laboratory						Х						Х	Х						Х
	h Laboratory - N	1																		
10	SS_64_0.2-0.3		Soil	S18-Oc01715				Χ					Х							
11	SS_65_0.0-0.1	Sep 28, 2018	Soil	S18-Oc01716				Χ			Х		Х							
12	SS_66_0.0-0.1	Sep 28, 2018	Soil	S18-Oc01717				Χ					Х							
13	SS_66_0.5-0.6	i	Soil	S18-Oc01718	Х								Х						Х	
14	SS_67_0.0-0.1	Sep 28, 2018	Soil	S18-Oc01719									Х			Х				
15	SS_68_0.0-0.1	Sep 28, 2018	Soil	S18-Oc01720										Х						Х
16	SS_69_0.0-0.1	Sep 28, 2018	Soil	S18-Oc01721										Х						Х
17	SS_70_0.0-0.1	 	Soil	S18-Oc01722										Х						Х
18	SS_71_0.0-0.1	Sep 28, 2018	Soil	S18-Oc01723										Х						Х
19	SS_73_0.0-0.1	Sep 28, 2018	Soil	S18-Oc01724	Х								Х						Х	
20	QA20180928	Sep 28, 2018	Soil	S18-Oc01725	Х								Х						Х	
21	QA01	Sep 28, 2018	Soil	S18-Oc01726	Х			Χ		х			Х		х					

Melbourne 3-5 Kingston Town Close

Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 SydneyBrisbaneUnit F3, Building F1/21 Small16 Mars RoadMurarrie C

Lane Cove West NSW 2066

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L Order No.: Received: Sep 28, 2018 4:58 PM

 Address:
 Level 1, 50 Margaret St
 Report #:
 620448
 Due:
 Oct 8, 2018

 Sydney
 Phone:
 02 8245 0300
 Priority:
 5 Day

NSW 2000 Fax: 02 8245 0300 Priority: 5 Day

Frome: 02 8245 0300 Priority: 5 Day

Contact Name: Scott Burrows

Project Name: PEAT ISLAND

Project ID: 54933

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

			Asbestos - WA guidelines	HOLD	НОГ	Metals M8	Metals M8 filtered	втех	Eurofins mgt Suite B13	Volatile Organics	Moisture Set	Moisture Set	Total Recoverable Hydrocarbons	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)	BTEXN and Volatile TRH	JBS&G Suite 2	Per- and Polyfluoroalkyl Substances (PFASs)			
Mell	oourne Laborato	ory - NATA Site	# 1254 & 1427	'1			Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 1	3217		Х																
Bris	bane Laboratory	y - NATA Site #	20794				Χ						Х	Х						Х	
Pert	h Laboratory - N	IATA Site # 237																			
	20180928																				
22	SS_72_0.0-0.1	Sep 28, 2018	5	Soil	S18-Oc01727	Х			Χ		Х			Х		Х					
23	GW_01	Sep 28, 2018	١	Water	S18-Oc01728								Х					Х			
24	GW_02	Sep 28, 2018	١	Water	S18-Oc01729													Х			
25	GW_03	Sep 28, 2018	١	Water	S18-Oc01730								Х					Х			
26	GW_04	Sep 28, 2018	١	Water	S18-Oc01731								Х					Х			
27	GW_05	Sep 28, 2018	١	Water	S18-Oc01732													Х			
28	MW_01	Sep 28, 2018	١	Water	S18-Oc01733													Х			
29	MW_02	Sep 28, 2018	١	Water	S18-Oc01734													Х			
30	MW_03	Sep 28, 2018	١	Water	S18-Oc01735													Х			
31	QA20180928- 01	Sep 28, 2018	١	Water	S18-Oc01736								Х					Х			

Phone:

Fax:

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166

Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID:

54933

 Order No.:
 Received:
 Sep 28, 2018 4:58 PM

 Report #:
 620448
 Due:
 Oct 8, 2018

620448 **Due:** Oct 8, 2018 02 8245 0300 **Priority:** 5 Day

Contact Name: Scott Burrows

		Sam		Asbestos - WA guidelines	HOLD	HOLD	Metals M8	Metals M8 filtered	втех	Eurofins mgt Suite B13	Volatile Organics	Moisture Set	Moisture Set	Total Recoverable Hydrocarbons	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)	BTEXN and Volatile TRH	JBS&G Suite 2	Per- and Polyfluoroalkyl Substances (PFASs)	
		ry - NATA Site #				Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
		NATA Site # 18			Х															
		/ - NATA Site # 2					Х						Х	Х						Х
	1	ATA Site # 2373		200000000					.,											
32	RINS280918	Sep 28, 2018	Water	S18-Oc01737					Х											
33	RIN- W20180928	Sep 28, 2018	Water	S18-Oc01738													Х			
34	TS	Sep 28, 2018	Water	S18-Oc01739														Х		
35	ТВ	Sep 28, 2018	Water	S18-Oc01740														Х		
36	SS_58_0.2-0.3		Soil	S18-Oc01741		Х														
37	SS_62_0.2-0.3	Sep 28, 2018	Soil	S18-Oc01742		Х														
38	SS_62_0.0-0.1	Sep 28, 2018	Soil	S18-Oc01743		Х														
39	SS_63_0.2-0.3	Sep 28, 2018	Soil	S18-Oc01744		Х														
40	SS_64_0.0-0.1		Soil	S18-Oc01745		Х														
41	SS_65_0.2-0.3		Soil	S18-Oc01746		Х														
42	SS_66_0.2-0.3	Sep 28, 2018	Soil	S18-Oc01747		Χ														

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 7 of 10 Report Number: 620448-AID

PEAT ISLAND

Project Name:

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L Order No.: Received: Sep 28, 2018 4:58 PM

 Address:
 Level 1, 50 Margaret St
 Report #:
 620448
 Due:
 Oct 8, 2018

Sydney Phone: 02 8245 0300 Priority: 5 Day
NSW 2000 Fax: Contact Name: Scott Burrows

NSW 2000 Fax. Contact Name. Scott burlows

Project ID: 54933

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	HOLD	Metals M8	Metals M8 filtered	втех	Eurofins mgt Suite B13	Volatile Organics	Moisture Set	Moisture Set	Total Recoverable Hydrocarbons	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)	BTEXN and Volatile TRH	JBS&G Suite 2	Per- and Polyfluoroalkyl Substances (PFASs)
Mel	lbourne Laborato	ory - NATA Site	# 1254 & 142	271			Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Syc	dney Laboratory	- NATA Site # 1	8217			Х															
Bris	sbane Laborator	y - NATA Site#	20794					Х						Х	Х						X
Per	th Laboratory - N	NATA Site # 237	36																		
43	FIELD BLANK	Sep 28, 2018		Water	S18-Oc01748			Х													
44	SS_68_0.1-0.2	Sep 28, 2018		Soil	S18-Oc01770			Х													
Tes	st Counts					6	9	9	13	1	5	3	4	22	22	5	2	10	2	3	4

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Date Reported: Oct 08, 2018

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

WA DOH Western Australia Department of Health

NOHSC National Occupational Health and Safety Commission

ACM Bonded asbestos-containing material means any material containing more than 1% asbestos and comprises asbestos-containing-material which is in sound condition,

although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. Common examples of ACM include but are not limited to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on acoustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and ceiling plaster, ceiling tiles, and gasket materials. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it approximates the thickness of common asbestos cement sheeting and for fragments to be smaller than this would imply a high degree of damage and hence potential

for fibre release.

FA FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos

is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or

was previously bonded and is now significantly degraded (crumbling).

PACM Presumed Asbestos-Containing Material means thermal system insulation and surfacing material found in buildings, vessels, and vessel sections constructed no later

than 1980 that are assumed to contain greater than one percent asbestos but have not been sampled or analyzed to verify or negate the presence of asbestos.

Asbestos fines (AF) are defined as free fibres, or fibre bundles, smaller than 7mm. It is the free fibres which present the greatest risk to human health, although very

small fibres (< 5 microns in length) are not considered to be such a risk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve.

(Note that for bonded ACM fragments to pass through a 7 mm x 7 mm sieve implies a substantial degree of damage which increases the potential for fibre release.)

AC Asbestos cement means a mixture of cement and asbestos fibres (typically 90:10 ratios).

Report Number: 620448-AID

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Karthik Surisetty Senior Analyst-Asbestos (NSW)

Authorised by:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

Date Reported: Oct 08, 2018

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Page 10 of 10

Report Number: 620448-AID

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Report 620448-SProject name PEAT ISLAND

Project ID 54933

Received Date Sep 28, 2018

Client Sample ID			SS_56_0.0-0.1	SS_56_0.2-0.3	SS_57_0.0-0.1	SS_58_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Oc01706	S18-Oc01707	S18-Oc01708	S18-Oc01709
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	-	< 20	-
TRH C10-C14	20	mg/kg	< 20	-	< 20	-
TRH C15-C28	50	mg/kg	< 50	-	< 50	-
TRH C29-C36	50	mg/kg	< 50	-	< 50	-
TRH C10-36 (Total)	50	mg/kg	< 50	-	< 50	-
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	73	-	74	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	-
TRH >C10-C16	50	mg/kg	< 50	-	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	< 50	-
TRH >C16-C34	100	mg/kg	< 100	-	< 100	-
TRH >C34-C40	100	mg/kg	< 100	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	< 100	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	1.2	-
Acenaphthene	0.5	mg/kg	-	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	-	-	< 0.5	-
Anthracene	0.5	mg/kg	-	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	-	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Chrysene	0.5	mg/kg	_	_	< 0.5	-

Report Number: 620448-S

			T	T		T
Client Sample ID			SS_56_0.0-0.1	SS_56_0.2-0.3	SS_57_0.0-0.1	SS_58_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Oc01706	S18-Oc01707	S18-Oc01708	S18-Oc01709
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5	-
Fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Fluorene	0.5	mg/kg	-	-	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	< 0.5	-
Naphthalene	0.5	mg/kg	-	-	< 0.5	-
Phenanthrene	0.5	mg/kg	-	-	< 0.5	-
Pyrene	0.5	mg/kg	-	-	< 0.5	-
Total PAH*	0.5	mg/kg	-	-	< 0.5	-
2-Fluorobiphenyl (surr.)	1	%	-	-	117	-
p-Terphenyl-d14 (surr.)	1	%	-	-	111	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	-
a-BHC	0.05	mg/kg	< 0.05	-	-	-
Aldrin	0.05	mg/kg	< 0.05	-	-	-
b-BHC	0.05	mg/kg	< 0.05	-	-	-
d-BHC	0.05	mg/kg	< 0.05	-	-	-
Dieldrin	0.05	mg/kg	< 0.05	-	-	-
Endosulfan I	0.05	mg/kg	< 0.05	-	-	-
Endosulfan II	0.05	mg/kg	< 0.05	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	-
Endrin	0.05	mg/kg	< 0.05	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	-
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	-
Methoxychlor	0.05	mg/kg	< 0.05	-	-	-
Toxaphene	1	mg/kg	< 1	-	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	-	
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	-	-
Dibutylchlorendate (surr.)	1	%	107	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	95	-	-	-
Polychlorinated Biphenyls	<u> </u>	<u> </u>				
Aroclor-1016	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1232	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1242	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1248	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1254	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1260	0.1	mg/kg	< 0.1	-	-	-
Total PCB*	0.1	mg/kg	< 0.1	-	-	-
Dibutylchlorendate (surr.)	1	%	107	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	95	-	-	-

Client Sample ID Sample Matrix			SS_56_0.0-0.1 Soil	SS_56_0.2-0.3 Soil	SS_57_0.0-0.1 Soil	SS_58_0.0-0.1 Soil
Eurofins mgt Sample No.			S18-Oc01706	S18-Oc01707	S18-Oc01708	S18-Oc01709
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	< 2	< 2	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	8.4	7.3	11	7.3
Copper	5	mg/kg	< 5	< 5	11	< 5
Lead	5	mg/kg	11	32	110	41
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	7.2	< 5
Zinc	5	mg/kg	18	26	180	83
% Moisture	1	%	11	9.3	18	15

Client Sample ID			SS_59_0.0-0.1	SS_60_0.0-0.1	SS_61_0.0-0.1	SS_62_0.2-0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Oc01710	S18-Oc01711	S18-Oc01712	S18-Oc01713
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	-	-	< 20	-
TRH C10-C14	20	mg/kg	-	-	< 20	-
TRH C15-C28	50	mg/kg	-	-	< 50	-
TRH C29-C36	50	mg/kg	-	-	< 50	-
TRH C10-36 (Total)	50	mg/kg	-	-	< 50	-
ВТЕХ						
Benzene	0.1	mg/kg	-	-	< 0.1	-
Toluene	0.1	mg/kg	-	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	-	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	-	-	< 0.2	-
o-Xylene	0.1	mg/kg	-	-	< 0.1	-
Xylenes - Total	0.3	mg/kg	-	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	-	-	89	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	-	-	< 0.5	-
TRH C6-C10	20	mg/kg	-	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	-	< 20	-
TRH >C10-C16	50	mg/kg	-	-	< 50	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	-	< 50	-
TRH >C16-C34	100	mg/kg	-	-	< 100	-
TRH >C34-C40	100	mg/kg	-	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	-	-	< 100	-
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	-	-	< 0.05	-
а-ВНС	0.05	mg/kg	-	-	< 0.05	-
Aldrin	0.05	mg/kg	-	-	< 0.05	-
b-BHC	0.05	mg/kg	-	-	< 0.05	-
d-BHC	0.05	mg/kg	-	-	< 0.05	-

Client Sample ID			SS_59_0.0-0.1	SS_60_0.0-0.1	SS_61_0.0-0.1	SS_62_0.2-0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Oc01710	S18-Oc01711	S18-Oc01712	S18-Oc01713
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit				
Organochlorine Pesticides	,					
Dieldrin	0.05	mg/kg	-	-	< 0.05	_
Endosulfan I	0.05	mg/kg	_	_	< 0.05	-
Endosulfan II	0.05	mg/kg	_	_	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	_	-	< 0.05	-
Endrin	0.05	mg/kg	_	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05	-
Endrin ketone	0.05	mg/kg	-	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.05	-
Heptachlor	0.05	mg/kg	-	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05	-
Methoxychlor	0.05	mg/kg	-	-	< 0.05	-
Toxaphene	1	mg/kg	-	-	< 1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	-	97	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	92	-
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1221	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1232	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1242	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1248	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1254	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1260	0.1	mg/kg	-	-	< 0.1	-
Total PCB*	0.1	mg/kg	-	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	-	97	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	92	-
Heavy Metals						
Arsenic	2	mg/kg	< 2	< 2	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	12	11	10	30
Copper	5	mg/kg	12	15	< 5	< 5
Lead	5	mg/kg	32	12	19	9.4
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	9.4	< 5	< 5
Zinc	5	mg/kg	54	46	20	6.0
	<u> </u>					
% Moisture	1	%	12	12	11	9.7

Client Sample ID			SS_63_0.0-0.1	SS_64_0.2-0.3	SS_65_0.0-0.1	SS_66_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Oc01714	S18-Oc01715	S18-Oc01716	S18-Oc01717
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fr						
TRH C6-C9	20	mg/kg	< 20	_	_	_
TRH C10-C14	20	mg/kg	< 20	_	_	_
TRH C15-C28	50	mg/kg	170	_	_	-
TRH C29-C36	50	mg/kg	95	_	_	_
TRH C10-36 (Total)	50	mg/kg	265	_	_	_
BTEX		ing/itg	200			
Benzene	0.1	mg/kg	< 0.1	_	_	_
Toluene	0.1	mg/kg	< 0.1	_	_	_
Ethylbenzene	0.1	mg/kg	< 0.1		_	_
m&p-Xylenes	0.1	mg/kg	< 0.1		_	_
o-Xylene	0.2	mg/kg	< 0.2	_	_	-
Xylenes - Total	0.1		< 0.3		_	
	1	mg/kg %	81		_	-
4-Bromofluorobenzene (surr.)	•	70	01	-	-	-
Total Recoverable Hydrocarbons - 2013 NEPM Fr			0.5			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	-	-
TRH C6-C10	20	mg/kg	< 20	-	-	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	-	-
TRH > C10-C16	50	mg/kg	< 50	-	-	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	-	-
TRH >C16-C34	100	mg/kg	230	-	-	-
TRH >C34-C40	100	mg/kg	< 100	-	-	-
TRH >C10-C40 (total)*	100	mg/kg	230	-	-	-
Organochlorine Pesticides		Τ				
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	-	-	< 0.05	-
a-BHC	0.05	mg/kg	-	-	< 0.05	-
Aldrin	0.05	mg/kg	-	-	< 0.05	-
b-BHC	0.05	mg/kg	-	-	< 0.05	-
d-BHC	0.05	mg/kg	-	-	< 0.05	-
Dieldrin	0.05	mg/kg	-	-	< 0.05	-
Endosulfan I	0.05	mg/kg	-	-	< 0.05	-
Endosulfan II	0.05	mg/kg	-	-	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	-
Endrin	0.05	mg/kg	-	-	< 0.05	-
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05	-
Endrin ketone	0.05	mg/kg	-	-	< 0.05	-
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.05	-
Heptachlor	0.05	mg/kg	-	-	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05	-
Methoxychlor	0.05	mg/kg	-	-	< 0.05	-
Toxaphene	1	mg/kg	-	-	< 1	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	-	135	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	104	-

Client Sample ID			SS_63_0.0-0.1	SS_64_0.2-0.3	SS_65_0.0-0.1	SS_66_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Oc01714	S18-Oc01715	S18-Oc01716	S18-Oc01717
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1221	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1232	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1242	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1248	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1254	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1260	0.1	mg/kg	-	-	< 0.1	-
Total PCB*	0.1	mg/kg	-	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	-	135	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	104	-
Heavy Metals						
Arsenic	2	mg/kg	< 2	< 2	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	20	39	< 5	6.2
Copper	5	mg/kg	9.1	21	6.5	5.7
Lead	5	mg/kg	21	19	< 5	21
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	36	< 5	7.6
Zinc	5	mg/kg	43	53	31	20
% Moisture	1	%	8.8	15	70	11

Client Sample ID			CC CC 0 F 0 C	66 67 0004	CC CO 0004	CC CO 0004
Sample Matrix			SS_66_0.5-0.6 Soil	SS_67_0.0-0.1 Soil	SS_68_0.0-0.1 Soil	SS_69_0.0-0.1 Soil
Eurofins mgt Sample No.			S18-Oc01718	S18-Oc01719	S18-Oc01720	S18-Oc01721
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	-	-
TRH C10-C14	20	mg/kg	< 20	< 20	-	-
TRH C15-C28	50	mg/kg	< 50	< 50	-	-
TRH C29-C36	50	mg/kg	< 50	< 50	-	-
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	-	-
втех						
Benzene	0.1	mg/kg	< 0.1	< 0.1	-	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	-	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	-
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	=	-
4-Bromofluorobenzene (surr.)	1	%	112	106	-	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	-
TRH C6-C10	20	mg/kg	< 20	< 20	-	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	-	-
TRH >C10-C16	50	mg/kg	< 50	< 50	-	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	-	-
TRH >C16-C34	100	mg/kg	< 100	< 100	-	-

Client Sample ID			SS_66_0.5-0.6	SS_67_0.0-0.1	SS_68_0.0-0.1	SS_69_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
			S18-Oc01718			
Eurofins mgt Sample No.				S18-Oc01719	S18-Oc01720	S18-Oc01721
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM		1				
TRH >C34-C40	100	mg/kg	< 100	< 100	-	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	-	-
Polycyclic Aromatic Hydrocarbons		1				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	-	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	-	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	-	-
Anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	-	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Chrysene	0.5	mg/kg	< 0.5	< 0.5	-	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	-	-
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	-	-
Fluorene	0.5	mg/kg	< 0.5	< 0.5	-	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	-	-
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	-	-
Pyrene Tatal PALIX	0.5	mg/kg	< 0.5	< 0.5	-	-
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	-	-
2-Fluorobiphenyl (surr.)	1	%	113	97	-	-
p-Terphenyl-d14 (surr.)	1	%	119	93	-	-
Organochlorine Pesticides		1 "	0.4			
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDE 4.4'-DDT	0.05	mg/kg	< 0.05	-	-	-
	0.05	mg/kg	< 0.05	-	-	-
a-BHC	0.05	mg/kg	< 0.05	-	-	-
Aldrin	0.05	mg/kg	< 0.05	-	-	-
b-BHC	0.05	mg/kg	< 0.05	-	-	-
d-BHC	0.05	mg/kg	< 0.05	-	-	-
Dieldrin Endosulfan I	0.05	mg/kg	< 0.05	-	-	-
	0.05	mg/kg	< 0.05 < 0.05	_		
Endosulfan II Endosulfan sulphate	0.05	mg/kg		_		
<u>'</u>		mg/kg	< 0.05	_		_
Endrin Endrin aldehyde	0.05 0.05	mg/kg mg/kg	< 0.05 < 0.05	-	-	-
Endrin aldenyde Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-BHC (Lindane)	0.05	mg/kg	< 0.05	_		_
Heptachlor	0.05	mg/kg	< 0.05	_		
Heptachlor epoxide	0.05	mg/kg	< 0.05	_		
Hexachlorobenzene	0.05	mg/kg	< 0.05	_		
Methoxychlor	0.05	mg/kg	< 0.05	_		
Toxaphene	1	mg/kg	< 0.05	_		
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	_		
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	_

Client Sample ID			SS_66_0.5-0.6	SS_67_0.0-0.1	SS_68_0.0-0.1	SS_69_0.0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Oc01718	S18-Oc01719	S18-Oc01720	S18-Oc01721
			1	1		1
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit				
Organochlorine Pesticides	<u> </u>	1				
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	-	-
Dibutylchlorendate (surr.)	1	%	110	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	117	-	-	-
Polychlorinated Biphenyls		1				
Aroclor-1016	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1232	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1242	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1248	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1254	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1260	0.1	mg/kg	< 0.1	-	-	-
Total PCB*	0.1	mg/kg	< 0.1	-	-	-
Dibutylchlorendate (surr.)	1	%	110	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	117	-	-	-
Perfluoroalkyl carboxylic acids (PFCAs)	T	1				
Perfluorobutanoic acid (PFBA)N11	5	ug/kg	-	-	< 5	< 5
Perfluoropentanoic acid (PFPeA) ^{N11}	5	ug/kg	-	-	< 5	< 5
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	-	-	< 5	< 5
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	-	-	< 5	< 5
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	-	-	< 5	< 5
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	-	-	< 5	< 5
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	-	-	< 5	< 5
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	-	-	< 5	< 5
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	-	-	< 5	< 5
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	-	-	< 5	< 5
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	-	-	< 5	< 5
13C4-PFBA (surr.)	1	%	-	-	75	58
13C5-PFPeA (surr.)	1	%	-	-	111	61
13C5-PFHxA (surr.)	1	%	-	-	92	77
13C4-PFHpA (surr.)	1	%	-	-	88	86
13C8-PFOA (surr.)	1	%	-	-	92	87
13C5-PFNA (surr.)	1	%	-	-	108	110
13C6-PFDA (surr.)	1	%	-	-	114	107
13C2-PFUnDA (surr.)	1	%	-	-	136	134
13C2-PFDoDA (surr.)	1	%	-	-	113	114
13C2-PFTeDA (surr.)	1	%	-	-	115	124
Perfluoroalkyl sulfonamido substances						
Perfluorooctane sulfonamide (FOSA)N11	5	ug/kg	-	-	< 5	< 5
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	5	ug/kg	-	-	< 5	< 5
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	5	ug/kg	-	-	< 5	< 5
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE) ^{N11}	5	ug/kg	-	-	< 5	< 5
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) ^{N11}	5	ug/kg	-	-	< 5	< 5
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA) ^{N11}	10	ug/kg	-	-	< 10	< 10
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	10	ug/kg	-	-	< 10	< 10
13C8-FOSA (surr.)	1	%	-	-	86	87

Client Sample ID Sample Matrix			SS_66_0.5-0.6 Soil	SS_67_0.0-0.1 Soil	SS_68_0.0-0.1 Soil	SS_69_0.0-0.1 Soil
•						
Eurofins mgt Sample No.			S18-Oc01718	S18-Oc01719	S18-Oc01720	S18-Oc01721
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit				
Perfluoroalkyl sulfonamido substances	<u> </u>	_				
D3-N-MeFOSA (surr.)	1	%	-	-	111	103
D5-N-EtFOSA (surr.)	1	%	-	-	97	100
D7-N-MeFOSE (surr.)	1	%	-	-	97	79
D9-N-EtFOSE (surr.)	1	%	-	-	90	97
D5-N-EtFOSAA (surr.)	1	%	-	-	113	118
D3-N-MeFOSAA (surr.)	1	%	-	-	114	127
Perfluoroalkyl sulfonic acids (PFSAs)						
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	-	-	< 5	< 5
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	-	-	< 5	< 5
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	-	-	< 5	< 5
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	-	-	< 5	< 5
Perfluorooctanesulfonic acid (PFOS)N11	5	ug/kg	-	-	< 5	< 5
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	-	-	< 5	< 5
13C3-PFBS (surr.)	1	%	-	-	89	81
18O2-PFHxS (surr.)	1	%	-	-	107	100
13C8-PFOS (surr.)	1	%	-	-	123	110
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	1					
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	5	ug/kg	-	-	< 5	< 5
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	-	-	< 10	< 10
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	-	-	< 5	< 5
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N15}	5	ug/kg	-	-	< 5	< 5
13C2-4:2 FTSA (surr.)	1	%	-	-	102	91
13C2-6:2 FTSA (surr.)	1	%	-	-	112	69
13C2-8:2 FTSA (surr.)	1	%	-	-	111	145
PFASs Summations		1				
Sum (PFHxS + PFOS)*	5	ug/kg	-	-	< 5	< 5
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	-	-	< 5	< 5
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	-	-	< 5	< 5
Sum of WA DWER PFAS (n=10)*	10	ug/kg	-	-	< 10	< 10
Sum of PFASs (n=28)*	50	ug/kg	-	-	< 50	< 50
Heavy Metals	<u> </u>	<u> </u>				
Arsenic	2	mg/kg	< 2	7.1	-	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	-	-
Chromium	5	mg/kg	< 5	11	-	-
Copper	5	mg/kg	< 5	21	-	-
Lead	5	mg/kg	5.3	44	-	-
Mercury	0.1	mg/kg	< 0.1	< 0.1	-	-
Nickel	5	mg/kg	< 5	27	-	-
Zinc	5	mg/kg	6.1	64	-	-
% Moisture		%		9.9	11	10

			1	1	1	
Client Sample ID			SS_70_0.0-0.1	SS_71_0.0-0.1	SS_73_0.0-0.1	QA20180928
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Oc01722	S18-Oc01723	S18-Oc01724	S18-Oc01725
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	tions					
TRH C6-C9	20	mg/kg	-	_	< 20	< 20
TRH C10-C14	20	mg/kg	_	_	< 20	< 20
TRH C15-C28	50	mg/kg	_	_	< 50	< 50
TRH C29-C36	50	mg/kg	_	_	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	_	_	< 50	< 50
BTEX	00	ing/kg			7 00	7 00
Benzene	0.1	mg/kg	_	_	< 0.1	< 0.1
Toluene	0.1	mg/kg	-	_	< 0.1	< 0.1
	0.1	mg/kg	_	_	< 0.1	< 0.1
Ethylbenzene m&p-Xylenes	0.1	mg/kg	-	-	< 0.1	< 0.1
	0.2	mg/kg	-	-	< 0.2	< 0.2
o-Xylene	0.1	mg/kg		-	< 0.1	< 0.1
Xylenes - Total 4-Bromofluorobenzene (surr.)	1	mg/kg %	-		115	108
` ′	· ·	70	-	-	115	106
Total Recoverable Hydrocarbons - 2013 NEPM Fract		- "			0.5	0.5
Naphthalene ^{N02}	0.5	mg/kg	-	-	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	-	-	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	=	< 20	< 20
TRH >C10-C16	50	mg/kg	-	-	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	-	< 50	< 50
TRH >C16-C34	100	mg/kg	-	-	< 100	< 100
TRH >C34-C40	100	mg/kg	-	-	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	-	< 100	< 100
Polycyclic Aromatic Hydrocarbons	T	T				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	1.2	1.2
Acenaphthene	0.5	mg/kg	-	-	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	< 0.5	< 0.5
Anthracene	0.5	mg/kg	-	-	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5	< 0.5
Chrysene	0.5	mg/kg	-	-	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	-	-	< 0.5	< 0.5
Fluorene	0.5	mg/kg	-	-	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	-	-	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	-	-	< 0.5	< 0.5
Pyrene	0.5	mg/kg	-	-	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	-	-	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	-	94	90
p-Terphenyl-d14 (surr.)	1	%	-	-	90	85

Client Sample ID			SS_70_0.0-0.1	SS_71_0.0-0.1	SS_73_0.0-0.1	QA20180928
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			S18-Oc01722	S18-Oc01723	S18-Oc01724	S18-Oc01725
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
•	LOD	Linit	Зер 20, 2010	Зер 20, 2010	3ep 20, 2010	Sep 20, 2010
Test/Reference	LOR	Unit				
Organochlorine Pesticides	0.4				0.4	0.1
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	-	-	< 0.05	< 0.05
a-BHC	0.05	mg/kg	-	-	< 0.05	< 0.05
Aldrin b-BHC	0.05	mg/kg	-	-	< 0.05 < 0.05	< 0.05 < 0.05
d-BHC	0.05	mg/kg		-	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	-	-	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	-	-	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	-	-		< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05	< 0.05
Endosulian sulphate Endrin	0.05	mg/kg	-	-	< 0.05 < 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg mg/kg	_	_	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	_		< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg		_	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	_	_	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	_	_	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	_	_	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	_	_	< 0.05	< 0.05
Toxaphene	1	mg/kg	_	_	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	_	_	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	_	_	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	_	_	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	_	_	118	123
Tetrachloro-m-xylene (surr.)	1	%	_	-	118	125
Polychlorinated Biphenyls	!	1				
Aroclor-1016	0.1	mg/kg	-	-	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	-	-	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	-	-	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	_	_	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	-	-	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	-	-	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	_	-	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	-	-	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	-	-	118	123
Tetrachloro-m-xylene (surr.)	1	%	-	-	118	125
Perfluoroalkyl carboxylic acids (PFCAs)						
Perfluorobutanoic acid (PFBA) ^{N11}	5	ug/kg	< 5	< 5	-	-
Perfluoropentanoic acid (PFPeA)N11	5	ug/kg	< 5	< 5	-	-
Perfluorohexanoic acid (PFHxA) ^{N11}	5	ug/kg	< 5	< 5	-	-
Perfluoroheptanoic acid (PFHpA) ^{N11}	5	ug/kg	< 5	< 5	-	-
Perfluorooctanoic acid (PFOA) ^{N11}	5	ug/kg	< 5	< 5	-	-
Perfluorononanoic acid (PFNA) ^{N11}	5	ug/kg	< 5	< 5	-	-
Perfluorodecanoic acid (PFDA) ^{N11}	5	ug/kg	< 5	< 5	-	-
Perfluoroundecanoic acid (PFUnDA) ^{N11}	5	ug/kg	< 5	< 5	-	-
Perfluorododecanoic acid (PFDoDA) ^{N11}	5	ug/kg	< 5	< 5	-	-
Perfluorotridecanoic acid (PFTrDA) ^{N15}	5	ug/kg	< 5	< 5	-	-

Client Sample ID Sample Matrix			SS_70_0.0-0.1 Soil	SS_71_0.0-0.1 Soil	SS_73_0.0-0.1	QA20180928 Soil
•						
Eurofins mgt Sample No.			S18-Oc01722	S18-Oc01723	S18-Oc01724	S18-Oc01725
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit				
Perfluoroalkyl carboxylic acids (PFCAs)	<u> </u>	T				
Perfluorotetradecanoic acid (PFTeDA) ^{N11}	5	ug/kg	< 5	< 5	-	-
13C4-PFBA (surr.)	1	%	55	55	-	-
13C5-PFPeA (surr.)	1	%	69	86	-	-
13C5-PFHxA (surr.)	1	%	72	83	-	-
13C4-PFHpA (surr.)	1	% %	78 79	86 81	-	-
13C8-PFOA (surr.) 13C5-PFNA (surr.)	1	%	95	102	-	-
13C6-PFDA (surr.)	1	%	103	102	-	-
13C2-PFUnDA (surr.)	1	%	126	137	-	-
13C2-PFDoDA (surr.)	1	%	108	117	_	_
13C2-PFTeDA (surr.)	1	%	105	109	_	_
Perfluoroalkyl sulfonamido substances		,,,	100	100		
Perfluorooctane sulfonamide (FOSA) ^{N11}	5	ug/kg	< 5	< 5	_	_
N-methylperfluoro-1-octane sulfonamide (N-	-					
MeFOSA)N11	5 5	ug/kg	< 5 < 5	< 5 < 5	-	-
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11} 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol	5	ug/kg	< 5	< 5	-	-
(N-MeFOŚĖ) ^{N11}	5	ug/kg	< 5	< 5	-	-
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N- EtFOSE) ^{N11}	5	ug/kg	< 5	< 5	-	-
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	10	ug/kg	< 10	< 10	-	-
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	10	ug/kg	< 10	< 10	-	-
13C8-FOSA (surr.)	1	%	82	86	-	-
D3-N-MeFOSA (surr.)	1	%	101	106	-	-
D5-N-EtFOSA (surr.)	1	%	96	104	-	-
D7-N-MeFOSE (surr.)	1	%	93	97	-	-
D9-N-EtFOSE (surr.)	1	%	90	97	-	-
D5-N-EtFOSAA (surr.)	1	%	113	118	-	-
D3-N-MeFOSAA (surr.)	1	%	126	137	-	-
Perfluoroalkyl sulfonic acids (PFSAs)	<u> </u>					
Perfluorobutanesulfonic acid (PFBS) ^{N11}	5	ug/kg	< 5	< 5	-	-
Perfluoropentanesulfonic acid (PFPeS) ^{N15}	5	ug/kg	< 5	< 5	-	-
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	5	ug/kg	< 5	< 5	-	-
Perfluoroheptanesulfonic acid (PFHpS) ^{N15}	5	ug/kg	< 5	< 5	-	-
Perfluorooctanesulfonic acid (PFOS) ^{N11}	5	ug/kg	< 5	< 5	-	-
Perfluorodecanesulfonic acid (PFDS) ^{N15}	5	ug/kg	< 5	< 5	-	-
13C3-PFBS (surr.)	1	%	63	83	-	-
18O2-PFHxS (surr.) 13C8-PFOS (surr.)	1	% %	95 110	98 104	-	-
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	ı	70	110	104	-	-
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2						
FTSA) ^{N11}	5	ug/kg	< 5	< 5	-	-
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA) ^{N11}	10	ug/kg	< 10	< 10	-	-
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	5	ug/kg	< 5	< 5	-	-
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N15}	5	ug/kg	< 5	< 5	-	-
13C2-4:2 FTSA (surr.)	1	%	83	102	-	-
13C2-6:2 FTSA (surr.)	1	%	113	109	-	-
13C2-8:2 FTSA (surr.)	1	%	105	99	-	-

Client Sample ID Sample Matrix			SS_70_0.0-0.1 Soil	SS_71_0.0-0.1 Soil	SS_73_0.0-0.1 Soil	QA20180928 Soil
Eurofins mgt Sample No.			S18-Oc01722	S18-Oc01723	S18-Oc01724	S18-Oc01725
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit				
PFASs Summations						
Sum (PFHxS + PFOS)*	5	ug/kg	< 5	< 5	-	-
Sum of US EPA PFAS (PFOS + PFOA)*	5	ug/kg	< 5	< 5	-	-
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	5	ug/kg	< 5	< 5	-	-
Sum of WA DWER PFAS (n=10)*	10	ug/kg	< 10	< 10	-	-
Sum of PFASs (n=28)*	50	ug/kg	< 50	< 50	-	-
Heavy Metals						
Arsenic	2	mg/kg	-	-	4.1	4.2
Cadmium	0.4	mg/kg	-	-	< 0.4	< 0.4
Chromium	5	mg/kg	-	-	11	11
Copper	5	mg/kg	-	-	8.0	6.6
Lead	5	mg/kg	-	-	86	66
Mercury	0.1	mg/kg	-	-	< 0.1	< 0.1
Nickel	5	mg/kg	-	-	< 5	< 5
Zinc	5	mg/kg	-	-	78	59
% Moisture	1	%	12	15	12	11

Client Sample ID Sample Matrix			QA01 20180928 Soil	SS_72_0.0-0.1 Soil
Eurofins mgt Sample No.			S18-Oc01726	S18-Oc01727
Date Sampled			Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions			
TRH C6-C9	20	mg/kg	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	76
TRH C10-36 (Total)	50	mg/kg	< 50	76
BTEX				
Benzene	0.1	mg/kg	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	125	115
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100

Client Sample ID Sample Matrix			QA01 20180928 Soil	SS_72_0.0-0.1 Soil
Eurofins mgt Sample No.			S18-Oc01726	S18-Oc01727
Date Sampled			Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit		
Heavy Metals				
Arsenic	2	mg/kg	4.3	4.0
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	15	18
Copper	5	mg/kg	38	38
Lead	5	mg/kg	150	140
Mercury	0.1	mg/kg	0.1	< 0.1
Nickel	5	mg/kg	17	15
Zinc	5	mg/kg	99	110
% Moisture	1	%	8.0	5.8

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
JBS&G Suite 2			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Oct 05, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	Oct 05, 2018	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 05, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 05, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Melbourne	Oct 05, 2018	14 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Melbourne	Oct 05, 2018	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Melbourne	Oct 05, 2018	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Metals M8	Melbourne	Oct 05, 2018	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Per- and Polyfluoroalkyl Substances (PFASs)			
Perfluoroalkyl carboxylic acids (PFCAs)	Brisbane	Oct 03, 2018	180 Day
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonamido substances	Brisbane	Oct 03, 2018	180 Day
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
Perfluoroalkyl sulfonic acids (PFSAs)	Brisbane	Oct 03, 2018	180 Day
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	Brisbane	Oct 03, 2018	180 Day
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS)			
% Moisture	Melbourne	Oct 02, 2018	14 Day

- Method: LTM-GEN-7080 Moisture

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Soil

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933 Order No.: Received: Sep 28, 2018 4:58 PM 620448 Due: Oct 8, 2018

Report #: Phone: 02 8245 0300 Priority: 5 Day

Contact Name: Scott Burrows

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	HOLD	Metals M8	Metals M8 filtered	втех	Eurofins mgt Suite B13	Volatile Organics	Moisture Set	Moisture Set	Total Recoverable Hydrocarbons	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)	BTEXN and Volatile TRH	JBS&G Suite 2	Per- and Polyfluoroalkyl Substances (PFASs)
Mell	oourne Laborato	ory - NATA Site	# 1254 & 142	71			Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 1	8217			Х															
Bris	bane Laboratory	y - NATA Site #	20794					Х						Х	Х						Х
Pert	h Laboratory - N	NATA Site # 237	36																		
Exte	rnal Laboratory	,																			
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																
1	SS_56_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01706	Х			Х		Х	Х		Х		Х					
2	SS_56_0.2-0.3	Sep 28, 2018		Soil	S18-Oc01707				Х					Х							
3	SS_57_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01708									Х			Х				
4	SS_58_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01709				Х					Х						'	
5	SS_59_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01710				Х					Х							
6	SS_60_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01711				Х					Х						<u> </u>	
7	SS_61_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01712				Х		Х	Х		Х		Х				!	
8	SS_62_0.2-0.3	Sep 28, 2018		Soil	S18-Oc01713				Х					Х						<u> </u>	

S18-Oc01714

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Page 16 of 33

SS_63_0.0-0.1 | Sep 28, 2018

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Sep 28, 2018 4:58 PM

 Report #:
 620448
 Due:
 Oct 8, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Contact Name: Scott Burrows

CCC ID.	34333												Euro	ofins	mgt	Analy	/tical	Services Manager : Nibha Vaidya
		Asbestos - WA g	HOLD	HOLD	Metals M8	Metals M8 filtere	втех	Eurofins mgt Su	Volatile Organics	Moisture Set	Moisture Set	Total Recoverab	Eurofins mgt Sı	Eurofins mgt Su	BTEXN and Vola	JBS&G Suite 2	Per- and Polyflu	

		Sa	mple Detail			- WA guidelines			3	filtered		mgt Suite B13	rganics	Set	Set	overable Hydrocarbons	mgt Suite B7	mgt Suite B7 (filtered metals)	nd Volatile TRH	uite 2	^o olyfluoroalkyl Substances (PFASs)
Mell	bourne Laborato	ory - NATA Site	# 1254 & 142	271			Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 1	8217			Х															
Bris	bane Laborator	y - NATA Site #	20794					Х						Х	Х						Х
Pert	h Laboratory - N	NATA Site # 237	736		1														igsqcut		
10	SS_64_0.2-0.3	Sep 28, 2018		Soil	S18-Oc01715				Х					Х							
11	SS_65_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01716				Х			Х		Х					igsquare		
12	SS_66_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01717				Х					Х							
13	SS_66_0.5-0.6	Sep 28, 2018		Soil	S18-Oc01718	Х								Х						Х	
14	SS_67_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01719									Х			Х				
15	SS_68_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01720										Х						Х
16	SS_69_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01721										Х						Х
17	SS_70_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01722										Х						Х
18	SS_71_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01723										Х						Х
19	SS_73_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01724	Х								Х						Х	Ш
20	QA20180928	Sep 28, 2018		Soil	S18-Oc01725	Х								Х						Х	
21	QA01	Sep 28, 2018		Soil	S18-Oc01726	Х			Х		Х			Х		х					

Order No.:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Received:

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

01

PEAT ISLAND **Project Name:**

Project ID: 54933

Sep 28, 2018 4:58 PM Report #: 620448 Due: Oct 8, 2018

Phone: 02 8245 0300 Priority: 5 Day

Contact Name: Fax: Scott Burrows

Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271						Asbestos - WA guidelines	HOLD	HOLD	Metals M8	Metals M8 filtered	втех	Eurofins mgt Suite B13	Volatile Organics	Moisture Set	Moisture Set	Total Recoverable Hydrocarbons	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)	BTEXN and Volatile TRH	JBS&G Suite 2	Per- and Polyfluoroalkyl Substances (PFASs)
Mell	ourne Laborato	ory - NATA Site	# 1254 & 142	271			Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Syd	ney Laboratory	- NATA Site # 1	8217			Х															
Bris	bane Laborator	y - NATA Site #	20794					Х						Х	Х						Х
Pert	h Laboratory - N	NATA Site # 237	36																		
	20180928																				
22	SS_72_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01727	Х			Х		Х			Х		Х					
23	GW_01	Sep 28, 2018		Water	S18-Oc01728								Х					Х			
24	GW_02	Sep 28, 2018		Water	S18-Oc01729													Х			
25	GW_03	Sep 28, 2018		Water	S18-Oc01730								Х					Х			
26	GW_04	Sep 28, 2018		Water	S18-Oc01731								Х					Х			
27	GW_05	Sep 28, 2018		Water	S18-Oc01732													Х	<u> </u>	<u> </u>	
28	MW_01	Sep 28, 2018		Water	S18-Oc01733													Х	<u> </u>	<u> </u>	
29	MW_02	Sep 28, 2018		Water	S18-Oc01734													Х	<u> </u>	Ь	\sqcup
30	MW_03	Sep 28, 2018		Water	S18-Oc01735													Х	<u> </u>	Ь—	\sqcup
31	QA20180928-	Sep 28, 2018		Water	S18-Oc01736								X					X			

Order No.:

Report #:

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

620448

02 8245 0300

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Received:

Priority:

Contact Name:

Due:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Sep 28, 2018 4:58 PM

Oct 8, 2018

Scott Burrows

5 Day

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

																-		19.	,	
		San	nple Detail		Asbestos - WA guidelines	HOLD	HOLD	Metals M8	Metals M8 filtered	втех	Eurofins mgt Suite B13	Volatile Organics	Moisture Set	Moisture Set	Total Recoverable Hydrocarbons	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)	BTEXN and Volatile TRH	JBS&G Suite 2	Per- and Polyfluoroalkyl Substances (PFASs)
Mell	oourne Laborato	ry - NATA Site #	# 1254 & 14271			Х		Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	1
Syd	ney Laboratory	- NATA Site # 18	3217		Х															
Bris	bane Laboratory	y - NATA Site # 2	20794				Х						Х	Х						X
Pert	h Laboratory - N	IATA Site # 2373	36																	
32	RINS280918	Sep 28, 2018	Water	S18-Oc01737					Х											
33	RIN- W20180928	Sep 28, 2018	Water	S18-Oc01738													Х			
34	TS	Sep 28, 2018	Water	S18-Oc01739														Х		
35	ТВ	Sep 28, 2018	Water	S18-Oc01740														Х		
36	SS_58_0.2-0.3	Sep 28, 2018	Soil	S18-Oc01741		Х														
37	SS_62_0.2-0.3	Sep 28, 2018	Soil	S18-Oc01742		Х														
38	SS_62_0.0-0.1		Soil	S18-Oc01743		Х													<u> </u>	
39	SS_63_0.2-0.3		Soil	S18-Oc01744		Х														
40	SS_64_0.0-0.1		Soil	S18-Oc01745		Х														\vdash
41	SS_65_0.2-0.3		Soil	S18-Oc01746		Х														
42	SS_66_0.2-0.3	Sep 28, 2018	Soil	S18-Oc01747		Х														لـــــا

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Contact Name:

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

 Order No.:
 Received:
 Sep 28, 2018 4:58 PM

 Report #:
 620448
 Due:
 Oct 8, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Scott Burrows

		Sa	mple Detail			Asbestos - WA guidelines	HOLD	HOLD	Metals M8	Metals M8 filtered	втех	Eurofins mgt Suite B13	Volatile Organics	Moisture Set	Moisture Set	Total Recoverable Hydrocarbons	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)	BTEXN and Volatile TRH	JBS&G Suite 2	Per- and Polyfluoroalkyl Substances (PFASs)
Mell	bourne Laborato	ry - NATA Site	# 1254 & 142	71			Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Syd	ney Laboratory -	NATA Site # 1	8217			Х															
Bris	bane Laboratory	- NATA Site #	20794					Х						Х	Х						Х
Pert	h Laboratory - N	ATA Site # 237	36																		
43	FIELD BLANK	Sep 28, 2018		Water	S18-Oc01748			Х													
44	SS_68_0.1-0.2	Sep 28, 2018		Soil	S18-Oc01770			Х													
Tes	t Counts					6	9	9	13	1	5	3	4	22	22	5	2	10	2	3	4

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	<u> </u>	•	'		
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xvlenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank	1				
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	IIIg/Rg	100	100	1 455	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&i)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene		< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
	mg/kg	< 0.5	0.5	Pass	
Fluorene Fluorene	mg/kg	1			
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5 0.5	Pass Pass	
\	mg/kg	< 0.5			
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene Math ad Blank	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides		.04	0.4	Dana	
Chlordanes - Total 4.4'-DDD	mg/kg	< 0.1	0.1	Pass	
	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA)	ug/kg	< 5	5	Pass	
Perfluoropentanoic acid (PFPeA)	ug/kg	< 5	5	Pass	
Perfluorohexanoic acid (PFHxA)	ug/kg	< 5	5	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/kg	< 5	5	Pass	
Perfluorooctanoic acid (PFOA)	ug/kg	< 5	5	Pass	
Perfluorononanoic acid (PFNA)	ug/kg	< 5	5	Pass	
Perfluorodecanoic acid (PFDA)	ug/kg	< 5	5	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/kg	< 5	5	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/kg	< 5	5	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/kg	< 5	5	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/kg	< 5	5	Pass	
Method Blank					
Perfluoroalkyl sulfonamido substances					
Perfluorooctane sulfonamide (FOSA)	ug/kg	< 5	5	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/kg	< 5	5	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/kg	< 5	5	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	ug/kg	< 5	5	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	ug/kg	< 5	5	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/kg	< 10	10	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/kg	< 10	10	Pass	
Method Blank					
Perfluoroalkyl sulfonic acids (PFSAs)					
Perfluorobutanesulfonic acid (PFBS)	ug/kg	< 5	5	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/kg	< 5	5	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/kg	< 5	5	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/kg	< 5	5	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/kg	< 5	5	Pass	
Perfluorodecanesulfonic acid (PFDS)	ug/kg	< 5	5	Pass	
Method Blank					
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)					
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/kg	< 5	5	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	ug/kg	< 10	10	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/kg	< 5	5	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	ug/kg	< 5	5	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery	ı mg/ng	10	1 0	1 466	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	98	70-130	Pass	
TRH C10-C14	%	79	70-130	Pass	
LCS - % Recovery	/0	,,,	10-130	1 033	
BTEX		T T			
Benzene	%	103	70-130	Pass	
Toluene	%	107	70-130	Pass	
		110			
Ethylbenzene	%	111	70-130	Pass	
m&p-Xylenes	%		70-130	Pass	
Xylenes - Total	%	111	70-130	Pass	
LCS - % Recovery		I		Ī	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	0/	440	70.400	D	
Naphthalene	%	119	70-130	Pass	
TRH C6-C10	%	95	70-130	Pass	
TRH >C10-C16	%	84	70-130	Pass	
LCS - % Recovery		T T			
Polycyclic Aromatic Hydrocarbons	2/		70.400	_	
Acenaphthene	%	79	70-130	Pass	
Acenaphthylene	%	85	70-130	Pass	
Anthracene	%	78	70-130	Pass	
Benz(a)anthracene	%	91	70-130	Pass	
Benzo(a)pyrene	%	103	70-130	Pass	
Benzo(b&j)fluoranthene	%	90	70-130	Pass	
Benzo(g.h.i)perylene	%	93	70-130	Pass	
Benzo(k)fluoranthene	%	124	70-130	Pass	
Chrysene	%	113	70-130	Pass	
Dibenz(a.h)anthracene	%	85	70-130	Pass	
Fluoranthene	%	130	70-130	Pass	
Fluorene	%	82	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	93	70-130	Pass	
Naphthalene	%	76	70-130	Pass	
Phenanthrene	%	75	70-130	Pass	
Pyrene	%	117	70-130	Pass	
LCS - % Recovery		1 1			
Organochlorine Pesticides					
4.4'-DDD	%	109	70-130	Pass	
4.4'-DDE	%	104	70-130	Pass	
4.4'-DDT	%	126	70-130	Pass	
а-ВНС	%	111	70-130	Pass	
Aldrin	%	111	70-130	Pass	
b-BHC	%	94	70-130	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
d-BHC	%	97	70-130	Pass	
Dieldrin	%	107	70-130	Pass	
Endosulfan I	%	105	70-130	Pass	
Endosulfan II	%	100	70-130	Pass	
Endosulfan sulphate	%	105	70-130	Pass	
Endrin	%	115	70-130	Pass	
Endrin aldehyde	%	111	70-130	Pass	
Endrin ketone	%	110	70-130	Pass	
g-BHC (Lindane)	%	104	70-130	Pass	
Heptachlor	%	106	70-130	Pass	
Heptachlor epoxide	%	104	70-130	Pass	
Hexachlorobenzene	%	97	70-130	Pass	
Methoxychlor	%	116	70-130	Pass	
LCS - % Recovery					
Polychlorinated Biphenyls					
Aroclor-1260	%	94	70-130	Pass	
LCS - % Recovery		·			
Perfluoroalkyl carboxylic acids (PFCAs)					
Perfluorobutanoic acid (PFBA)	%	90	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	98	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	%	85	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	84	50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	89	50-150	Pass	
Perfluorononanoic acid (PFNA)	%	82	50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	76	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	88	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	83	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	76	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	89	50-150	Pass	
	70	09		Fass	
LCS - % Recovery		T			
Perfluoroalkyl sulfonamido substances Perfluorooctane sulfonamide (FOSA)	0/	96	50.150	Door	
, ,	%	86	50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	%	88	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) 2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	%	103	50-150 50-150	Pass	
,	%			Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE) N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)		90	50-150	Pass	
7 1	%	70	50-150	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	%	84	50-150	Pass	
LCS - % Recovery					
Perfluoroalkyl sulfonic acids (PFSAs)	0/	00	50.450	D	-
Perfluorobutanesulfonic acid (PFBS)	%	89	50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	%	86	50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	%	101	50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	%	86	50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	%	89	50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	%	63	50-150	Pass	
LCS - % Recovery					
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	0/	75	50.450	D-	
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) 1H.1H.2H.2H-perfluorooctanesulfonic acid (6:2 FTSA)	% %	75 92	50-150 50-150	Pass Pass	
1H.1H.2H.perfluorodecanesulfonic acid (8:2 FTSA)	%	76	50-150	Pass	
1H.1H.2H.perfluorododecanesulfonic acid (10:2 FTSA)	%	68	50-150	Pass	
LCS - % Recovery	,,,		33.30		
Heavy Metals					
				L	1

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Arsenic			%	93		80-120	Pass	
Cadmium			%	91		80-120	Pass	
Chromium			%	105		80-120	Pass	
Copper			%	103		80-120	Pass	
Lead			%	103		80-120	Pass	
Mercury			%	111		75-125	Pass	
Nickel			%	104		80-120	Pass	
Zinc			%	105		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				T	T I			
Organochlorine Pesticides				Result 1			_	
4.4'-DDD	M18-Oc02622	NCP	%	91		70-130	Pass	
4.4'-DDE	M18-Oc02622	NCP	%	82		70-130	Pass	
4.4'-DDT	M18-Oc02622	NCP	%	108		70-130	Pass	
a-BHC	M18-Oc02622	NCP	%	90		70-130	Pass	
Aldrin	M18-Oc02622	NCP	%	97		70-130	Pass	
b-BHC	M18-Oc02622	NCP	%	70		70-130	Pass	
d-BHC	M18-Oc02622	NCP	%	75		70-130	Pass	
Dieldrin	M18-Oc02622	NCP	%	96		70-130	Pass	
Endosulfan I	M18-Oc02622	NCP	%	81		70-130	Pass	
Endosulfan II	M18-Oc02622	NCP	%	94		70-130	Pass	
Endosulfan sulphate	M18-Oc02622	NCP	%	94		70-130	Pass	
Endrin	M18-Oc02622	NCP	%	101		70-130	Pass	
Endrin aldehyde	S18-Oc01876	NCP	%	97		70-130	Pass	
Endrin ketone	M18-Oc02622	NCP	%	95		70-130	Pass	
g-BHC (Lindane)	M18-Oc02622	NCP	%	84		70-130	Pass	
Heptachlor	M18-Oc02622	NCP	%	90		70-130	Pass	
Heptachlor epoxide	M18-Oc02622	NCP	%	88		70-130	Pass	
Hexachlorobenzene	M18-Oc02622	NCP	%	75		70-130	Pass	
Methoxychlor	M18-Oc02622	NCP	%	101		70-130	Pass	
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbons	}			Result 1				
Acenaphthene	S18-Oc01868	NCP	%	85		70-130	Pass	
Acenaphthylene	S18-Oc01868	NCP	%	91		70-130	Pass	
Anthracene	S18-Oc01868	NCP	%	88		70-130	Pass	
Benz(a)anthracene	S18-Oc01868	NCP	%	79		70-130	Pass	
Benzo(a)pyrene	S18-Oc01868	NCP	%	93		70-130	Pass	
Benzo(b&j)fluoranthene	S18-Oc01868	NCP	%	82		70-130	Pass	
Benzo(g.h.i)perylene	S18-Oc01868	NCP	%	77		70-130	Pass	
Benzo(k)fluoranthene	S18-Oc01868	NCP	%	104		70-130	Pass	
Chrysene	S18-Oc01868	NCP	%	92		70-130	Pass	
Dibenz(a.h)anthracene	S18-Oc01868	NCP	%	76		70-130	Pass	
Fluoranthene	S18-Oc01868	NCP	%	102		70-130	Pass	
Fluorene	S18-Oc01868	NCP	%	86		70-130	Pass	
Indeno(1.2.3-cd)pyrene	S18-Oc01868	NCP	%	85		70-130	Pass	
Naphthalene	S18-Oc01868	NCP	%	84		70-130	Pass	
Phenanthrene	S18-Oc01868	NCP	%	80		70-130	Pass	
Pyrene	S18-Oc01868	NCP	%	102		70-130	Pass	
Spike - % Recovery								
Heavy Metals				Result 1				
Arsenic	S18-Oc01710	CP	%	94		75-125	Pass	
Cadmium	S18-Oc01710	CP	%	94		75-125	Pass	
Chromium	S18-Oc01710	CP	%	102		75-125	Pass	
Copper	S18-Oc01710	CP	%	112		75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Lead	S18-Oc01710	CP	%	95	75-125	Pass	
Mercury	S18-Oc01710	CP	%	92	70-130	Pass	
Nickel	S18-Oc01710	CP	%	100	75-125	Pass	
Zinc	S18-Oc01710	CP	%	116	75-125	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	S18-Oc01719	CP	%	106	75-125	Pass	
Cadmium	S18-Oc01719	CP	%	100	75-125	Pass	
Chromium	S18-Oc01719	СР	%	106	75-125	Pass	
Copper	S18-Oc01719	CP	%	123	75-125	Pass	
Lead	S18-Oc01719	СР	%	93	75-125	Pass	
Mercury	S18-Oc01719	СР	%	95	70-130	Pass	
Nickel	S18-Oc01719	СР	%	113	75-125	Pass	
Zinc	S18-Oc01719	СР	%	101	75-125	Pass	
Spike - % Recovery					· · · · · · · · · · · · · · · · · · ·		
Perfluoroalkyl carboxylic acids (PF	-CAs)			Result 1			
Perfluorobutanoic acid (PFBA)	M18-Se36888	NCP	%	86	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	M18-Se36888	NCP	%	82	50-150	Pass	
Perfluorohexanoic acid (PFHxA)	M18-Se36888	NCP	%	71	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	M18-Se36888	NCP	%	72	50-150	Pass	
Perfluorooctanoic acid (PFOA)	M18-Se36888	NCP	%	52	50-150	Pass	
Perfluorononanoic acid (PFNA)	M18-Se36888	NCP	%	61	50-150	Pass	
Perfluorodecanoic acid (PFDA)	M18-Se36888	NCP	%	57	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	M18-Se36888	NCP	%	82	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	M18-Se36888	NCP	%	75	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	M18-Se36888	NCP	%	123	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	M18-Se36888	NCP	%	76	50-150	Pass	
Spike - % Recovery							
Perfluoroalkyl sulfonamido substa	nces			Result 1			
Perfluorooctane sulfonamide (FOSA)	M18-Se36888	NCP	%	74	50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	M18-Se36888	NCP	%	79	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	M18-Se36888	NCP	%	92	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	M18-Se36888	NCP	%	88	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	M18-Se36888	NCP	%	111	50-150	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M18-Se36888	NCP	%	66	50-150	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M18-Se36888	NCP	%	82	50-150	Pass	
Spike - % Recovery							
Perfluoroalkyl sulfonic acids (PFS)	As)			Result 1			
Perfluorobutanesulfonic acid (PFBS)	M18-Se36888	NCP	%	72	50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	M18-Se36888	NCP	%	66	50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	M18-Se36888	NCP	%	72	50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	M18-Se36888	NCP	%	102	50-150	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Perfluorooctanesulfonic acid (PFOS)	M18-Se36888	NCP	%	ND			50-150	Fail	Q05
Perfluorodecanesulfonic acid (PFDS)	M18-Se36888	NCP	%	100			50-150	Pass	
Spike - % Recovery							,		
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)			Result 1					
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	M18-Se36888	NCP	%	78			50-150	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	M18-Se36888	NCP	%	57			50-150	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	M18-Se36888	NCP	%	84			50-150	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	M18-Se36888	NCP	%	80			50-150	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1					
TRH C6-C9	S18-Oc01724	СР	%	88			70-130	Pass	
TRH C10-C14	S18-Oc01724	СР	%	92			70-130	Pass	
Spike - % Recovery									
BTEX				Result 1					
Benzene	S18-Oc01724	СР	%	86			70-130	Pass	
Toluene	S18-Oc01724	СР	%	96			70-130	Pass	
Ethylbenzene	S18-Oc01724	СР	%	105			70-130	Pass	
m&p-Xylenes	S18-Oc01724	СР	%	101			70-130	Pass	
o-Xylene	S18-Oc01724	СР	%	106			70-130	Pass	
Xylenes - Total	S18-Oc01724	СР	%	103			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1					
Naphthalene	S18-Oc01724	СР	%	75			70-130	Pass	
TRH C6-C10	S18-Oc01724	СР	%	88			70-130	Pass	
TRH >C10-C16	S18-Oc01724	СР	%	93			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				1				I	
	T	1		Result 1	Result 2	RPD			
% Moisture	M18-Oc01657	NCP	%	18	18	1.0	30%	Pass	
Duplicate				T			T	T	
Heavy Metals	T	1		Result 1	Result 2	RPD			
Mercury	S18-Oc01709	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				1					
Heavy Metals	Π -	1 1		Result 1	Result 2	RPD			
Arsenic	S18-Oc01710	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S18-Oc01710	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-Oc01710	CP	mg/kg	12	12	2.0	30%	Pass	
Copper	S18-Oc01710	CP	mg/kg	12	12	2.0	30%	Pass	
Lead	S18-Oc01710	CP	mg/kg	32	32	1.0	30%	Pass	
Mercury	S18-Oc01710	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S18-Oc01710	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S18-Oc01710	CP	mg/kg	54	55	1.0	30%	Pass	

Duplicate									
Heavy Metals	1		1	Result 1	Result 2	RPD			
Arsenic	S18-Oc01718	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S18-Oc01718	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-Oc01718	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	S18-Oc01718	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	S18-Oc01718	CP	mg/kg	5.3	5.6	7.0	30%	Pass	
Mercury	S18-Oc01718	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S18-Oc01718	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S18-Oc01718	CP	mg/kg	6.1	6.6	8.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S18-Oc01719	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S18-Oc01719	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S18-Oc01719	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S18-Oc01719	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S18-Oc01719	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S18-Oc01719	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S18-Oc01719	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S18-Oc01719	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S18-Oc01719	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	S18-Oc01719	СР	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate			, ,	•					
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S18-Oc01719	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S18-Oc01719	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S18-Oc01719	СР	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate			199						
Polycyclic Aromatic Hydrocarbons	S			Result 1	Result 2	RPD			
Acenaphthene	S18-Oc01719	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S18-Oc01719	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S18-Oc01719	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S18-Oc01719	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S18-Oc01719	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S18-Oc01719	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S18-Oc01719	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S18-Oc01719	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S18-Oc01719	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S18-Oc01719	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S18-Oc01719	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S18-Oc01719	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S18-Oc01719	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S18-Oc01719	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S18-Oc01719	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S18-Oc01719	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	0.0001710	<u> </u>	,g/kg				0070		
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S18-Oc01719	СР	mg/kg	7.1	7.5	5.0	30%	Pass	
Cadmium	S18-Oc01719	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S18-Oc01719	CP	mg/kg	11	11	1.0	30%	Pass	
	\$18-Oc01719 \$18-Oc01719	CP		21	20	1.0	30%	Pass	
Copper	\$18-0c01719 \$18-0c01719	CP CP	mg/kg	44	45	1.0	30%	Pass	
Lead		CP CP	mg/kg	1					
Mercury	\$18-Oc01719		mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	\$18-Oc01719	CP	mg/kg	27	28	2.0	30%	Pass	
Zinc	S18-Oc01719	CP	mg/kg	64	64	1.0	30%	Pass	

Duplicate									
Perfluoroalkyl carboxylic acids (Pl	CAs)			Result 1	Result 2	RPD			
Perfluorobutanoic acid (PFBA)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanoic acid (PFPeA)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanoic acid (PFHxA)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanoic acid (PFHpA)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanoic acid (PFOA)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorononanoic acid (PFNA)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanoic acid (PFDA)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroundecanoic acid (PFUnDA)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorododecanoic acid (PFDoDA)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotridecanoic acid (PFTrDA)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorotetradecanoic acid (PFTeDA)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
Perfluoroalkyl sulfonamido substa	nces	1	1	Result 1	Result 2	RPD			
Perfluorooctane sulfonamide (FOSA)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol (N-MeFOSE)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol (N-EtFOSE)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
N-ethyl- perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	M18-Oc00968	NCP	ug/kg	< 10	< 10	<1	30%	Pass	
N-methyl- perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	M18-Oc00968	NCP	ug/kg	< 10	< 10	<1	30%	Pass	
Duplicate				T	T T				
Perfluoroalkyl sulfonic acids (PFS	As)	T	Т	Result 1	Result 2	RPD			
Perfluorobutanesulfonic acid (PFBS)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoropentanesulfonic acid (PFPeS)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorohexanesulfonic acid (PFHxS)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorooctanesulfonic acid (PFOS)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Perfluorodecanesulfonic acid (PFDS)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)	I		Result 1	Result 2	RPD			
1H.1H.2H.2H- perfluorohexanesulfonic acid (4:2 FTSA)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorooctanesulfonic acid (6:2 FTSA)	M18-Oc00968	NCP	ug/kg	< 10	< 10	<1	30%	Pass	
1H.1H.2H.2H- perfluorodecanesulfonic acid (8:2 FTSA)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	
1H.1H.2H.2H- perfluorododecanesulfonic acid (10:2 FTSA)	M18-Oc00968	NCP	ug/kg	< 5	< 5	<1	30%	Pass	

Duplicate				i	1				
Organochlorine Pesticides		1	1	Result 1	Result 2	RPD			
Chlordanes - Total	S18-Oc01724	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S18-Oc01724	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S18-Oc01724	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S18-Oc01724	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S18-Oc01724	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S18-Oc01724	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S18-Oc01724	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S18-Oc01724	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S18-Oc01724	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S18-Oc01724	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S18-Oc01724	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S18-Oc01724	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S18-Oc01724	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S18-Oc01724	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S18-Oc01724	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S18-Oc01724	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S18-Oc01724	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S18-Oc01724	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S18-Oc01724	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S18-Oc01724	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	S18-Oc01724	СР	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate					,				
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S18-Oc01724	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S18-Oc01724	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S18-Oc01724	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S18-Oc01724	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S18-Oc01724	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S18-Oc01724	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S18-Oc01724	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S18-Oc01724	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate	1 0.0 0002.	<u> </u>		1011	1011	7.	3070		
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S18-Oc01725	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S18-Oc01725	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S18-Oc01725	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S18-Oc01725	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S18-Oc01725	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S18-Oc01725	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S18-Oc01725	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S18-Oc01725	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S18-Oc01725	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S18-Oc01725	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
		CP							
Endosulfan II	S18-Oc01725		mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	\$18-Oc01725	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S18-Oc01725	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S18-Oc01725	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S18-Oc01725	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S18-Oc01725	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S18-Oc01725	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S18-Oc01725	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

mg/kg

mg/kg

mg/kg

S18-Oc01725

S18-Oc01725

S18-Oc01725

CP

CP

CP

< 0.05

< 0.05

< 1

< 0.05

< 0.05

< 1

<1

<1

<1

Pass

Pass

Pass

30%

30%

30%

Hexachlorobenzene

Methoxychlor

Toxaphene

Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	S18-Oc01725	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	S18-Oc01725	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	S18-Oc01725	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	S18-Oc01725	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	S18-Oc01725	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	S18-Oc01725	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	S18-Oc01725	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	S18-Oc01725	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	

Comments

Sample Integrity

N/A
Yes
No

Qualifier Codes/Comments

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds. N11

Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation). N15

Q05 The matrix spike concentration is less than five times the background concentration in the sample - therefore the spike recovery cannot be determined

Authorised By

N02

Nibha Vaidya Analytical Services Manager Chris Bennett Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Jonathon Angell Senior Analyst-Organic (QLD) Joseph Edouard Senior Analyst-Organic (VIC) Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Img shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mgt be liable for consequential clampas including, but no limited to, lost profits, damages for eliable to meet deadlines and lost production arising from this report. This document shall be reported everage in full and retales only to the lems tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Report620448-WProject namePEAT ISLAND

Project ID 54933 Received Date Sep 28, 2018

Client Sample ID			GW_01	GW_02	GW_03	GW_04
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			S18-Oc01728	S18-Oc01729	S18-Oc01730	S18-Oc01731
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
втех						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	124	126	108	107
Volatile Organics	·					
1.1-Dichloroethane	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	-	< 0.001	< 0.001

Client Sample ID			GW_01	GW_02	GW_03	GW_04
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			S18-Oc01728	S18-Oc01729	S18-Oc01730	S18-Oc01731
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit	, , ,	, , ,	, , ,	, ,
Volatile Organics	LOIX	Offic				
	0.004		.0.004		. 0.004	.0.004
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
2-Butanone (MEK)	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
2-Propanone (Acetone)	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
4-Chlorotoluene	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Allyl chloride	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Benzene	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Bromobenzene	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Bromochloromethane	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Bromoform	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Bromomethane	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Carbon disulfide	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Chlorobenzene	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Chloroethane	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Chloroform	0.005	mg/L	< 0.005	-	< 0.005	< 0.005
Chloromethane	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	=	< 0.001	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Dibromomethane	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Dichlorodifluoromethane	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Iodomethane	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	-	< 0.002	< 0.002
Methylene Chloride	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
o-Xylene	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Styrene	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Trichloroethene	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Trichlorofluoromethane	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Vinyl chloride	0.001	mg/L	< 0.001	-	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	-	< 0.003	< 0.003
Total MAH*	0.003	mg/L	< 0.003	-	< 0.003	< 0.003
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005	_	< 0.005	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005	_	< 0.005	< 0.005
4-Bromofluorobenzene (surr.)	1	%	124	_	108	107
Toluene-d8 (surr.)	1	%	114	_	104	99

Client Sample ID			GW_01	GW_02	GW_03	GW_04
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			S18-Oc01728	S18-Oc01729	S18-Oc01730	S18-Oc01731
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	106	81	98	94
p-Terphenyl-d14 (surr.)	1	%	104	77	110	105
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	0.002	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	0.0002	0.0006	0.0005
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.012	0.013	0.006	0.021
Lead (filtered)	0.001	mg/L	< 0.001	0.003	< 0.001	0.002
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.012	0.016	0.020	0.007
Zinc (filtered)	0.005	mg/L	0.22	0.14	0.11	0.17

Client Sample ID			GW_05	MW_01	MW_02	MW_03
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			S18-Oc01732	S18-Oc01733	S18-Oc01734	S18-Oc01735
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions					
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1

Client Sample ID			GW_05	MW_01	MW 02	MW_03
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			S18-Oc01732	S18-Oc01733	S18-Oc01734	S18-Oc01735
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit	20, 20.0	30p 20, 2010	GOP 20, 2010	Cop 20, 20.0
BTEX	LON	Offic				
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.002
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	121	127	116	121
Polycyclic Aromatic Hydrocarbons		,,,		1	1	
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	86	78	90	86
p-Terphenyl-d14 (surr.)	1	%	107	89	96	98
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.004	0.027	0.034	0.035
Lead (filtered)	0.001	mg/L	0.001	0.004	0.005	0.004
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	0.003	0.005	0.007	0.006
Zinc (filtered)	0.005	mg/L	0.056	0.14	0.14	0.15

Client Sample ID			QA20180928- 01	RINS280918	RIN- W20180928	R20 TS
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			S18-Oc01736	S18-Oc01737	S18-Oc01738	S18-Oc01739
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit			, and a second	
Total Recoverable Hydrocarbons - 2013 NEPM Frac		Offic				
Naphthalene ^{N02}	0.01	mg/L	< 0.01	_	< 0.01	96
TRH C6-C10	0.01	mg/L	< 0.02	_	< 0.02	84
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	_	< 0.02	-
TRH >C10-C16	0.02	mg/L	< 0.05	_	< 0.05	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	_	< 0.05	_
TRH >C16-C34	0.03	mg/L	< 0.1	_	< 0.1	_
TRH >C34-C40	0.1	mg/L	< 0.1	_	< 0.1	_
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	_	< 0.1	<u> </u>
Total Recoverable Hydrocarbons - 1999 NEPM Frac		IIIg/L	< 0.1	<u> </u>	< 0.1	-
TRH C6-C9	0.02	mg/L	< 0.02	_	< 0.02	83
TRH C10-C14	0.02	mg/L	< 0.02	-	< 0.02	
TRH C15-C28	0.05	mg/L	< 0.05	-	< 0.05	-
TRH C29-C36	0.1		< 0.1	-	< 0.1	-
TRH C10-36 (Total)	0.1	mg/L	< 0.1	-	< 0.1	-
BTEX	0.1	mg/L	< 0.1	-	< 0.1	-
	0.004		2.224		0.004	
Benzene	0.001	mg/L	< 0.001	-	< 0.001	97
Toluene	0.001	mg/L	< 0.001	-	< 0.001	93
Ethylbenzene	0.001	mg/L	< 0.001	-	< 0.001	97
m&p-Xylenes	0.002	mg/L	< 0.002	=	< 0.002	92
o-Xylene	0.001	mg/L	< 0.001	=	< 0.001	100
Xylenes - Total	0.003	mg/L	< 0.003	-	< 0.003	96
4-Bromofluorobenzene (surr.)	1	%	120	-	122	130
Volatile Organics	T					
1.1-Dichloroethane	0.001	mg/L	< 0.001	-	-	-
1.1-Dichloroethene	0.001	mg/L	< 0.001	=	=	-
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	-	-	-
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	-	-	-
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	-	-	-
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	-	-	-
1.2-Dibromoethane	0.001	mg/L	< 0.001	-	-	-
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	-	-	-
1.2-Dichloroethane	0.001	mg/L	< 0.001	-	-	-
1.2-Dichloropropane	0.001	mg/L	< 0.001	-	-	-
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	-	-	-
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	-	-	-
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	-	-	-
1.3-Dichloropropane	0.001	mg/L	< 0.001	-	-	-
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001	-	-	-
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	-	-	-
2-Butanone (MEK)	0.001	mg/L	< 0.001	-	-	-
2-Propanone (Acetone)	0.001	mg/L	< 0.001	-	-	-
4-Chlorotoluene	0.001	mg/L	< 0.001	-	-	-
4-Methyl-2-pentanone (MIBK)	0.001	mg/L	< 0.001	-	-	-
Allyl chloride	0.001	mg/L	< 0.001	-	-	-
Benzene	0.001	mg/L	< 0.001	-	-	-
Bromobenzene	0.001	mg/L	< 0.001	-	-	-
Bromochloromethane	0.001	mg/L	< 0.001	-	-	-
Bromodichloromethane	0.001	mg/L	< 0.001	-	-	-
Bromoform	0.001	mg/L	< 0.001	-	-	-

	1			1	1	1
Client Sample ID			QA20180928- 01	RINS280918	RIN- W20180928	R20 TS
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			S18-Oc01736	S18-Oc01737	S18-Oc01738	S18-Oc01739
Date Sampled			Sep 28, 2018	Sep 28, 2018	Sep 28, 2018	Sep 28, 2018
Test/Reference	LOR	Unit		, , ,	, , ,	, , ,
Volatile Organics	LOIK	Offic				
Bromomethane	0.001	mg/L	< 0.001	_	_	<u> </u>
Carbon disulfide	0.001	mg/L	< 0.001	_	_	<u> </u>
Carbon Tetrachloride	0.001	mg/L	< 0.001	_	_	
Chlorobenzene	0.001	mg/L	< 0.001	_	_	_
Chloroethane	0.001	mg/L	< 0.001	_	_	-
Chloroform	0.001	mg/L	< 0.005	_	-	-
Chloromethane	0.003	mg/L	< 0.003	_	_	-
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	_	_	_
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	-	-	-
Dibromochloromethane	0.001	mg/L	< 0.001	_	_	_
Dibromomethane	0.001	mg/L	< 0.001	_	_	
Dichlorodifluoromethane	0.001	mg/L	< 0.001	_	_	_
Ethylbenzene	0.001	mg/L	< 0.001	_	-	_
Iodomethane	0.001	mg/L	< 0.001	_	-	-
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	_	-	-
m&p-Xylenes	0.001	mg/L	< 0.001	_	-	-
Methylene Chloride	0.001	mg/L	< 0.002	_	-	-
o-Xylene	0.001	mg/L	< 0.001	_	-	_
Styrene	0.001	mg/L	< 0.001	_	-	_
Tetrachloroethene	0.001	mg/L	< 0.001	_	_	_
Toluene	0.001	mg/L	< 0.001	_	-	_
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	_	-	-
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	_	_	_
Trichloroethene	0.001	mg/L	< 0.001	_	_	_
Trichlorofluoromethane	0.001	mg/L	< 0.001	_	_	_
Vinyl chloride	0.001	mg/L	< 0.001	_	_	_
Xylenes - Total	0.003	mg/L	< 0.003	_	_	_
Total MAH*	0.003	mg/L	< 0.003	-	-	-
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005	-	-	-
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005	-	-	-
4-Bromofluorobenzene (surr.)	1	%	120	-	-	-
Toluene-d8 (surr.)	1	%	114	-	-	-
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	0.001	mg/L	< 0.001	-	< 0.001	-
Acenaphthylene	0.001	mg/L	< 0.001	-	< 0.001	-
Anthracene	0.001	mg/L	< 0.001	-	< 0.001	-
Benz(a)anthracene	0.001	mg/L	< 0.001	-	< 0.001	-
Benzo(a)pyrene	0.001	mg/L	< 0.001	-	< 0.001	-
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	-	< 0.001	-
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	-	< 0.001	-
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	-	< 0.001	-
Chrysene	0.001	mg/L	< 0.001	-	< 0.001	-
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	-	< 0.001	-
Fluoranthene	0.001	mg/L	< 0.001	-	< 0.001	-
Fluorene	0.001	mg/L	< 0.001	-	< 0.001	-
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	-	< 0.001	-
Naphthalene	0.001	mg/L	< 0.001	-	< 0.001	-
	0.001	mg/L mg/L	< 0.001 < 0.001	-	< 0.001	-

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			QA20180928- 01 Water S18-Oc01736 Sep 28, 2018	RINS280918 Water S18-Oc01737 Sep 28, 2018	RIN- W20180928 Water S18-Oc01738 Sep 28, 2018	R20TS Water S18-Oc01739 Sep 28, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Total PAH*	0.001	mg/L	< 0.001	-	< 0.001	-
2-Fluorobiphenyl (surr.)	1	%	101	-	105	-
p-Terphenyl-d14 (surr.)	1	%	117	-	112	-
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	-
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Copper (filtered)	0.001	mg/L	0.007	< 0.001	< 0.001	-
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	-
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	-
Nickel (filtered)	0.001	mg/L	0.008	< 0.001	< 0.001	-
Zinc (filtered)	0.005	mg/L	0.11	0.009	0.008	-

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			TB Water S18-Oc01740 Sep 28, 2018
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions		
Naphthalene ^{N02}	0.01	mg/L	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions		
TRH C6-C9	0.02	mg/L	< 0.02
BTEX			
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	100

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons	Melbourne	Oct 03, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
JBS&G Suite 2			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 04, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 04, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Oct 04, 2018	7 Day
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	Oct 04, 2018	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Polycyclic Aromatic Hydrocarbons	Melbourne	Oct 04, 2018	7 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Volatile Organics	Melbourne	Oct 04, 2018	7 Days
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Eurofins mgt Suite B7 (filtered metals)			
Metals M8 filtered	Melbourne	Oct 04, 2018	28 Day
- Method:			

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

 Order No.:
 Received:
 Sep 28, 2018 4:58 PM

 Report #:
 620448
 Due:
 Oct 8, 2018

 Report #:
 620448
 Due:
 Oct 8, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Contact Name: Scott Burrows

Pr	oject ID:	54933															Eur	ofins	mgt	Analy	ytical	Services Manager : Nibha Vaidya
	Sample Detail							HOLD	Metals M8	Metals M8 filtered	втех	Eurofins mgt Suite B13	Volatile Organics	Moisture Set	Moisture Set	Total Recoverable Hydrocarbons	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)	BTEXN and Volatile TRH	JBS&G Suite 2	Per- and Polyfluoroalkyl Substances (PFASs)	
Mell	Melbourne Laboratory - NATA Site # 1254 & 14271								Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
Syd	ney Laboratory	- NATA Site # 1	8217			Х																
Bris	bane Laborator	y - NATA Site #	20794					Х						Х	Х						Х	
Pert	h Laboratory - N	NATA Site # 237	36																			
	rnal Laboratory			1	1																	1
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																	
1	SS_56_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01706	Х			Х		Х	Х		Х		Х						
2	SS_56_0.2-0.3			Soil	S18-Oc01707				Х					Х								
3	SS_57_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01708									Х			Х					
4	SS_58_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01709				Х					Х								
5	SS_59_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01710				Х					Х								
6	SS_60_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01711				Х					Х								
7	SS_61_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01712				Х		Х	Х		Х		Х						
8	SS_62_0.2-0.3	Sep 28, 2018		Soil	S18-Oc01713				Х					Х								
9	SS_63_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01714				Х		Х			Х		Х						

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Page 9 of 20

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

 Order No.:
 Received:
 Sep 28, 2018 4:58 PM

 Report #:
 620448
 Due:
 Oct 8, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Contact Name: Scott Burrows

Eurofins mgt Analytical Services Manager : Nibha Vai															Services Manager : Nibha Vaidya		
	Asbestos	HOLD	ОТОН	Metals M8	Metals M8	втех	Eurofins	Volatile O	Moisture :	Moisture :	Total Rec	Eurofins	Eurofins	BTEXN a	JBS&G S	Per- and I	

Sample Detail								IOLD	letals M8	letals M8 filtered	ΠEX	urofins mgt Suite B13	olatile Organics	oisture Set	oisture Set	otal Recoverable Hydrocarbons	urofins mgt Suite B7	urofins mgt Suite B7 (filtered metals)	TEXN and Volatile TRH	BS&G Suite 2	er- and Polyfluoroalkyl Substances (PFASs)	
Mell	bourne Laborato		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х						
Syd	ney Laboratory	- NATA Site # 1	8217			Х																
Bris	bane Laboratory	y - NATA Site #	20794					Х						Х	Х						Х	
Pert	h Laboratory - N	NATA Site # 237	36																			
10	SS_64_0.2-0.3			Soil	S18-Oc01715				Х					Х								
11	SS_65_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01716				Х			Х		Х								
12	SS_66_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01717				Х					Х								
13	SS_66_0.5-0.6	Sep 28, 2018		Soil	S18-Oc01718	Х								Х						Х		
14	SS_67_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01719									Х			Х					
15	SS_68_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01720										Х						Х	
16	SS_69_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01721										Х						Х	
17	SS_70_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01722										Х						Х	
18	SS_71_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01723										Х						Х	
19	SS_73_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01724	Х								Х						Х	igsquare	
20	QA20180928	Sep 28, 2018		Soil	S18-Oc01725	Х								Х						Х		
21	QA01	Sep 28, 2018		Soil	S18-Oc01726	Х			Х		Х			Х		Х						

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

01

 Order No.:
 Received:
 Sep 28, 2018 4:58 PM

 Report #:
 620448
 Due:
 Oct 8, 2018

Phone: 02 8245 0300 Priority: 5 Day

Fax: Contact Name: Scott Burrows

Moisture Moisture Volatile C Eurofins BTEX Metals M Metals M Asbestos															Lui	011113	ınıgı	Allai	yticai			
Sample Detail							HOLD	HOLD	Metals M8	Metals M8 filtered	втех	Eurofins mgt Suite B13	Volatile Organics	Moisture Set	Moisture Set	Total Recoverable Hydrocarbons	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)	BTEXN and Volatile TRH	JBS&G Suite 2	Per- and Polyfluoroalkyl Substances (PFASs)	
Mell	oourne Laborato		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		ĺ				
Sydney Laboratory - NATA Site # 18217																						
Bris	Brisbane Laboratory - NATA Site # 20794							Х						Х	Х						Х	
Pert	h Laboratory - N	NATA Site # 237	736																			1
	20180928																			<u> </u>		
22	SS_72_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01727	Х			Х		Х			Х		Х				<u> </u>		ļ
23	GW_01	Sep 28, 2018		Water	S18-Oc01728								Х					Х				ĺ
24	GW_02	Sep 28, 2018		Water	S18-Oc01729													Х		<u> </u>		l
25	GW_03	Sep 28, 2018		Water	S18-Oc01730								X					Х				ĺ
26	GW_04	Sep 28, 2018		Water	S18-Oc01731								X					Х				ĺ
27	GW_05	Sep 28, 2018		Water	S18-Oc01732													Х		<u> </u>		ļ
28	MW_01	Sep 28, 2018		Water	S18-Oc01733													Х		<u> </u>		ļ
29	MW_02	Sep 28, 2018		Water	S18-Oc01734													Х		<u> </u>		
30	MW_03	Sep 28, 2018		Water	S18-Oc01735						1							Х		ــــــ		
31	QA20180928-	Sep 28, 2018		Water	S18-Oc01736								l x					×				

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Sep 28, 2018 4:58 PM

 Report #:
 620448
 Due:
 Oct 8, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Contact Name: Scott Burrows

Pr	oject ID:	54933															Eur	ofins	mgt	Anal	ytical	Services Manager : Nibha Vaidya
		Sa	mple Detail			Asbestos - WA guidelines	HOLD	HOLD	Metals M8	Metals M8 filtered	втех	Eurofins mgt Suite B13	Volatile Organics	Moisture Set	Moisture Set	Total Recoverable Hydrocarbons	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)	BTEXN and Volatile TRH	JBS&G Suite 2	Per- and Polyfluoroalkyl Substances (PFASs)	
Mell	oourne Laborato	ory - NATA Site	# 1254 & 142	71			Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
Syd	ney Laboratory	- NATA Site # 1	8217			Х																
Bris	bane Laboratory	y - NATA Site #	20794					Х						Х	Х						Х	
Pert	h Laboratory - N	ATA Site # 237	36																			
32	RINS280918	Sep 28, 2018		Water	S18-Oc01737					Х												
33	RIN- W20180928	Sep 28, 2018		Water	S18-Oc01738													Х				
34	TS	Sep 28, 2018		Water	S18-Oc01739														Х			
35	ТВ	Sep 28, 2018		Water	S18-Oc01740														X			
36	SS_58_0.2-0.3	Sep 28, 2018		Soil	S18-Oc01741		Х															
37	SS_62_0.2-0.3	Sep 28, 2018		Soil	S18-Oc01742		Х															
38	SS_62_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01743		Х															
39	SS_63_0.2-0.3	Sep 28, 2018		Soil	S18-Oc01744		Х															
40	SS_64_0.0-0.1	Sep 28, 2018		Soil	S18-Oc01745		Х															
41	SS_65_0.2-0.3	Sep 28, 2018		Soil	S18-Oc01746		Х															
42	SS_66_0.2-0.3	Sep 28, 2018		Soil	S18-Oc01747		Х															

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Sep 28, 2018 4:58 PM

 Report #:
 620448
 Due:
 Oct 8, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Contact Name: Scott Burrows

110 ject ib. 34933													Eur	ofins	mgt	Analy	ytical	Services Manager : Nibha Vaidya
		Asbestos - WA guidelines	HOLD	HOLD	Metals M8	Metals M8 filtered	втех	Eurofins mgt Suite B13	Volatile Organics	Moisture Set	Moisture Set	Total Recoverable Hydrocarbons	Eurofins mgt Suite B7	Eurofins mgt Suite B7 (filtered metals)	BTEXN and Volatile TRH	JBS&G Suite 2	Per- and Polyfluoroalkyl Substances (PFASs)	
Melbourne Laboratory - NATA Site # 1254 & 14271			Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
Sydney Laboratory - NATA Site # 18217		Χ																
Brisbane Laboratory - NATA Site # 20794				Х						Х	Х						Х	
Perth Laboratory - NATA Site # 23736																		
43 FIELD BLANK Sep 28, 2018 Water S18-Oc	c01748			Х														
44 SS_68_0.1-0.2 Sep 28, 2018 Soil S18-Oc	c01770			Х														
Test Counts		6	9	9	13	1	5	3	4	22	22	5	2	10	2	3	4	

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins | mgt Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 14 of 20

ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 620448-W

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fract	ions				
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions				
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total	mg/L	< 0.003	0.003	Pass	
Method Blank	·			•	
Volatile Organics					
1.1-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.1-Dichloroethene	mg/L	< 0.001	0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dibromoethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.2-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.4-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.3.5-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.4-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
2-Butanone (MEK)	mg/L	< 0.001	0.001	Pass	
2-Propanone (Acetone)	mg/L	< 0.001	0.001	Pass	
4-Chlorotoluene	mg/L	< 0.001	0.001	Pass	
4-Methyl-2-pentanone (MIBK)	mg/L	< 0.001	0.001	Pass	
Allyl chloride	mg/L	< 0.001	0.001	Pass	
Bromobenzene	mg/L	< 0.001	0.001	Pass	
Bromochloromethane	mg/L	< 0.001	0.001	Pass	
Bromodichloromethane	mg/L	< 0.001	0.001	Pass	
Bromoform	mg/L	< 0.001	0.001	Pass	
Bromomethane	mg/L	< 0.001	0.001	Pass	
Carbon disulfide	mg/L	< 0.001	0.001	Pass	
Carbon Tetrachloride	mg/L	< 0.001	0.001	Pass	
Chlorobenzene	mg/L	< 0.001	0.001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Chloroethane	mg/L	< 0.001	0.001	Pass	
Chloroform	mg/L	< 0.005	0.005	Pass	
Chloromethane	mg/L	< 0.001	0.001	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Dibromochloromethane	mg/L	< 0.001	0.001	Pass	
Dibromomethane	mg/L	< 0.001	0.001	Pass	
Dichlorodifluoromethane	mg/L	< 0.001	0.001	Pass	
lodomethane	mg/L	< 0.001	0.001	Pass	
Isopropyl benzene (Cumene)	mg/L	< 0.001	0.001	Pass	
Methylene Chloride	mg/L	< 0.001	0.001	Pass	
Styrene	mg/L	< 0.001	0.001	Pass	
Tetrachloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Trichloroethene	mg/L	< 0.001	0.001	Pass	
Trichlorofluoromethane	mg/L	< 0.001	0.001	Pass	
Vinyl chloride	mg/L	< 0.001	0.001	Pass	
Method Blank		<u> </u>	0.001	1 433	
Polycyclic Aromatic Hydrocarbons				Ι	
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
		< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L		0.001		
Benzo(a)pyrene Benzo(b&j)fluoranthene	mg/L	< 0.001 < 0.001	0.001	Pass	
` "	mg/L			Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank		l I		T	
Heavy Metals		0.001		_	
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	-
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fracti				1	
Naphthalene	%	84	70-130	Pass	
TRH C6-C10	%	113	70-130	Pass	
TRH >C10-C16	%	78	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fracti	ons				
TRH C6-C9	%	128	70-130	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14			%	88	70-130	Pass	
LCS - % Recovery							
ВТЕХ							
Benzene			%	113	70-130	Pass	
Toluene			%	109	70-130	Pass	
Ethylbenzene			%	87	70-130	Pass	
m&p-Xylenes			%	87	70-130	Pass	
Xylenes - Total			%	87	70-130	Pass	
LCS - % Recovery							
Volatile Organics							
1.1-Dichloroethene			%	88	70-130	Pass	
1.1.1-Trichloroethane			%	103	70-130	Pass	
1.2-Dichlorobenzene			%	95	70-130	Pass	
1.2-Dichloroethane			%	110	70-130	Pass	
Trichloroethene			%	102	70-130	Pass	
LCS - % Recovery							
Polycyclic Aromatic Hydrocarbons	1						
Acenaphthene			%	83	70-130	Pass	
Acenaphthylene			%	104	70-130	Pass	
Anthracene			%	92	70-130	Pass	
Benz(a)anthracene			%	98	70-130	Pass	
Benzo(a)pyrene			%	84	70-130	Pass	
Benzo(b&j)fluoranthene			%	81	70-130	Pass	
Benzo(g.h.i)perylene			%	88	70-130	Pass	
Benzo(k)fluoranthene			%	99	70-130	Pass	
Chrysene			%	82	70-130	Pass	
Dibenz(a.h)anthracene			%	86	70-130	Pass	
Fluoranthene			%	81	70-130	Pass	
Fluorene			%	93	70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	84	70-130	Pass	
Naphthalene			%	73	70-130	Pass	
Phenanthrene			%	114	70-130	Pass	
Pyrene			%	81	70-130	Pass	
LCS - % Recovery							
Heavy Metals							
Arsenic (filtered)			%	99	80-120	Pass	
Cadmium (filtered)			%	95	80-120	Pass	
Chromium (filtered)			%	95	80-120	Pass	
Copper (filtered)			%	94	80-120	Pass	
Lead (filtered)			%	92	80-120	Pass	
Mercury (filtered)			%	90	70-130	Pass	
Nickel (filtered)			%	94	80-120	Pass	
Zinc (filtered)			%	97	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1			
TRH >C10-C16	M18-Oc01171	NCP	%	73	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons -	1999 NEPM Fract	ions		Result 1			
TRH C10-C14	M18-Oc01171	NCP	%	75	70-130	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocarbons	;			Result 1			
Acenaphthene	P18-Oc00771	NCP	%	84	70-130	Pass	
Acenaphthylene	P18-Oc00771	NCP	%	108	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Anthracene	P18-Oc00771	NCP	%	96			70-130	Pass	
Benz(a)anthracene	P18-Oc00771	NCP	%	115			70-130	Pass	
Benzo(a)pyrene	P18-Oc00771	NCP	%	93			70-130	Pass	
Benzo(b&j)fluoranthene	P18-Oc00771	NCP	%	86			70-130	Pass	
Benzo(g.h.i)perylene	P18-Oc00771	NCP	%	101			70-130	Pass	
Benzo(k)fluoranthene	P18-Oc00771	NCP	%	100			70-130	Pass	
Chrysene	P18-Oc00771	NCP	%	91			70-130	Pass	
Dibenz(a.h)anthracene	P18-Oc00771	NCP	%	112			70-130	Pass	
Fluoranthene	P18-Oc00771	NCP	%	82			70-130	Pass	
Fluorene	P18-Oc00771	NCP	%	99			70-130	Pass	
Indeno(1.2.3-cd)pyrene	P18-Oc00771	NCP	%	101			70-130	Pass	
Naphthalene	P18-Oc00771	NCP	%	77			70-130	Pass	
Phenanthrene	P18-Oc00771	NCP	%	117			70-130	Pass	
Pyrene	P18-Oc00771	NCP	%	81			70-130	Pass	
Spike - % Recovery	1 10 0000111		,,,	<u> </u>			10 100		
Heavy Metals				Result 1			Τ		
Arsenic (filtered)	S18-Oc01728	СР	%	100			70-130	Pass	
Cadmium (filtered)	S18-Oc01728	CP	// 0	94			70-130	Pass	
Chromium (filtered)	S18-Oc01728	CP	// //////////////////////////////////	96			70-130	Pass	
Copper (filtered)	S18-Oc01728	CP	// //////////////////////////////////	92			70-130	Pass	
Lead (filtered)	S18-Oc01728	CP	// //////////////////////////////////	91			70-130	Pass	
Mercury (filtered)	S18-Oc01728	CP	<u> </u>	76			70-130	Pass	
<u> </u>		CP		92					
Nickel (filtered)	S18-Oc01728	CP CP	<u>%</u> %	88			70-130	Pass	
Zinc (filtered)	S18-Oc01728	[CP]	70	00			70-130	Pass	
Spike - % Recovery				Desult 4			T		
Heavy Metals	C40 O-04700	CD	0/	Result 1			70.400	Dana	
Arsenic (filtered)	S18-Oc01738	CP	%	102			70-130	Pass	
Characters (filtered)	S18-Oc01738	CP	%	100			70-130	Pass	
Chromium (filtered)	S18-Oc01738	CP	%	101			70-130	Pass	
Copper (filtered)	S18-Oc01738	CP	%	101			70-130	Pass	
Lead (filtered)	S18-Oc01738	CP	%	97			70-130	Pass	
Mercury (filtered)	S18-Oc01738	CP	%	95			70-130	Pass	
Nickel (filtered)	S18-Oc01738	CP	%	101			70-130	Pass	
Zinc (filtered) Test	S18-Oc01738 Lab Sample ID	CP QA	% Units	96 Result 1			70-130 Acceptance		Qualifying
	Lab Gample 15	Source	Office	ixesuit i			Limits	Limits	Code
Duplicate		-		l	l		T		
Total Recoverable Hydrocarbons		1		Result 1	Result 2	RPD		_	
TRH >C10-C16	S18-Se37053	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Duplicate		-		l	l		1		
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD		_	
TRH C10-C14	S18-Se37053	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S18-Se37053	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S18-Se37053	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				T					
Polycyclic Aromatic Hydrocarbon		1		Result 1	Result 2	RPD			
Acenaphthene	P18-Oc00770	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
•		NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	P18-Oc00770							1	i
Acenaphthylene Anthracene	P18-Oc00770	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
, ,		NCP NCP		< 0.001 < 0.001	< 0.001 < 0.001	<1 <1	30% 30%	Pass Pass	
Anthracene	P18-Oc00770	NCP NCP NCP	mg/L	1					
Anthracene Benz(a)anthracene	P18-Oc00770 P18-Oc00770	NCP NCP NCP	mg/L mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene Benz(a)anthracene Benzo(a)pyrene	P18-Oc00770 P18-Oc00770 P18-Oc00770	NCP NCP NCP	mg/L mg/L mg/L	< 0.001 < 0.001	< 0.001 < 0.001	<1 <1	30% 30%	Pass Pass	
Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b&j)fluoranthene	P18-Oc00770 P18-Oc00770 P18-Oc00770 P18-Oc00770	NCP NCP NCP	mg/L mg/L mg/L mg/L	< 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001	<1 <1 <1	30% 30% 30%	Pass Pass Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbon	ıs			Result 1	Result 2	RPD			
Dibenz(a.h)anthracene	P18-Oc00770	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	P18-Oc00770	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	P18-Oc00770	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	P18-Oc00770	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Naphthalene	P18-Oc00770	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	P18-Oc00770	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	P18-Oc00770	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	S18-Oc01728	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	S18-Oc01728	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	S18-Oc01728	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	S18-Oc01728	CP	mg/L	0.012	0.012	2.0	30%	Pass	
Lead (filtered)	S18-Oc01728	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	S18-Oc01728	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S18-Oc01728	CP	mg/L	0.012	0.013	3.0	30%	Pass	
Zinc (filtered)	S18-Oc01728	CP	mg/L	0.22	0.23	1.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	S18-Oc01738	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium (filtered)	S18-Oc01738	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	S18-Oc01738	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	S18-Oc01738	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead (filtered)	S18-Oc01738	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	S18-Oc01738	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S18-Oc01738	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc (filtered)	S18-Oc01738	CP	mg/L	0.008	0.008	2.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions	ı	Result 1	Result 2	RPD			
Naphthalene	S18-Oc01740	CP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S18-Oc01740	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions	I	Result 1	Result 2	RPD			
TRH C6-C9	S18-Oc01740	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
BTEX	1	1	Г	Result 1	Result 2	RPD			
Benzene	S18-Oc01740	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S18-Oc01740	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S18-Oc01740	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S18-Oc01740	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S18-Oc01740	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S18-Oc01740	CP	mg/L	< 0.003	< 0.003	<1	30%	Pass	

Comments

Sample Integrity

N/A
Yes
No

Qualifier Codes/Comments

Code	Description
Couc	Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N02

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference Q08

R20 This sample is a Trip Spike and therefore all results are reported as a percentage

Authorised By

Nibha Vaidya Analytical Services Manager Chris Bennett Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation giv limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items

Report Number: 620448-W

Enviro Sample Vic

From:

Nibha Vaidya

Sent:

Tuesday, 2 October 2018 5:29 PM

To:

Enviro Sample Vic

Cc:

Alena Bounkeua

Subject:

5 DAY TAT - FW: 54933 Additional Analysis

Attachments:

image001.png

Additional analysis please - 5 day TAT

Samples from various reports as listed below.

JBS &	G Australia (I	(SW) P/L			
De	tails	Contacts	Soli (Inflation)	Schedule	Ontres
Report Not	<u> </u>	Sample No: Recd Date \$	Sample #	Site: 54933	Laby Sel
620448	i ai	Sep 28, 2018	S18-Oc01706 S18-Oc01770	PEAT ISLAND (54933)	TS
618949		Sep 21, 2018	S18-Se28908 S18-Se28914	PEAT ISLAND (54933)	TS
618880		Sep 20, 2018	S18-Se28412 S18-Se28603	PEAT ISLAND (54933)	TS
618500		Sep 18, 2018	M18-Se25567 M18-Se26813	PEAT ISLAND (54933)	SS16 0.9-1.

Kind Regards,

Nibha Vaidya

Phone: +61 2 9900 8415 Mobile: +61 499 900 805

Email: NibhaVaidya@eurofins.com

From: Claudia Bennett [mailto:cbennett@jbsg.com.au]

Sent: Tuesday, 2 October 2018 4:57 PM

To: Nibha Vaidya Cc: Scott Burrows

Subject: 54933 Additional Analysis

EXTERNAL EMAIL*

Hi Nibha

Hope you've been well and enjoyed the long weekend.

Can I please schedule the following additional analysis for job 54933 PEAT ISLAND

SS02 0.5-0.6 - Metals (8)

Se25588- Hold

SS03 0-0.1 - Asbestos (NEPM) Se 2 5591 - Hodol.	√ ધ
SS05 0.5-0.6 - Asbestos (NEPM) Se 2553 - Hold.	
SS07 0.9-1.0 - Metals (8) Se 2 5599 - Hold.	
SS13 0-0.1 - Metals (8) Se 2 5605 - Hold	
SS16 0-0.1 - TRH/BTEX, PAH, OCP/PCB So 25583 - 61(22.	~ ()
SS22 0-0.1 - Metals (8) TDH/PTEY OCD/PCD 1-5- 100 with tons	, LP,
SS28 0-0.1 - Metals (8) No sample with this	IO.
SS28 0.2-0.3 – Metals (8), TRH/BTEX, PAH	
SS30 0-0.1 - Metals (8), TRH/BTEX > 28435 - G178	110
SS32 0-0.1 - Metals (8), TRH/BTEX, PAH, OCP/PCB 528436 - GIT	, ,
SS34 0-0.1 - Metals (8), TRH/BTEX Se2849-6(178.	1
SS37 0-0.1 - Metals (8), TRH/BTEX, PAH, OCP/PCB 529565 - Had	<u></u>
SS39 0-0.1 - TRH/BTEX, PAH, OCP/PCB 528602 - Hod	
SS40 0-0.1 - Metals (8), TRH/BTEX, PAH, OCP/PCB 528438 - GUT	§ .
SS41 0.2-0.3 - TRH/BTEX, PAH Se 28420 - 61178	146
SS44 0-0.1 - OCP/PCB S-28423 -G178	ų <i>v</i>
SS47 0-0.1 - TRH/BTEX, PAH, OCP/PCB Se 28427 - GU78	_
SS61 0.2-0.3 - pH, % clay, CEC No Sande with this	ZD.
GW03 1.9-2.0 – Metals (8), TRH/BTEX	
GW03 3.4-3.5 – Metals (8), TRH/BTEX, PAH V	
GW05 0.4-0.5 – Metals (8), TRH/BTEX, PAH	

Thanks and kind regards.

Claudia

Get Outlook for iOS

Click here to report this email as spam.

ScannedByWebsenseForEurofins

* WARNING - EXTERNAL: This email originated from outside of Eurofins. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: Claudia Bennett Project name: PEAT ISLAND

Project ID: 54933

COC number: Not provided

Turn around time: 5 Day

Oct 2, 2018 5:29 PM Date/Time received:

Eurofins | mgt reference: 620797

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \boxtimes All samples have been received as described on the above COC.
- \square COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Split sample sent to requested external lab.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used).

Notes

SOME SAMPLES NOT IN PREVIOUS REPORTS

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Claudia Bennett - CBennett@jbsg.com.au.

Environmental Laboratory

Note: A copy of these results will also be delivered to the general JBS & G Australia (NSW) P/L email address.

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Oct 2, 2018 5:29 PM

 Report #:
 620797
 Due:
 Oct 9, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Contact Name: Claudia Bennett

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Asbestos - WA guidelines	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons				
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271			Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217			Х							
Bris	bane Laborator	y - NATA Site #	20794										
Pert	h Laboratory - N	NATA Site # 237	36										
Exte	rnal Laboratory	/											
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	SS02 0.5-0.6	Sep 18, 2018		Soil	M18-Oc04219					Х		Х	
2	SS03 0-0.1	Sep 18, 2018		Soil	M18-Oc04220	Х							
3	SS05 0.5-0.6	Sep 18, 2018		Soil	M18-Oc04221	Х							
4	SS07 0.9-1.0	Sep 18, 2018		Soil	M18-Oc04222					Х		Х	
5	SS13 0-0.1	Sep 18, 2018		Soil	M18-Oc04223					Х		Х	
6	SS16 0-0.1	Sep 18, 2018		Soil	M18-Oc04224		Х	Х	Х		Х	Х	Х
7	SS30 0-0.1	Sep 20, 2018		Soil	M18-Oc04225					Х	Х	Х	Х
8	SS32 0-0.1	Sep 20, 2018		Soil	M18-Oc04226		Х	Х	Х	Х	Х	Х	X
9	SS34 0-0.1	Sep 20, 2018		Soil	M18-Oc04227					Х	Х	Х	Х

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

 Order No.:
 Received:
 Oct 2, 2018 5:29 PM

 Report #:
 620797
 Due:
 Oct 9, 2018

Phone: 02 8245 0300 Priority: 5 Day

Contact Name: Claudia Bennett

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			Asbestos - WA guidelines	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	71			Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 1	8217			Х							
Bris	bane Laborator	y - NATA Site #	20794										
Pert	h Laboratory - N	NATA Site # 237	36										
10	SS37 0-0.1	Sep 20, 2018		Soil	M18-Oc04228		Х	Х	Х	Х	Х	Х	Х
11	SS39 0-0.1	Sep 20, 2018		Soil	M18-Oc04229		Х	Х	Х		Х	Х	Х
12	SS40 0-0.1	Sep 20, 2018		Soil	M18-Oc04230		Х	Х	Х	Х	Х	Х	Х
13	SS41 0.2-0.3	Sep 20, 2018		Soil	M18-Oc04231		Х				Х	Х	Х
14	SS44 0-0.1	Sep 20, 2018		Soil	M18-Oc04232			Х	Х			Х	
15	SS47 0-0.1	Sep 20, 2018		Soil	M18-Oc04233		Х	Х	Х		Х	Х	Х
Test	Counts					2	7	7	7	8	9	13	9

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Attention: Claudia Bennett
Report 620797-AID
Project Name PEAT ISLAND

Project ID 54933

Received Date Oct 02, 2018

Date Reported Oct 09, 2018

Methodology:

Asbestos Fibre

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material (ACM) The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS4964 method for inhomogeneous samples is around 0.1 g/kg (0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis where required, this is considered to be at the nominal reporting limit of 0.01 % (w / w). The examination of large sample sizes (500 mL is recommended) may improve the likelihood of identifying ACM in the > 2mm fraction. The NEPM screening level of 0.001 % (w / w) asbestos in soil for FA(friable asbestos) and AF(asbestos fines) then applies where they are able to be quantified by gravimetric procedures. This quantitative screening is not generally applicable to FF(free fibres) and results of Trace Analysis are referred.

NOTE: NATA News March 2014, p.7, states in relation to AS4964: "This is a qualitative method with a nominal reporting limit of 0.01%" and that currently in Australia "there is no validated method available for the quantification of asbestos". Accordingly, NATA Accreditation does not cover the performance of this service (indicated with an asterisk). This report is consistent with the analytical procedures and reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, 2013 (as amended) and the Western Australia Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia, 2009, including supporting document Recommended Procedures for Laboratory Analysis of Asbestos in Soil, June 2011.

Accredited for compliance with ISO/IEC 17025—Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Project Name PEAT ISLAND

Project ID 54933

Date SampledSep 18, 2018Report620797-AID

Client Sample ID	Eurofins mgt Sample No.	Date Sampled	Sample Description	Result
SS03 0-0.1	18-Oc04220	Sep 18, 2018	Sample consisted of: Dark brown fine-grained soil and organic debris	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.
SS05 0.5-0.6	18-Oc04221	Sep 18, 2018	Sample consisted of: Brown fine-grained sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No respirable fibres detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

DescriptionTesting SiteExtractedHolding TimeAsbestos - LTM-ASB-8020SydneyOct 04, 2018Indefinite

Melbourne 3-5 Kingston Town Close

Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F Brisbane 16 Mars Road

1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name:

JBS & G Australia (NSW) P/L

Address:

Level 1, 50 Margaret St

Sydney NSW 2000

Project Name:

PEAT ISLAND

Project ID:

54933

Order No.:

Report #:

620797 02 8245 0300

Phone: Fax:

Received: Oct 2, 2018 5:29 PM

Due: Oct 9, 2018 Priority: 5 Day

Contact Name: Claudia Bennett

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail			Asbestos - WA guidelines	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271			Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217			Х							
Bris	bane Laborator	y - NATA Site #	20794										
Pert	h Laboratory - I	NATA Site # 237	36										
Exte	rnal Laboratory	1		1									
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	SS02 0.5-0.6	Sep 18, 2018		Soil	M18-Oc04219					Х		Х	
2	SS03 0-0.1	Sep 18, 2018		Soil	M18-Oc04220	Х							
3	SS05 0.5-0.6	Sep 18, 2018		Soil	M18-Oc04221	Х							
4	SS07 0.9-1.0	Sep 18, 2018		Soil	M18-Oc04222					Х		Х	
5	SS13 0-0.1	Sep 18, 2018		Soil	M18-Oc04223					Х		Х	
6	SS16 0-0.1	Sep 18, 2018		Soil	M18-Oc04224		Х	Х	Х		Х	Х	Х
7	SS30 0-0.1	Sep 20, 2018		Soil	M18-Oc04225					Х	Х	Х	Х
8	SS32 0-0.1	Sep 20, 2018		Soil	M18-Oc04226		Х	Х	Х	Х	Х	Х	Х
9	SS34 0-0.1	Sep 20, 2018		Soil	M18-Oc04227					Х	Х	Х	Х

Order No.:

Report #:

Phone:

Fax:

Melbourne

620797

02 8245 0300

3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Received:

Priority:

Contact Name:

Due:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Oct 2, 2018 5:29 PM

Oct 9, 2018

Claudia Bennett

5 Day

Company Name: Ji

JBS & G Australia (NSW) P/L

Level 1, 50 Margaret St Sydney

NSW 2000

Project Name:

Address:

Project ID: 54933

PEAT ISLAND

LAND

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

		Sa	mple Detail		Asbestos - WA guidelines	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Melk	ourne Laborate	ory - NATA Site	# 1254 & 14271			Х	Х	Х	Х	Х	Х	Х
		- NATA Site # 1			Х							
		y - NATA Site #										
Pert	h Laboratory - I	NATA Site # 237										
10	SS37 0-0.1	Sep 20, 2018	Soil	M18-Oc04228		Х	Х	Х	Х	Х	Х	Х
11	SS39 0-0.1	Sep 20, 2018	Soil	M18-Oc04229		Х	Х	Х		Х	Х	Х
12	SS40 0-0.1	Sep 20, 2018	Soil	M18-Oc04230		Х	Х	Х	Х	Х	Х	Х
13	SS41 0.2-0.3	Sep 20, 2018	Soil	M18-Oc04231		Х				Х	Х	Х
14	SS44 0-0.1	Sep 20, 2018	Soil	M18-Oc04232			Х	Х			Х	
15	SS47 0-0.1	Sep 20, 2018	Soil	M18-Oc04233		Х	Х	Х		Х	Х	Χ
Test	Counts				2	7	7	7	8	9	13	9

Internal Quality Control Review and Glossary

General

- 1. QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated
- 3. Samples were analysed on an 'as received' basis.
- 4. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

% w/w: weight for weight basis grams per kilogram
Filter loading: fibres/100 graticule areas

Reported Concentration: fibres/mL Flowrate: L/min

Terms

ΑF

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting
COC Chain of Custody
SRA Sample Receipt Advice

ISO International Standards Organisation

AS Australian Standards

WA DOH Western Australia Department of Health

NOHSC National Occupational Health and Safety Commission

ACM Bonded asbestos-containing material means any material containing more than 1% asbestos and comprises asbestos-containing-material which is in sound condition,

although possibly broken or fragmented, and where the asbestos is bound in a matrix such as cement or resin. Common examples of ACM include but are not limited to: pipe and boiler insulation, sprayed-on fireproofing, troweled-on acoustical plaster, floor tile and mastic, floor linoleum, transite shingles, roofing materials, wall and ceiling plaster, ceiling tiles, and gasket materials. This term is restricted to material that cannot pass a 7 mm x 7 mm sieve. This sieve size is selected because it approximates the thickness of common asbestos cement sheeting and for fragments to be smaller than this would imply a high degree of damage and hence potential

for fibre release

FA FA comprises friable asbestos material and includes severely weathered cement sheet, insulation products and woven asbestos material. This type of friable asbestos

is defined here as asbestos material that is in a degraded condition such that it can be broken or crumbled by hand pressure. This material is typically unbonded or

was previously bonded and is now significantly degraded (crumbling).

PACM Presumed Asbestos-Containing Material means thermal system insulation and surfacing material found in buildings, vessels, and vessel sections constructed no later

than 1980 that are assumed to contain greater than one percent asbestos but have not been sampled or analyzed to verify or negate the presence of asbestos.

Asbestos fines (AF) are defined as free fibres, or fibre bundles, smaller than 7mm. It is the free fibres which present the greatest risk to human health, although very small fibres (< 5 microns in length) are not considered to be such a risk. AF also includes small fragments of bonded ACM that pass through a 7 mm x 7 mm sieve.

(Note that for bonded ACM fragments to pass through a 7 mm x 7 mm sieve implies a substantial degree of damage which increases the potential for fibre release.)

AC Asbestos cement means a mixture of cement and asbestos fibres (typically 90:10 ratios).

Page 6 of 7

Comments

Sample received was less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description N/A Not applicable

Asbestos Counter/Identifier:

Sayeed Abu Senior Analyst-Asbestos (NSW)

Authorised by:

Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final Report – this report replaces any previously issued Report

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In on case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall not be reproduced evecept in full and reflects only to the identities storied, to therefore, the feath severes, the tested without severes, indicated otherwise, the testes were performed on the samples as received.

⁻ Indicates Not Requested

^{*} Indicates NATA accreditation does not cover the performance of this service

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

JBS & G Australia (NSW) P/L Level 1, 50 Margaret St Sydney NSW 2000

Report620797-SProject namePEAT ISLAND

Project ID 54933 Received Date Oct 02, 2018

Client Sample ID			00000500	0007.00.4.0	0040 0 0 4	2042.2.4
Sample Matrix			SS02 0.5-0.6 Soil	SS07 0.9-1.0 Soil	SS13 0-0.1 Soil	SS16 0-0.1 Soil
·				M18-Oc04222		
Eurofins mgt Sample No.			M18-Oc04219		M18-Oc04223	M18-Oc04224
Date Sampled			Sep 18, 2018	Sep 18, 2018	Sep 18, 2018	Sep 18, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	-	-	-	< 20
TRH C10-C14	20	mg/kg	-	-	-	< 20
TRH C15-C28	50	mg/kg	-	-	-	< 50
TRH C29-C36	50	mg/kg	-	-	-	< 50
TRH C10-36 (Total)	50	mg/kg	-	-	-	< 50
BTEX	I					
Benzene	0.1	mg/kg	-	-	-	< 0.1
Toluene	0.1	mg/kg	-	-	-	< 0.1
Ethylbenzene	0.1	mg/kg	-	-	-	< 0.1
m&p-Xylenes	0.2	mg/kg	-	-	-	< 0.2
o-Xylene	0.1	mg/kg	-	-	-	< 0.1
Xylenes - Total	0.3	mg/kg	-	-	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	-	-	111
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	-	-	=	< 0.5
TRH C6-C10	20	mg/kg	-	-	-	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	-	-	-	< 20
TRH >C10-C16	50	mg/kg	-	-	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	-	-	< 50
TRH >C16-C34	100	mg/kg	-	-	=	< 100
TRH >C34-C40	100	mg/kg	-	-	-	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	-	=	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	-	1.2
Acenaphthene	0.5	mg/kg	-	-	=	< 0.5
Acenaphthylene	0.5	mg/kg	-	-	-	< 0.5
Anthracene	0.5	mg/kg	-	-	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	-	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	-	-	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	-	-	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Chrysene	0.5	mg/kg	-	-	=	< 0.5

Client Sample ID			SS02 0.5-0.6	SS07 0.9-1.0	SS13 0-0.1	SS16 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Oc04219	M18-Oc04222	M18-Oc04223	M18-Oc04224
Date Sampled			Sep 18, 2018	Sep 18, 2018	Sep 18, 2018	Sep 18, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	-	< 0.5
Fluoranthene	0.5	mg/kg	-	-	-	< 0.5
Fluorene	0.5	mg/kg	-	-	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	-	< 0.5
Naphthalene	0.5	mg/kg	-	-	-	< 0.5
Phenanthrene	0.5	mg/kg	-	-	-	< 0.5
Pyrene	0.5	mg/kg	-	-	-	< 0.5
Total PAH*	0.5	mg/kg	-	-	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	-	-	104
p-Terphenyl-d14 (surr.)	1	%	-	-	-	110
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	-	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	-	-	< 0.05
a-BHC	0.05	mg/kg	-	-	-	< 0.05
Aldrin	0.05	mg/kg	-	-	-	< 0.05
b-BHC	0.05	mg/kg	-	-	-	< 0.05
d-BHC	0.05	mg/kg	-	-	-	< 0.05
Dieldrin	0.05	mg/kg	-	-	-	< 0.05
Endosulfan I	0.05	mg/kg	-	-	-	< 0.05
Endosulfan II	0.05	mg/kg	-	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	-	< 0.05
Endrin	0.05	mg/kg	-	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	-	< 0.05
Endrin ketone	0.05	mg/kg	-	-	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	-	-	< 0.05
Heptachlor	0.05	mg/kg	-	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	-	< 0.05
Methoxychlor	0.05	mg/kg	-	-	-	< 0.05
Toxaphene	1	mg/kg	-	-	-	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	-	-	101
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	94
Polychlorinated Biphenyls	<u> </u>	1				
Aroclor-1016	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1221	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1232	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1242	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1248	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1254	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1260	0.1	mg/kg	-	-	-	< 0.1
Total PCB*	0.1	mg/kg	-	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	-	-	101

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled	100		SS02 0.5-0.6 Soil M18-Oc04219 Sep 18, 2018	SS07 0.9-1.0 Soil M18-Oc04222 Sep 18, 2018	SS13 0-0.1 Soil M18-Oc04223 Sep 18, 2018	SS16 0-0.1 Soil M18-Oc04224 Sep 18, 2018
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic	2	mg/kg	< 2	2.3	4.1	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	-
Chromium	5	mg/kg	30	6.8	15	-
Copper	5	mg/kg	32	7.2	< 5	-
Lead	5	mg/kg	180	52	13	-
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Nickel	5	mg/kg	50	< 5	< 5	-
Zinc	5	mg/kg	41	180	< 5	-
% Moisture	1	%	5.9	15	8.4	5.3

Client Sample ID			SS30 0-0.1	SS32 0-0.1	SS34 0-0.1	SS37 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Oc04225	M18-Oc04226	M18-Oc04227	M18-Oc04228
Date Sampled			Sep 20, 2018	Sep 20, 2018	Sep 20, 2018	Sep 20, 2018
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	78	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	200	78	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	278	78	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	96	101	108	94
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	240	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	240	< 100	< 100
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2	-	1.2
Acenaphthene	0.5	mg/kg	-	< 0.5	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	< 0.5	-	< 0.5
Anthracene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	-	< 0.5

Client Sample ID			CC20 0 0 4	CC22 0 0 4	0004004	0027.0.0.4
-			SS30 0-0.1 Soil	SS32 0-0.1 Soil	SS34 0-0.1 Soil	SS37 0-0.1 Soil
Sample Matrix						
Eurofins mgt Sample No.			M18-Oc04225	M18-Oc04226	M18-Oc04227	M18-Oc04228
Date Sampled			Sep 20, 2018	Sep 20, 2018	Sep 20, 2018	Sep 20, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	-	< 0.5
Chrysene	0.5	mg/kg	-	< 0.5	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	-	< 0.5
Fluoranthene	0.5	mg/kg	-	< 0.5	-	< 0.5
Fluorene	0.5	mg/kg	-	< 0.5	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Naphthalene	0.5	mg/kg	-	< 0.5	-	< 0.5
Phenanthrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Pyrene	0.5	mg/kg	-	< 0.5	-	< 0.5
Total PAH*	0.5	mg/kg	-	< 0.5	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	117	-	68
p-Terphenyl-d14 (surr.)	1	%	-	126	-	66
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	< 0.1	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	< 0.05	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	< 0.05	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	< 0.05	-	< 0.05
a-BHC	0.05	mg/kg	-	< 0.05	-	< 0.05
Aldrin	0.05	mg/kg	-	< 0.05	-	< 0.05
b-BHC	0.05	mg/kg	-	< 0.05	-	< 0.05
d-BHC	0.05	mg/kg	-	< 0.05	-	< 0.05
Dieldrin	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan I	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan II	0.05	mg/kg	-	< 0.05	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	< 0.05	-	< 0.05
Endrin ketone	0.05	mg/kg	-	< 0.05	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	< 0.05	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	< 0.05	-	< 0.05
Methoxychlor	0.05	mg/kg	-	< 0.05	-	< 0.05
Toxaphene	1	mg/kg	-	< 1	-	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	< 0.05	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	< 0.05	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	< 0.1	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	< 0.1	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	98	-	99
Tetrachloro-m-xylene (surr.)	1	%	-	73	-	96
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1221	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1232	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1242	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1248	0.1	mg/kg	-	< 0.1	-	< 0.1
Aroclor-1254	0.1	mg/kg	_	< 0.1	-	< 0.1

Client Sample ID Sample Matrix			SS30 0-0.1 Soil	SS32 0-0.1 Soil	SS34 0-0.1 Soil	SS37 0-0.1 Soil
Eurofins mgt Sample No.			M18-Oc04225	M18-Oc04226	M18-Oc04227	M18-Oc04228
Date Sampled			Sep 20, 2018	Sep 20, 2018	Sep 20, 2018	Sep 20, 2018
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls	•					
Aroclor-1260	0.1	mg/kg	-	< 0.1	-	< 0.1
Total PCB*	0.1	mg/kg	-	< 0.1	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	98	-	99
Tetrachloro-m-xylene (surr.)	1	%	-	73	-	96
Heavy Metals		_				
Arsenic	2	mg/kg	3.8	5.2	3.7	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	9.1	25	12	5.3
Copper	5	mg/kg	30	25	11	< 5
Lead	5	mg/kg	110	34	22	13
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	15	9.2	< 5
Zinc	5	mg/kg	350	100	40	6.7
% Moisture	1	%	9.0	11	7.2	5.9

Client Sample ID Sample Matrix			SS39 0-0.1 Soil	SS40 0-0.1 Soil	SS41 0.2-0.3 Soil	SS44 0-0.1 Soil
Eurofins mgt Sample No.			M18-Oc04229	M18-Oc04230	M18-Oc04231	M18-Oc04232
' ' '			Sep 20, 2018	Sep 20, 2018		Sep 20, 2018
Date Sampled			Sep 20, 2016	Sep 20, 2016	Sep 20, 2018	Sep 20, 2016
Test/Reference	LOR	Unit				1
Total Recoverable Hydrocarbons - 1999 NEPM Fr		1				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	-
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	-
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	-
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	-
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	-
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	100	102	98	-
Total Recoverable Hydrocarbons - 2013 NEPM Fr	actions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	-
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	-

Client Sample ID			SS39 0-0.1	SS40 0-0.1	SS41 0.2-0.3	SS44 0-0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Oc04229	M18-Oc04230	M18-Oc04231	M18-Oc04232
Date Sampled			Sep 20, 2018	Sep 20, 2018	Sep 20, 2018	Sep 20, 2018
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	-
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5 < 0.5	-
Pyrene Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
2-Fluorobiphenyl (surr.)	1	mg/kg %	119	95	90	-
p-Terphenyl-d14 (surr.)	1	%	120	94	93	† -
Organochlorine Pesticides		70	120	34	30	
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	_	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	_	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Methoxychlor - ·	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Toxaphene	1	mg/kg	< 1	< 1	-	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Dibutylchlorendate (surr.)	1	%	103	89	-	102

Client Sample ID Sample Matrix			SS39 0-0.1 Soil	SS40 0-0.1 Soil	SS41 0.2-0.3 Soil	SS44 0-0.1 Soil
Eurofins mgt Sample No.			M18-Oc04229	M18-Oc04230	M18-Oc04231	M18-Oc04232
Date Sampled			Sep 20, 2018	Sep 20, 2018	Sep 20, 2018	Sep 20, 2018
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	_	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	_	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Dibutylchlorendate (surr.)	1	%	103	89	-	102
Tetrachloro-m-xylene (surr.)	1	%	100	83	-	85
Heavy Metals						
Arsenic	2	mg/kg	-	8.4	-	-
Cadmium	0.4	mg/kg	-	< 0.4	-	-
Chromium	5	mg/kg	-	94	-	-
Copper	5	mg/kg	-	15	-	-
Lead	5	mg/kg	-	27	-	-
Mercury	0.1	mg/kg	-	< 0.1	-	-
Nickel	5	mg/kg	-	6.2	-	-
Zinc	5	mg/kg	-	37	-	-
% Moisture	1	%	6.9	13	6.0	8.7

Client Sample ID Sample Matrix			SS47 0-0.1 Soil
Eurofins mgt Sample No.			M18-Oc04233
Date Sampled			Sep 20, 2018
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions		
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	110
TRH C29-C36	50	mg/kg	120
TRH C10-36 (Total)	50	mg/kg	230
BTEX			
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	92
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions		
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	210

Client Sample ID			SS47 0-0.1
Sample Matrix			Soil
Eurofins mgt Sample No.			M18-Oc04233
, • .			
Date Sampled			Sep 20, 2018
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 2013 NEPM			
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	210
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	1.6
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	1.8
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	2.1
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	0.9
Benz(a)anthracene	0.5	mg/kg	1.3
Benzo(a)pyrene	0.5	mg/kg	1.2
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	0.9
Benzo(g.h.i)perylene	0.5	mg/kg	0.6
Benzo(k)fluoranthene	0.5	mg/kg	1.1
Chrysene Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	
Fluorene	0.5	mg/kg	3.3 < 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg mg/kg	1.9
Pyrene	0.5	mg/kg	3.5
Total PAH*	0.5	mg/kg	16.2
2-Fluorobiphenyl (surr.)	1	%	107
p-Terphenyl-d14 (surr.)	1	%	102
Organochlorine Pesticides		,,,	.02
Chlordanes - Total	0.1	mg/kg	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05
a-BHC	0.05	mg/kg	< 0.05
Aldrin	0.05	mg/kg	< 0.05
b-BHC	0.05	mg/kg	< 0.05
d-BHC	0.05	mg/kg	< 0.05
Dieldrin	0.05	mg/kg	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05
Endrin	0.05	mg/kg	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05
Heptachlor	0.05	mg/kg	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05
Toxaphene	1	mg/kg	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05

Client Sample ID Sample Matrix			SS47 0-0.1 Soil
Eurofins mgt Sample No.			M18-Oc04233
Date Sampled			Sep 20, 2018
Test/Reference	LOR	Unit	
Organochlorine Pesticides			
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1
Dibutylchlorendate (surr.)	1	%	99
Tetrachloro-m-xylene (surr.)	1	%	77
Polychlorinated Biphenyls			
Aroclor-1016	0.1	mg/kg	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1
Total PCB*	0.1	mg/kg	< 0.1
Dibutylchlorendate (surr.)	1	%	99
Tetrachloro-m-xylene (surr.)	1	%	77
% Moisture	1	%	11

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Total Recoverable Hydrocarbons - 1999 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Testing Site Melbourne	Extracted Oct 05, 2018	Holding Time 14 Day
Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Melbourne	Oct 05, 2018	14 Day
Total Recoverable Hydrocarbons - 2013 NEPM Fractions - Method: LTM-ORG-2010 TRH C6-C40	Melbourne	Oct 05, 2018	14 Day
BTEX	Melbourne	Oct 05, 2018	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices Polycyclic Aromatic Hydrocarbons	Melbourne	Oct 05, 2018	14 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water Organochlorine Pesticides	Melbourne	Oct 05, 2018	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water Polychlorinated Biphenyls	Melbourne	Oct 05, 2018	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water Metals M8	Melbourne	Oct 05, 2018	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS % Moisture	Melbourne	Oct 04, 2018	14 Day

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Page 11 of 20

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Order No.: Received: Oct 2, 2018 5:29 PM

 Report #:
 620797
 Due:
 Oct 9, 2018

 Phone:
 02 8245 0300
 Priority:
 5 Day

Contact Name: Claudia Bennett

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271							Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	271			Х	Х	Х	Х	Х	Х	Χ
Sydi	ney Laboratory	- NATA Site # 1	8217			Х							
Bris	bane Laborator	y - NATA Site #	20794										
Pert	h Laboratory - N	NATA Site # 237	36										
Exte	rnal Laboratory												
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	SS02 0.5-0.6	Sep 18, 2018		Soil	M18-Oc04219					Х		Х	
2	SS03 0-0.1	Sep 18, 2018		Soil	M18-Oc04220	Х							
3	SS05 0.5-0.6	Sep 18, 2018		Soil	M18-Oc04221	Х							
4	SS07 0.9-1.0	Sep 18, 2018		Soil	M18-Oc04222					Х		Х	
5	SS13 0-0.1	Sep 18, 2018		Soil	M18-Oc04223					Х		Х	
6	SS16 0-0.1	Sep 18, 2018		Soil	M18-Oc04224		Х	Х	Х		Х	Х	Х
7	SS30 0-0.1	Sep 20, 2018		Soil	M18-Oc04225					Х	Х	Х	Х
8	SS32 0-0.1	Sep 20, 2018		Soil	M18-Oc04226		Х	Х	Х	Х	Х	Х	Х
9	SS34 0-0.1	Sep 20, 2018		Soil	M18-Oc04227					Х	Х	Х	Χ

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 620797-S

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

> Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933 Order No.: Received: Oct 2, 2018 5:29 PM

Report #: 620797 Due: Oct 9, 2018 Phone: 02 8245 0300 Priority: 5 Day

Contact Name: Claudia Bennett

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail Melbourne Laboratory - NATA Site # 1254 & 14271					Asbestos - WA guidelines	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Total Recoverable Hydrocarbons
Melk	ourne Laborate	ory - NATA Site	# 1254 & 142	71			Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217			Х							
Bris	bane Laborator	y - NATA Site #	20794										
Pert	h Laboratory - N	NATA Site # 237	36										
10	SS37 0-0.1	Sep 20, 2018		Soil	M18-Oc04228		Х	Х	Х	Х	Х	Х	Х
11	SS39 0-0.1	Sep 20, 2018		Soil	M18-Oc04229		Х	Х	Х		Х	Х	Х
12	SS40 0-0.1	Sep 20, 2018		Soil	M18-Oc04230		Х	Х	Х	Х	Х	Х	Х
13	SS41 0.2-0.3	Sep 20, 2018		Soil	M18-Oc04231		Х				Х	Х	Х
14	SS44 0-0.1	Sep 20, 2018		Soil	M18-Oc04232			Х	Х			Х	
15	SS47 0-0.1	Sep 20, 2018		Soil	M18-Oc04233		Х	Х	Х		Х	Х	Х
Test	Counts					2	7	7	7	8	9	13	9

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Date Reported:Oct 10, 2018

Report Number: 620797-S

Page 12 of 20

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		'			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xvlenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	IIIg/Itg	100	100	1 455	
Polycyclic Aromatic Hydrocarbons		П			
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene		< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
	mg/kg	1 1			
Fluorene Fluorene	mg/kg	< 0.5	0.5	Pass	
	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene Math ad Blank	mg/kg	< 0.5	0.5	Pass	
Method Blank		1			
Organochlorine Pesticides		.04	0.4	Dana	
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank	Hig/Kg			1 455	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1010	mg/kg	< 0.1	0.1	Pass	
Aroclor 1232	mg/kg	< 0.1	0.1	Pass	
Aroclor 1242	mg/kg	< 0.1	0.1	Pass	-
Arcelor 4254	mg/kg	< 0.1	0.1	Pass	-
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank		T			
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery	, ,				
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	120	70-130	Pass	
TRH C10-C14	%	83	70-130	Pass	
LCS - % Recovery	,,,		10.00		
BTEX					
Benzene	%	74	70-130	Pass	
Toluene	%	110	70-130	Pass	
	%	117	70-130		
Ethylbenzene				Pass	
m&p-Xylenes	%	112	70-130	Pass	
Xylenes - Total	%	114	70-130	Pass	
LCS - % Recovery Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	120	70-130	Pass	
TRH C6-C10	%	117	70-130	Pass	
TRH >C10-C16	%	88	70-130	Pass	
LCS - % Recovery	1 /0		70 100		
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	100	70-130	Pass	
Acenaphthylene	%	98	70-130	Pass	
Anthracene	%	108	70-130	Pass	
Benz(a)anthracene	%	74	70-130	Pass	
Benzo(a)pyrene	%	87	70-130	Pass	
Benzo(b&j)fluoranthene	%	83	70-130	Pass	<u> </u>

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Benzo(g.h.i)perylene			%	86		70-130	Pass	
Benzo(k)fluoranthene			%	110		70-130	Pass	
Chrysene			%	100		70-130	Pass	
Dibenz(a.h)anthracene			%	91		70-130	Pass	
Fluoranthene			%	102		70-130	Pass	
Fluorene			%	94		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	86		70-130	Pass	
Naphthalene			%	93		70-130	Pass	
Phenanthrene			%	98		70-130	Pass	
Pyrene			%	99		70-130	Pass	
LCS - % Recovery			/0] 33		70-130	1 033	
Organochlorine Pesticides								
4.4'-DDD			%	129		70-130	Pass	
4.4'-DDE			%	i		1		
				122		70-130	Pass	
4.4'-DDT			%	73		70-130	Pass	
a-BHC			%	89		70-130	Pass	
Aldrin			%	103		70-130	Pass	
b-BHC			%	93		70-130	Pass	
d-BHC			%	85		70-130	Pass	
Dieldrin			%	104		70-130	Pass	
Endosulfan I			%	96		70-130	Pass	
Endosulfan II			%	90		70-130	Pass	
Endosulfan sulphate			%	85		70-130	Pass	
Endrin			%	110		70-130	Pass	
Endrin aldehyde			%	106		70-130	Pass	
Endrin ketone			%	100		70-130	Pass	
g-BHC (Lindane)			%	86		70-130	Pass	
Heptachlor			%	91		70-130	Pass	
Heptachlor epoxide			%	98		70-130	Pass	
Hexachlorobenzene			%	94		70-130	Pass	
Methoxychlor			%	80		70-130	Pass	
LCS - % Recovery								
Polychlorinated Biphenyls								
Aroclor-1260			%	90		70-130	Pass	
LCS - % Recovery								
Heavy Metals								
Arsenic			%	110		80-120	Pass	
Cadmium			%	99		80-120	Pass	
Chromium			%	113		80-120	Pass	
Copper			%	112		80-120	Pass	
Lead			<u> </u>	112		80-120	Pass	
Mercury			%	112		75-125	Pass	
Nickel			%	114		80-120	Pass	
				1				
Zinc			%	114		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons	- 1999 NEPM Fract			Result 1				
TRH C6-C9	Z18-Oc04309	NCP	%	94		70-130	Pass	
TRH C10-C14	M18-Oc05129	NCP	%	90		70-130	Pass	
Spike - % Recovery								
ВТЕХ				Result 1				
Benzene	Z18-Oc04309	NCP	%	76		70-130	Pass	
Toluene	Z18-Oc04309	NCP	%	83		70-130	Pass	
Ethylbenzene	Z18-Oc04309	NCP	%	97	 	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
m&p-Xylenes	Z18-Oc04309	NCP	%	92	70-130	Pass	
o-Xylene	Z18-Oc04309	NCP	%	99	70-130	Pass	
Xylenes - Total	Z18-Oc04309	NCP	%	94	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	ions		Result 1			
Naphthalene	Z18-Oc04309	NCP	%	117	70-130	Pass	
TRH C6-C10	Z18-Oc04309	NCP	%	93	70-130	Pass	
TRH >C10-C16	M18-Oc05129	NCP	%	95	70-130	Pass	
Spike - % Recovery					,		
Polycyclic Aromatic Hydrocar	bons			Result 1			
Acenaphthene	S18-Oc01647	NCP	%	83	70-130	Pass	
Acenaphthylene	S18-Oc01647	NCP	%	79	70-130	Pass	
Anthracene	S18-Oc01647	NCP	%	79	70-130	Pass	
Benz(a)anthracene	S18-Oc01647	NCP	%	77	70-130	Pass	
Benzo(a)pyrene	S18-Oc01647	NCP	%	94	70-130	Pass	
Benzo(b&i)fluoranthene	S18-Oc01647	NCP	%	89	70-130	Pass	
Benzo(g.h.i)perylene	S18-Oc01647	NCP	%	87	70-130	Pass	
Benzo(k)fluoranthene	S18-Oc01647	NCP	<u> </u>	128	70-130	Pass	
Chrysene	S18-Oc01647	NCP	%	103	70-130	Pass	
Dibenz(a.h)anthracene	S18-Oc01647	NCP	%	88	70-130	Pass	
Fluoranthene	S18-Oc01647	NCP	%	99	70-130	Pass	
Fluorene	S18-Oc01647	NCP	<u> </u>	74	70-130	Pass	
	S18-Oc01647	NCP	<u> </u>	85	70-130	Pass	
Indeno(1.2.3-cd)pyrene Naphthalene	S18-Oc01647	NCP	%	81	70-130	Pass	
•				75			
Phenanthrene	S18-Oc01647 S18-Oc01647	NCP NCP	<u>%</u> %	101	70-130 70-130	Pass	
Pyrene Spiles 9/ Becavery	318-0001647	NCP	70	101	70-130	Pass	
Spike - % Recovery				Decult 1		Τ	
Organochlorine Pesticides	M40 O-00050	NOD	0/	Result 1	70.420	Dana	
4.4'-DDD	M18-Oc02652	NCP	%	126	70-130	Pass	
4.4'-DDE	M18-Oc02652	NCP	%	128	70-130	Pass	
4.4'-DDT	M18-Oc02652	NCP	%	82	70-130	Pass	
a-BHC	M18-Oc02652	NCP	%	96	70-130	Pass	-
Aldrin	M18-Oc02652	NCP	%	115	70-130	Pass	
b-BHC	M18-Oc02652	NCP	%	97	70-130	Pass	
d-BHC	M18-Oc02652	NCP	%	93	70-130	Pass	
Dieldrin	M18-Oc02652	NCP	%	112	70-130	Pass	
Endosulfan I	M18-Oc02652	NCP	%	112	70-130	Pass	
Endosulfan II	M18-Oc02652	NCP	%	111	70-130	Pass	
Endosulfan sulphate	M18-Oc02652	NCP	%	106	70-130	Pass	
Endrin	M18-Oc02652	NCP	%	118	70-130	Pass	
Endrin aldehyde	M18-Oc02652	NCP	%	115	70-130	Pass	<u> </u>
Endrin ketone	M18-Oc02652	NCP	%	107	70-130	Pass	
g-BHC (Lindane)	M18-Oc02652	NCP	%	107	70-130	Pass	
Heptachlor	M18-Oc02652	NCP	%	104	70-130	Pass	
Heptachlor epoxide	M18-Oc02652	NCP	%	106	70-130	Pass	
Hexachlorobenzene	M18-Oc02652	NCP	%	100	70-130	Pass	
Methoxychlor	M18-Oc02652	NCP	%	88	70-130	Pass	
Spike - % Recovery							
Polychlorinated Biphenyls				Result 1			
Aroclor-1260	M18-Oc02648	NCP	%	92	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	M18-Oc00559	NCP	%	112	75-125	Pass	
Cadmium	M18-Oc04743	NCP	%	107	75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Chromium	M18-Oc04743	NCP	%	79			75-125	Pass	
Copper	M18-Oc04743	NCP	%	77			75-125	Pass	
Lead	M18-Oc00559	NCP	%	96			75-125	Pass	
Mercury	M18-Se35452	NCP	%	98			70-130	Pass	
Nickel	M18-Oc04743	NCP	%	70			75-125	Fail	Q08
Zinc	M18-Oc04743	NCP	%	100			75-125	Pass	400
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				<u> </u>	, ,		•		
Total Recoverable Hydrocarbon	s - 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	Z18-Oc04308	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M18-Oc04386	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M18-Oc04386	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M18-Oc04386	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate			<u> </u>						
BTEX				Result 1	Result 2	RPD			
Benzene	Z18-Oc04308	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	Z18-Oc04308	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	Z18-Oc04308	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	Z18-Oc04308	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	Z18-Oc04308	NCP	mg/kg	< 0.2	< 0.1	<1	30%	Pass	
Xylenes - Total	Z18-Oc04308	NCP	mg/kg	< 0.1	< 0.3	<1	30%	Pass	
	210-0004300	INCF	mg/kg	< 0.5	< 0.3	<1	30%	Fass	
Duplicate Total Recoverable Hydrocarbon	o 2012 NEDM Front	ione		Result 1	Result 2	RPD			
							200/	Door	
Naphthalene	Z18-Oc04308	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	Z18-Oc04308	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	M18-Oc04386	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M18-Oc04386	NCP	mg/kg	< 100		<1	30%	Pass	
TRH >C34-C40	M18-Oc04386	NCP	mg/kg	< 100		<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbo				Result 1	Result 2	RPD			
Acenaphthene	M18-Oc05349	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M18-Oc05349	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M18-Oc05349	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M18-Oc05349	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M18-Oc05349	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M18-Oc05349	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M18-Oc05349	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M18-Oc05349	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M18-Oc05349	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M18-Oc05349	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M18-Oc05349	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M18-Oc05349	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
			mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M18-Oc05349	INCP							
Indeno(1.2.3-cd)pyrene Naphthalene	M18-Oc05349 M18-Oc05349	NCP NCP			< 0.5	<1	30%	Pass	
Naphthalene	M18-Oc05349	NCP	mg/kg	< 0.5	< 0.5				
Naphthalene Phenanthrene	M18-Oc05349 M18-Oc05349	NCP NCP	mg/kg mg/kg	< 0.5 < 0.5	< 0.5	<1	30%	Pass	
Naphthalene Phenanthrene Pyrene	M18-Oc05349	NCP	mg/kg	< 0.5					
Naphthalene Phenanthrene Pyrene Duplicate	M18-Oc05349 M18-Oc05349	NCP NCP	mg/kg mg/kg	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5	<1 <1	30%	Pass	
Naphthalene Phenanthrene Pyrene Duplicate Organochlorine Pesticides	M18-Oc05349 M18-Oc05349 M18-Oc05349	NCP NCP NCP	mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5	<1 <1 RPD	30% 30%	Pass Pass	
Naphthalene Phenanthrene Pyrene Duplicate Organochlorine Pesticides Chlordanes - Total	M18-Oc05349 M18-Oc05349 M18-Oc05349 M18-Oc04224	NCP NCP NCP	mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 Result 1	< 0.5 < 0.5 Result 2 < 0.1	<1 <1 RPD <1	30% 30% 30%	Pass Pass Pass	
Naphthalene Phenanthrene Pyrene Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD	M18-Oc05349 M18-Oc05349 M18-Oc05349 M18-Oc04224 M18-Oc04224	NCP NCP NCP	mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 Result 1 < 0.1 < 0.05	< 0.5 < 0.5 Result 2 < 0.1 < 0.05	<1 <1 RPD <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	
Naphthalene Phenanthrene Pyrene Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD 4.4'-DDE	M18-Oc05349 M18-Oc05349 M18-Oc05349 M18-Oc04224 M18-Oc04224 M18-Oc04224	NCP NCP NCP CP CP	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 Result 1 < 0.1 < 0.05 < 0.05	< 0.5 < 0.5 Result 2 < 0.1 < 0.05 < 0.05	<1 <1 RPD <1 <1 <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	
Naphthalene Phenanthrene Pyrene Duplicate Organochlorine Pesticides Chlordanes - Total 4.4'-DDD	M18-Oc05349 M18-Oc05349 M18-Oc05349 M18-Oc04224 M18-Oc04224	NCP NCP NCP	mg/kg mg/kg mg/kg	< 0.5 < 0.5 < 0.5 Result 1 < 0.1 < 0.05	< 0.5 < 0.5 Result 2 < 0.1 < 0.05	<1 <1 RPD <1 <1	30% 30% 30% 30%	Pass Pass Pass Pass	

Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
b-BHC	M18-Oc04224	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	M18-Oc04224	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	M18-Oc04224	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	M18-Oc04224	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	M18-Oc04224	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	M18-Oc04224	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	M18-Oc04224	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	M18-Oc04224	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	M18-Oc04224	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	M18-Oc04224	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	M18-Oc04224	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	M18-Oc04224	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	M18-Oc04224	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	M18-Oc04224	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	M18-Oc04224	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	M18-Oc04224	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	M18-Oc04224	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	M18-Oc04224	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	M18-Oc04224	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	M18-Oc04224	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	M18-Oc04224	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	M18-Oc04224	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	M18-Oc04224	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M18-Oc01528	NCP	mg/kg	2.0	2.5	20	30%	Pass	
Cadmium	M18-Oc01528	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M18-Oc01528	NCP	mg/kg	35	38	7.0	30%	Pass	
Copper	M18-Oc01528	NCP	mg/kg	32	29	12	30%	Pass	
Lead	M18-Oc01528	NCP	mg/kg	7.4	9.1	20	30%	Pass	
Mercury	M18-Oc01528	NCP	mg/kg	0.8	0.6	23	30%	Pass	
Nickel	M18-Oc01528	NCP	mg/kg	17	14	15	30%	Pass	
Zinc	M18-Oc01528	NCP	mg/kg	5.5	< 5	12	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	M18-Oc04228	CP	%	5.9	6.0	2.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference Q08

Authorised By

N02

Nibha Vaidva Analytical Services Manager Chris Bennett Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Joseph Edouard Senior Analyst-Organic (VIC) Nibha Vaidya Senior Analyst-Asbestos (NSW)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Img shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mgt be liable for consequential clampas including, but no limited to, lost profits, damages for eliable to meet deadlines and lost production arising from this report. This document shall be reported everage in full and retales only to the lems tested. Unless indicated otherwise, the tests were performed on the samples as received.

Alena Bounkeua

Thursday, 11 October 2018 5:13 PM

Enviro Sample Vic; Nibha Vaidya; Tony Wong

RE: Urgent 1 DAY TAT - FW: Eurofins | mgt Test Results - Report 620797 : Site PEAT

ISLAND (54933)

Attachments:

image001.png; image002.jpg

Hi Guys,

Please see below:

D.S 19/09

- SS22 0-0.1 is likely called SS-22_0-0.1 Report: 619070 Se30086 HOLD いって SS28 0-0.1 is likely called SS-28_0-0.1 Report: 619070 Se30098 从のLD いりつ
- SS28 0.2-0.3 is likely called SS-28_0.2-0.3 Report: 619070 Se30099 HOLD 147
- SS61 0.2-0.3 is likely called SS-61_0.2-0.3 Report: 620448, this sample is on the COC but I don't see it logged in the report and nothing in SRA either - 001742 - 41309
- GW03 1.9-2.0 is likely called GW-03 1.9-2.0 Report: 619071 Se30058 HOLD 146
- GW03 3.4-3.5 is likely called GW-03_3.4-.3.5 Report: 619071 Se30051 นุเา4
- GW05 0.4-0.5 is likely called GW-05_0.4-0.5 Report 619071 Se30049 41179

Thanks!

Warm Regards,

Alena Bounkeua Eurofins | mgt

Phone: (02) 9900 8414

Email: AlenaBounkeua@eurofins.com

hereired: DEONES Report: 622153

From: Enviro Sample Vic

Sent: Thursday, 11 October 2018 5:04 PM

To: Nibha Vaidya; Tony Wong

Cc: Alena Bounkeua

Subject: RE: Urgent 1 DAY TAT - FW: Eurofins | mgt Test Results - Report 620797 : Site PEAT ISLAND (54933)

Hi Nhiba,

We tried calling you but went to voicemail.

We spoke to Alena regarding the first report, 620797.

She can explain the situation to you

Thanks, Canh

Enviro Sample VIC Phone: +61 3 8564 5043

Email: EnviroSampleVic@eurofins.com

SS03 0-0.1 - Asbestos (NEPM)	Se 25591 - Hdd.	e.
SS05 0.5-0.6 – Asbestos (NEPM)	Se25593- Hold.	
SS07 0.9-1.0 - Metals (8)	Se2 5599 - Hold,	
SS13 0-0.1 – Metals (8)	Se25605-Hold	
SS16 0-0.1 - TRH/BTEX, PAH, O	CP/PCB Se 25583 - 61122.	
SS22 0-0.1 - Metals (8), TRH/BTE	EX. OCP/PCB Nosample with this It.	
SS28 0-0.1 – Metals (8)	No sample with this ID.	
SS28 0.2-0.3 - Metals (8), TRH/BT		
SS30 0-0.1 - Metals (8), TRH/BTE.	x se 28435 - G1178	1 2 Ch
SS32 0-0.1 - Metals (8), TRH/BTE.	X, PAH, OCP/PCB 5228436-G1178.	
SS34 0-0.1 - Metals (8), TRH/BTE.	X Se28419-61(178.	
SS37 0-0.1 - Metals (8), TRH/BTE	X, PAH, OCP/PCB Se 29565 - Had.	B - A -
SS39 0-0.1 - TRH/BTEX, PAH, OC	CP/PCB 5228602-Hdd	145
SS40 0-0.1 - Metals (8), TRH/BTE	X. PAH, OCP/PCB 5228438 - G1(178.	٠.
SS41 0.2-0.3 - TRH/BTEX, PAH	5028420-61178	141
SS44 0-0.1 - OCP/PCB	S228423 -6178	
SS47 0-0.1 – TRH/BTEX, PAH, OC	-	
SS61 0.2-0.3 - pH. % clay, CEC	No sample with this 20.	
GW03 1.9-2.0 - Metals (8), TRH/B7		
GW03 3.4-3.5 - Metals (8), TRH/BT	TEX, PAH "	
GW05 0.4-0.5 - Metals (8), TRH/BT	rex, pah	

Thanks and kind regards.

Claudia

Get Outlook for iOS

Click here to report this email as spam.

ScannedByWebsenseForEurofins

* WARNING - EXTERNAL: This email originated from outside of Eurofins. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane1/21 Smallwood Place
Murarrie QLD 4172
Phone: +61 7 3902 4600
NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com web: www.eurofins.com.au

Sample Receipt Advice

Company name: JBS & G Australia (NSW) P/L

Contact name: Scott Burrows
Project name: PEAT ISLAND

Project ID: 54933

COC number: Not provided

Turn around time: 3 Day

Date/Time received: Oct 11, 2018 5:13 PM

Eurofins | mgt reference: 622153

Sample information

- ☑ A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- ✓ All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone: +61 (2) 9900 8415 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Scott Burrows - SBurrows@jbsg.com.au.

Note: A copy of these results will also be delivered to the general JBS & G Australia (NSW) P/L email address.

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Phone:

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

02 8245 0300

Sydney
Unit F3, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 9900 8400
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

 Order No.:
 Received:
 Oct 11, 2018 5:13 PM

 Report #:
 622153
 Due:
 Oct 16, 2018

 Due:
 Oct 16, 2018

 Priority:
 3 Day

Contact Name: Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

Sample Detail						% Clay	pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	71			Х	Х	Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217												
Bris	bane Laborator	y - NATA Site#	20794			Х									
Pert	h Laboratory - N	NATA Site # 237	36												
Exte	rnal Laboratory	<u>'</u>													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	SS22 0-0.1	Not Provided		Soil	M18-Oc14106				Х	Х	Х	Х	Х		X
2	SS28 0-0.1	Not Provided		Soil	M18-Oc14107						Х		Х		
3	SS28 0.2-0.3	Not Provided		Soil	M18-Oc14108			Х			Х	Х	Х		Χ
4	SS61 0.2-0.3	Not Provided		Soil	M18-Oc14109	Х	Х						Х	Х	
5	GW03 1.9-2.0	Not Provided		Soil	M18-Oc14110						Х	Х	Х		Х
6	GW03 3.4-3.5	Not Provided		Soil	M18-Oc14111			Х			Х	Х	Х		Χ
7	7 GW05 0.4-0.5 Not Provided Soil M18-Oc14112							Х			Х	Х	Х		Х
Test	Counts					1	1	3	1	1	6	5	7	1	5



Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

> Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Report622153-SProject namePEAT ISLAND

Project ID 54933
Received Date Oct 11, 2018

Client Sample ID			SS22 0-0.1	SS28 0-0.1	SS28 0.2-0.3	SS61 0.2-0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Oc14106	M18-Oc14107	M18-Oc14108	M18-Oc14109
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM						
TRH C6-C9	20	mg/kg	< 20	-	< 20	-
TRH C10-C14	20	mg/kg	< 20	-	< 20	-
TRH C15-C28	50	mg/kg	< 50	-	< 50	-
TRH C29-C36	50	mg/kg	< 50	-	< 50	-
TRH C10-36 (Total)	50	mg/kg	< 50	-	< 50	-
ВТЕХ						
Benzene	0.1	mg/kg	< 0.1	-	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	-	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	74	-	68	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	-	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-	< 20	-
TRH >C10-C16	50	mg/kg	< 50	-	< 50	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	-	< 50	-
TRH >C16-C34	100	mg/kg	< 100	-	< 100	-
TRH >C34-C40	100	mg/kg	< 100	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	< 100	-	< 100	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	< 0.5	-
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	-	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	-	1.2	-
Acenaphthene	0.5	mg/kg	-	-	< 0.5	-
Acenaphthylene	0.5	mg/kg	-	-	< 0.5	-
Anthracene	0.5	mg/kg	-	-	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5	
Benzo(a)pyrene	0.5	mg/kg	-	-	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5	-
Chrysene	0.5	mg/kg	-	-	< 0.5	-

Client Sample ID			SS22 0-0.1	SS28 0-0.1	SS28 0.2-0.3	SS61 0.2-0.3
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Oc14106	M18-Oc14107	M18-Oc14108	M18-Oc14109
Date Sampled			Not Provided	Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Linit	Not i lovided	Not i iovided	Not i iovided	Not i Tovided
Polycyclic Aromatic Hydrocarbons	LOR	Unit				
	0.5				.0.5	<u> </u>
Dibenz(a.h)anthracene Fluoranthene	0.5 0.5	mg/kg	-	-	< 0.5 < 0.5	-
Fluorene	0.5	mg/kg	-	-	< 0.5	<u>-</u>
Indeno(1.2.3-cd)pyrene	0.5	mg/kg		-	< 0.5	
Naphthalene	0.5	mg/kg	-	-	< 0.5	<u>-</u>
Phenanthrene	0.5	mg/kg	-	-	< 0.5	1
Pyrene	0.5	mg/kg mg/kg	-	-	< 0.5	1
Total PAH*	0.5	mg/kg		-	< 0.5	
2-Fluorobiphenyl (surr.)	1	%	-	-	116	
p-Terphenyl-d14 (surr.)	1	%	_		134	
Organochlorine Pesticides	ı ı	/0	_	<u> </u>	134	-
Chlordanes - Total	0.1	ma/ka	< 0.1			
4.4'-DDD	0.05	mg/kg mg/kg	< 0.1	-	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	<u> </u>	-
a-BHC	0.05	mg/kg	< 0.05	-	<u> </u>	-
Aldrin	0.05	mg/kg	< 0.05	-	<u> </u>	-
b-BHC	0.05	mg/kg	< 0.05			_
d-BHC	0.05	mg/kg	< 0.05	_	_	_
Dieldrin	0.05	mg/kg	< 0.05	_	_	_
Endosulfan I	0.05	mg/kg	< 0.05	_	_	_
Endosulfan II	0.05	mg/kg	< 0.05	_	_	_
Endosulfan sulphate	0.05	mg/kg	< 0.05	_	_	_
Endrin	0.05	mg/kg	< 0.05	_	_	_
Endrin aldehyde	0.05	mg/kg	< 0.05	_	_	_
Endrin ketone	0.05	mg/kg	< 0.05	_	_	_
g-BHC (Lindane)	0.05	mg/kg	< 0.05	-	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	_
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	_
Methoxychlor	0.05	mg/kg	< 0.05	-	-	_
Toxaphene	1	mg/kg	< 1	-	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	-	-	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	-	-	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	-	-
Dibutylchlorendate (surr.)	1	%	111	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	99	-	-	-
Polychlorinated Biphenyls	<u> </u>					
Aroclor-1016	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1232	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1242	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1248	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1254	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1260	0.1	mg/kg	< 0.1	-	-	-
Total PCB*	0.1	mg/kg	< 0.1	-	-	-
Dibutylchlorendate (surr.)	1	%	111	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	99	-	-	_

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled			SS22 0-0.1 Soil M18-Oc14106 Not Provided	SS28 0-0.1 Soil M18-Oc14107 Not Provided	SS28 0.2-0.3 Soil M18-Oc14108 Not Provided	SS61 0.2-0.3 Soil M18-Oc14109 Not Provided
Test/Reference	LOR	Unit				
% Clay	1	%	-	-	-	8.8
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	-	-	-	21
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	-	-	-	6.9
% Moisture	1	%	8.4	9.2	8.5	8.1
Heavy Metals						
Arsenic	2	mg/kg	4.3	5.5	2.5	-
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	-
Chromium	5	mg/kg	13	11	6.2	-
Copper	5	mg/kg	< 5	15	< 5	-
Lead	5	mg/kg	12	110	12	-
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Nickel	5	mg/kg	< 5	11	< 5	-
Zinc	5	mg/kg	< 5	37	9.5	-
Cation Exchange Capacity						
Cation Exchange Capacity	0.05	meq/100g	-	-	-	2.1

Client Sample ID Sample Matrix			GW03 1.9-2.0 Soil	GW03 3.4-3.5 Soil	GW05 0.4-0.5 Soil
Eurofins mgt Sample No.			M18-Oc14110	M18-Oc14111	M18-Oc14112
Date Sampled			Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50
BTEX					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	90	75	69
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100

Client Sample ID			GW03 1.9-2.0	GW03 3.4-3.5	GW05 0.4-0.5
Sample Matrix			Soil	Soil	Soil
Eurofins mgt Sample No.			M18-Oc14110	M18-Oc14111	M18-Oc14112
Date Sampled			Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons		0			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	_	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	_	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	_	1.2	1.2
Acenaphthene	0.5	mg/kg	-	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	_	< 0.5	< 0.5
Anthracene	0.5	mg/kg	-	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	< 0.5
Chrysene	0.5	mg/kg	-	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	-	< 0.5	< 0.5
Fluorene	0.5	mg/kg	-	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	-	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	-	< 0.5	< 0.5
Pyrene	0.5	mg/kg	-	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	-	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	98	119
p-Terphenyl-d14 (surr.)	1	%	-	106	128
% Moisture	1	%	11	12	9.9
Heavy Metals		1			1
Arsenic	2	mg/kg	2.8	3.8	7.9
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	30	23	8.2
Copper	5	mg/kg	5.8	7.4	40
Lead	5	mg/kg	21	29	76
Mercury	0.1	mg/kg	< 0.1	< 0.1	0.2
Nickel	5	mg/kg	< 5	< 5	< 5
Zinc	5	mg/kg	7.8	15	140

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Oct 11, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 11, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Oct 11, 2018	14 Day
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	Oct 11, 2018	14 Day
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Polycyclic Aromatic Hydrocarbons	Melbourne	Oct 11, 2018	14 Day
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Melbourne	Oct 11, 2018	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Polychlorinated Biphenyls	Melbourne	Oct 11, 2018	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Clay	Brisbane	Oct 15, 2018	6 Day
- Method: LTM-GEN-7040			
pH (1:5 Aqueous extract at 25°C as rec.)	Melbourne	Oct 11, 2018	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
Metals M8	Melbourne	Oct 11, 2018	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Melbourne	Oct 11, 2018	7 Day
- Method: LTM-INO-4030 Conductivity			
Cation Exchange Capacity	Melbourne	Oct 12, 2018	180 Days
- Method: LTM-MET-3060 Cation Exchange Capacity by bases & Exchangeable Sodium Percentage			
% Moisture	Melbourne	Oct 11, 2018	14 Day

ABN- 50 005 085 521 e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth
2/91 Leach Highway
Kewdale WA 6105
Phone: +61 8 9251 9600
NATA # 1261
Site # 23736

Company Name: JBS & G Australia (NSW) P/L

Address: Level 1, 50 Margaret St

Sydney NSW 2000

Project Name: PEAT ISLAND

Project ID: 54933

Date Reported:Oct 17, 2018

Order No.: Received: Oct 11, 2018 5:13 PM

 Report #:
 622153
 Due:
 Oct 16, 2018

 Phone:
 02 8245 0300
 Priority:
 3 Day

Fax: Contact Name: Scott Burrows

Eurofins | mgt Analytical Services Manager : Nibha Vaidya

	Sample Detail						pH (1:5 Aqueous extract at 25°C as rec.)	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Polychlorinated Biphenyls	Metals M8	втех	Moisture Set	Cation Exchange Capacity	Total Recoverable Hydrocarbons
Melb	ourne Laborate	ory - NATA Site	# 1254 & 142	271			Х	Х	Х	Х	Х	Х	Х	Х	Х
Sydi	ney Laboratory	- NATA Site # 1	8217												
Bris	bane Laborator	y - NATA Site #	20794			Х									
Pert	h Laboratory - N	NATA Site # 237	36												
Exte	rnal Laboratory	<u>'</u>													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	SS22 0-0.1	Not Provided		Soil	M18-Oc14106				Х	Х	Х	Х	Х		Х
2	SS28 0-0.1	Not Provided		Soil	M18-Oc14107						Х		Х		
3	SS28 0.2-0.3	Not Provided		Soil	M18-Oc14108			Х			Х	Х	Х		Х
4	SS61 0.2-0.3	Not Provided		Soil	M18-Oc14109	Х	Х						Х	Х	
5	GW03 1.9-2.0	Not Provided		Soil	M18-Oc14110						Х	Х	Х		Х
6	GW03 3.4-3.5	Not Provided		Soil M18-Oc14111				Х			Х	Х	Х		Х
7	7 GW05 0.4-0.5 Not Provided Soil M18-Oc14112							Х			Х	Х	Х		Х
Test	Counts					1	1	3	1	1	6	5	7	1	5

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN : 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 622153-S

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM Quality Systems Manual ver 5.1 US Department of Defense
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 622153-S

Quality Control Results

	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
i				
mg/kg	< 20	20	Pass	
mg/kg	< 20	20	Pass	
mg/kg	< 50	50	Pass	
mg/kg	< 50	50	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.1	0.1	Pass	
mg/kg	< 0.2	0.2	Pass	
	< 0.1		Pass	
	< 0.3	0.3	Pass	
1 3 3				
i				
	< 0.5	0.5	Pass	
	< 20			
	1			
i iiig/ikg	V 100	100	1 455	
ma/ka	< 0.5	0.5	Pass	
	1			
	1			
	1			
	1			
			_	
	1			
mg/kg	< 0.5	0.5	Pass	
	Т		Ι	
	.01	0.1	Door	
mg/kg mg/kg				
	< 0.05	0.05	Pass	I
	mg/kg mg/kg	mg/kg < 20	mg/kg < 20	mg/kg < 20

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank	i iiig/kg		1	1 455	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232 Aroclor-1242					
	mg/kg	< 0.1	0.1	Pass	
Aroclor 1254	mg/kg	< 0.1	0.1	Pass	
Arcelor 1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank		. 1			
% Clay	%	< 1		Pass	
Method Blank			T		
Heavy Metals				_	
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank					
Cation Exchange Capacity					
Cation Exchange Capacity	meq/100g	< 0.05	0.05	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	108	70-130	Pass	
TRH C10-C14	%	105	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	107	70-130	Pass	
Toluene	%	89	70-130	Pass	
Ethylbenzene	%	97	70-130	Pass	
m&p-Xylenes	%	92	70-130	Pass	
Xylenes - Total	%	93	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	107	70-130	Pass	
TRH C6-C10	%	94	70-130	Pass	
TRH >C10-C16	%	123	70-130	Pass	
			, , , , , , , , ,		
LC3 - % Recovery					
LCS - % Recovery Polycyclic Aromatic Hydrocarbons					

			Accountering	Dana	Overlift sine or
Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Acenaphthylene	%	115	70-130	Pass	
Anthracene	%	108	70-130	Pass	
Benz(a)anthracene	%	110	70-130	Pass	
Benzo(a)pyrene	%	103	70-130	Pass	
Benzo(b&j)fluoranthene	%	96	70-130	Pass	
Benzo(g.h.i)perylene	%	95	70-130	Pass	
Benzo(k)fluoranthene	%	94	70-130	Pass	
Chrysene	%	102	70-130	Pass	
Dibenz(a.h)anthracene	%	73	70-130	Pass	
Fluoranthene	%	104	70-130	Pass	
Fluorene	%	113	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	98	70-130	Pass	
Naphthalene	%	110	70-130	Pass	
Phenanthrene	%	112	70-130	Pass	
Pyrene	%	105	70-130	Pass	
LCS - % Recovery	, ,			1 0.00	
Organochlorine Pesticides					
4.4'-DDD	%	104	70-130	Pass	
4.4'-DDE	%	115	70-130	Pass	
4.4'-DDT	%	130	70-130	Pass	
a-BHC	%	110	70-130	Pass	
Aldrin	%	120	70-130	Pass	
b-BHC	%	97	70-130	Pass	
d-BHC	%	93	70-130	Pass	
Dieldrin	%	117	70-130	Pass	
Endosulfan I	%	113	70-130	Pass	
Endosulfan II	%	104	70-130	Pass	
Endosulfan sulphate	%	104	70-130	Pass	
Endrin	%	118	70-130	Pass	
Endrin aldehyde	%	114	70-130	Pass	
•					
Endrin ketone	%	115	70-130 70-130	Pass	
g-BHC (Lindane)	%	110		Pass	
Heptachlor	%	115	70-130	Pass	
Heptachlor epoxide	%	113	70-130	Pass	
Hexachlorobenzene	%	105	70-130	Pass	
Methoxychlor	%	120	70-130	Pass	
LCS - % Recovery					-
Polychlorinated Biphenyls		-	70.400	_	
Aroclor-1260	%	96	70-130	Pass	
LCS - % Recovery		T 400			
% Clay	%	100	70-130	Pass	
LCS - % Recovery		T T			
Heavy Metals		+			-
Arsenic	%	88	80-120	Pass	
Cadmium	%	88	80-120	Pass	-
Chromium	%	96	80-120	Pass	
Copper	%	97	80-120	Pass	
Lead	%	94	80-120	Pass	
Mercury	%	97	75-125	Pass	
Nickel	%	95	80-120	Pass	
Zinc	%	87	80-120	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Accepta Limi	ance Pass ts Limits	Qualifying Code
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
4.4'-DDD	M18-Oc10399	NCP	%	116	70-13	30 Pass	
4.4'-DDE	M18-Oc10399	NCP	%	114	70-13	30 Pass	
4.4'-DDT	M18-Oc10399	NCP	%	80	70-13	30 Pass	
a-BHC	M18-Oc10399	NCP	%	98	70-13	30 Pass	
Aldrin	M18-Oc10399	NCP	%	113	70-13	30 Pass	
b-BHC	M18-Oc10399	NCP	%	94	70-13	30 Pass	
d-BHC	M18-Oc10399	NCP	%	90	70-13	30 Pass	
Dieldrin	M18-Oc10399	NCP	%	104	70-13	30 Pass	
Endosulfan I	M18-Oc10399	NCP	%	103	70-13	30 Pass	
Endosulfan II	M18-Oc10399	NCP	%	97	70-13	30 Pass	
Endosulfan sulphate	M18-Oc10399	NCP	%	98	70-13	30 Pass	
Endrin	M18-Oc10399	NCP	%	108	70-13	30 Pass	
Endrin aldehyde	M18-Oc10399	NCP	%	93	70-13	30 Pass	
Endrin ketone	M18-Oc10399	NCP	%	101	70-13	30 Pass	
g-BHC (Lindane)	M18-Oc10399	NCP	%	102	70-13	30 Pass	
Heptachlor	M18-Oc10399	NCP	%	100	70-13	30 Pass	
Heptachlor epoxide	M18-Oc10399	NCP	%	102	70-13	30 Pass	
Hexachlorobenzene	M18-Oc10399	NCP	%	97	70-13		
Methoxychlor	M18-Oc10399	NCP	%	84	70-13	30 Pass	
Spike - % Recovery							
Polychlorinated Biphenyls			1	Result 1			
Aroclor-1260	M18-Oc02648	NCP	%	92	70-13	30 Pass	
Spike - % Recovery				T			
Heavy Metals				Result 1			
Lead	M18-Oc08674	NCP	%	89	75-12	25 Pass	
Spike - % Recovery				T			
Heavy Metals				Result 1			
Arsenic	M18-Oc14107	CP	%	105	75-12		-
Cadmium	M18-Oc14107	CP	%	103	75-12		-
Chromium	M18-Oc14107	CP	%	107	75-12		
Copper	M18-Oc14107	CP	%	112	75-12		-
Mercury	M18-Oc14107	CP	%	98	70-13		
Nickel	M18-Oc14107	CP	%	99	75-12		
Zinc	M18-Oc14107	CP	%	93	75-12	25 Pass	_
Spike - % Recovery				I			
Polycyclic Aromatic Hydroca				Result 1			1
Acenaphthene	S18-Oc09344	NCP	%	109	70-13		+
Acenaphthylene	S18-Oc09344	NCP	%	114	70-13		1
Anthracene	S18-Oc09344	NCP	%	102	70-13		1
Benz(a)anthracene	S18-Oc09344	NCP	%	112	70-13		
Benzo(a)pyrene	S18-Oc09344	NCP	%	98	70-13		-
Benzo(b&j)fluoranthene	S18-Oc09344	NCP	%	97	70-13		
Benzo(g.h.i)perylene	S18-Oc09344	NCP	%	120	70-13		
Benzo(k)fluoranthene	S18-Oc09344	NCP	%	86	70-13		+
Chrysene	S18-Oc09344	NCP	%	96	70-13		+
Dibenz(a.h)anthracene	S18-Oc09344	NCP	%	91	70-13		+
Fluoranthene	S18-Oc09344	NCP	%	109	70-13		+
Fluorene	S18-Oc09344	NCP	%	111	70-13		+
Indeno(1.2.3-cd)pyrene	S18-Oc09344	NCP	%	123	70-13		+
Naphthalene	S18-Oc09344	NCP	%	106	70-13		+
Phenanthrene	S18-Oc09344	NCP	%	104	70-13		+
Pyrene	S18-Oc09344	NCP	%	109	70-13	30 Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				T	T T		T		
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1					
TRH C6-C9	M18-Oc14110	CP	%	125			70-130	Pass	
TRH C10-C14	M18-Oc14110	CP	%	103			70-130	Pass	
Spike - % Recovery									
BTEX				Result 1					
Benzene	M18-Oc14110	CP	%	124			70-130	Pass	
Toluene	M18-Oc14110	CP	%	104			70-130	Pass	
Ethylbenzene	M18-Oc14110	CP	%	105			70-130	Pass	
m&p-Xylenes	M18-Oc14110	CP	%	102			70-130	Pass	
o-Xylene	M18-Oc14110	CP	%	101			70-130	Pass	
Xylenes - Total	M18-Oc14110	CP	%	102			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1					
Naphthalene	M18-Oc14110	СР	%	104			70-130	Pass	
TRH C6-C10	M18-Oc14110	СР	%	126			70-130	Pass	
TRH >C10-C16	M18-Oc14110	СР	%	119			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	M18-Oc10398	NCP	mg/kg	0.9	0.7	22	30%	Pass	
4.4'-DDD	M18-Oc10398	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	M18-Oc10398	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	M18-Oc10398	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	M18-Oc10398	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M18-Oc10398	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	M18-Oc10398	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	M18-Oc10398	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	M18-Oc10398	NCP	mg/kg	0.23	0.22	7.0	30%	Pass	
Endosulfan I	M18-Oc10398	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	M18-Oc10398	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	M18-Oc10398	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	M18-Oc10398	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	M18-Oc10398	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	M18-Oc10398	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	M18-Oc10398	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	M18-Oc10398	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	M18-Oc10398	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	M18-Oc10398	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	M18-Oc10398	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	M18-Oc10398	NCP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate	•						<u>'</u>		
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	M18-Oc13259	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	M18-Oc13259	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	M18-Oc13259	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	M18-Oc13259	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	M18-Oc13259	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	M18-Oc13259	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
		†							
Aroclor-1260	M18-Oc13259	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	

Duplicate									
Heavy Metals	T		1	Result 1	Result 2	RPD			
Arsenic	M18-Oc14106	CP	mg/kg	4.3	2.2	64	30%	Fail	Q15
Cadmium	M18-Oc14106	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M18-Oc14106	CP	mg/kg	13	10	21	30%	Pass	
Copper	M18-Oc14106	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	M18-Oc14106	CP	mg/kg	12	7.7	44	30%	Fail	Q15
Mercury	M18-Oc14106	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M18-Oc14106	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	M18-Oc14106	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M18-Oc14107	CP	mg/kg	5.5	5.9	6.0	30%	Pass	
Cadmium	M18-Oc14107	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	•
Chromium	M18-Oc14107	СР	mg/kg	11	11	1.0	30%	Pass	
Copper	M18-Oc14107	СР	mg/kg	15	15	1.0	30%	Pass	
Mercury	M18-Oc14107	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M18-Oc14107	CP	mg/kg	11	11	<1	30%	Pass	
Zinc	M18-Oc14107	CP	mg/kg	37	39	7.0	30%	Pass	
Duplicate	11110 0011101	<u> </u>	19,9	Ţ.	- 55		0070	1 400	
Total Recoverable Hydrocarbons	- 1999 NFPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M18-Oc14108	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M18-Oc14108	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M18-Oc14108	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M18-Oc14108	CP		< 50	< 50	<1	30%	Pass	
	W110-OC14106	L CF	mg/kg	< 50	< 30	<1	30%	Fass	
Duplicate				Daguit 4	D	DDD			
BTEX	M40 0 - 4 4400	0.0		Result 1	Result 2	RPD	000/	D	
Benzene	M18-Oc14108	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M18-Oc14108	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M18-Oc14108	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M18-Oc14108	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M18-Oc14108	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	M18-Oc14108	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate				1					
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions	T	Result 1	Result 2	RPD			
Naphthalene	M18-Oc14108	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M18-Oc14108	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	M18-Oc14108	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M18-Oc14108	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	M18-Oc14108	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbon	s			Result 1	Result 2	RPD			
Acenaphthene	M18-Oc10824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M18-Oc10824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M18-Oc10824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M18-Oc10824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M18-Oc10824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&i)fluoranthene	M18-Oc10824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M18-Oc10824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M18-Oc10824	NCP		< 0.5	< 0.5		30%	Pass	
· /			mg/kg	i	1	<1			
Chrysene Dibanz(a b)anthragens	M18-Oc10824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M18-Oc10824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M18-Oc10824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M18-Oc10824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M18-Oc10824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M18-Oc10824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate										
Polycyclic Aromatic Hydrocarbons	1		Result 1	Result 2	RPD					
Phenanthrene	M18-Oc10824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Pyrene	M18-Oc10824	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass		
Duplicate										
				Result 1	Result 2	RPD				
% Clay	M18-Oc01004	NCP	%	< 1	< 1	<1	30%	Pass		
Conductivity (1:5 aqueous extract at 25°C as rec.)	M18-Oc12370	NCP	uS/cm	650	610	6.7	30%	Pass		
pH (1:5 Aqueous extract at 25°C as rec.)	M18-Oc12370	NCP	pH Units	8.2	8.1	pass	30%	Pass		
Duplicate										
Result 1 Result 2 RPD										
% Moisture	M18-Oc14111	CP	%	12	12	6.0	30%	Pass		

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code	Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised By

N02

Nibha Vaidva Analytical Services Manager Chris Bennett Senior Analyst-Metal (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Jonathon Angell Senior Analyst-Inorganic (QLD) Joseph Edouard Senior Analyst-Organic (VIC) Julie Kav Senior Analyst-Inorganic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Imgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg be liable for consequential clamps including, but not limited to, lost profits, damages for infallure to meet deadlines and lost production arising from this report. This document shall be reported used except in full and retrietates only to the letters tested. Unless indicated otherwise, the tests were, the full are retrietations, the tests were indicated otherwise,

Appendix G Field Sheets

Project name: Peat Esland	Location: Berviace Ste	Well ID: MWO
Project number: ১ ৭৭১১	Just Clarke Sta	acion
Person sampling: 5C/CB/RG/RG	Sampling Date:	Weather: Fac

Casing Diameter (r	nm):	Depth to NAPL (mBTOC):
Well Completion:	(Flush Mount / Monument	Depth to SWL (mBTOC): 6-616
Well Cap Type:	Locking Cap/PVC// Other	NAPL Thickness (m):
Well Condition:	Godd / Compromised (see notes)	Depth to EoH (mbtoc): Q. 45
Calculated Well Vo	lume (L):	Water Column Depth (m):
Sampling Method:	Purge Volume: 4 Casings Vol. (L):	NAPL Visually Verified?
	Low Flow: Pump Submersion depth	(mBTOC):

Time	Volume Purged	Dissolved Oxygen	Temp.	рН	EC	ORP	Comments
	L	% □ mgĻ/ppm □	°C	pH units	S/cm	mV	include SWL for low flow (mBTOC)
12.50	0.5	7.8	22.3	3,97	455.1	116.8	turbide.
12.52	1.0	3.5	21.7	3.98	451.6	122.8	tı .
12.54	1.8	2.9	21.7	3.95	450.1	123.9	L
12.36	2.0	2.8	21.7	3.94	449.1	124.2	11
12.58	2.5	2.8	21.6	3.93	448.4	123.5	11
N: 00	3.0	3.0	21.6	3.90	448,5	122.2	1(
Acceptable Variation*		+/-10%	+/- 0.2 °C	+/-0.1 pH	+/-5%	+/-10mV	Results Acceptable: YES/ NO

LOW FLOW: Typical flow rate = 0.2- 0.4 L/min - Max. drawdown = 0.1 m - Well stable when 3 consecutive readings (either 3min apart or 1L apart) PURGE: Min. sampling volume is 4 casing volumes or dry twice - 1 casing volume (50mm wells) = 2 L/m - 1 casing volume (100mm wells) = 8 L/m

Clarity:		Sheen:	YES /(NO)
Colour:	Slightly tuibid.	Odour:	YES (NO)

U			
Primary sample ID:	MWOI	No.	Container / Preservative
Duplicate sample:	YES / NO ID:		
Triplicate sample:	YES / (NO) ID:		
Rinsate sample:	YES) NO ID:		
Sample on ice:	YES / NO		
Field Filter Method:	0.45μm Filter / Not Filtered		
Water Quality Meter:			
Guaging Equipment:			
Pump Type:			

Notes:

Calculated Well Volume (L) = Water Column Depth (m) * Conversion Factor (from table)

Casing Diameter	25mm	50mm	100mm	150mm	300mm
Conversion Factor	0.98	1.96	7.85	49.1	196.3

Volume of water in well (L) = Π * radius of gravel pack (m)² * height of water column (m)

^{*}SA EPA Guidelines (June 2007) as referenced in NEPM

Project name: Market Island

Project number: 54933

Person sampling: 5C

Location: Form
Service Studies

Well ID: MW_01

Service Studies

Weather:

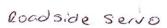
Casing Diameter (r	nm):	Depth to NAPL (mBTOC):		
Well Completion:	Flush Mount / Monument	Depth to SWL (mBTOC):5.546		
Well Cap Type:	Cocking Cap / PVS / Other	NAPL Thickness (m):		
Well Condition:	(Good / Compromised (see potes)	Depth to EoH (mbtoc): 9.324		
Calculated Well Volume (L):		Water Column Depth (m):~3.7m		
Sampling Method:	Purge Volume: 4 Casings Vol. (L):	NAPL Visually Verified?		
	Low Flow: Pump Submersion depth (mBTOC):			

Time	Volume Purged	Dissolved Oxygen	Temp.	рН	EC	ORP	Comments
	L	% □ mgL/ppm №	°C	pH units	<u>M</u> S/cm	mV	include SWL for low flow (mBTOC)
12:28	0.5	D. 82	22.0	3.96	420.7	92.7	clear.
12.29	1.0	0.44	21.4	4.03	416.3	70.8	
12:31	15	0.33	21.2	4.05	414.1	56.6	
12:33	2.0.	0.29	21.2	4.05	413.7	45.2	
12:35	2.5	0.25	21.2	4.05	414.4	43.0	
12:36	3.0	0.24	21.2	4.05	414.9	41.6.	
	3.5	0.26	21.2	4.05	415.7	42.0.	
Acceptable Variation*	SA STRUCTURE AND RESIDENCE AND RESIDENCE	+/-10%	+/- 0.2 °C	+/-0.1 pH	+/-5%	+/-10mV	Results Acceptable YES / NO

LOW FLOW: Typical flow rate = 0.2- 0.4 L/min - Max. drawdown = 0.1 m - Well stable when 3 consecutive readings (either 3min apart or 1L apart) PURGE: Min. sampling volume is 4 casing volumes or dry twice - 1 casing volume (50mm wells) = 2 L/m - 1 casing volume (100mm wells) = 8 L/m

Clarity:	Slight tuibidity	Sheen:	YES (NO)
Colour:	0	Odour:	YES / NO)

Primary sample ID:	MWOZ	No.	Container / Preservative
Duplicate sample:	YES / NO ID:		
Triplicate sample:	YES / 10 ID:		
Rinsate sample:	YES/NO ID:		
Sample on ice:	YES NO		
Field Filter Method:	0.45µm Filter / Not Filtered		
Water Quality Meter:			*
Guaging Equipment:			
Pump Type:			


Notes:

Calculated Well Volume (L) = Water Column Depth (m) * Conversion Factor (from table)

Casing Diameter	25mm	50mm	100mm	100mm 150mm		
Conversion Factor	0.98	1.96	7.85	49.1	196.3	

Volume of water in well (L) = \prod * radius of gravel pack (m)² * height of water column (m)

^{*}SA EPA Guidelines (June 2007) as referenced in NEPM

Project name: Peat Island	Location: Well ID: QLW QW
Project number: 54933	service station north west. MW-03
Person sampling: RL RA JC	Sampling Date: 28.9.18 Weather:

Casing Diameter (r	nm):	Depth to NAPL (mBTOC):		
Well Completion:	Flush Mount / Monument	Depth to SWL (mBTOC): 5.673		
Well Cap Type:	Locking Cap / PVC / Other	NAPL Thickness (m):		
Well Condition:	Good / Compromised (see notes)	Depth to EoH (mbtoc): 9.074		
Calculated Well Vo	lume (L):	Water Column Depth (m): 5. 40		
Sampling Method: Purge Volume: 4 Casings Vol. (L):		NAPL Visually Verified?		
	Low Flow: Pump Submersion depth	(mBTOC):		

Time	Volume Purged	Dissolved Oxygen	Temp.	рН	EC	ORP	Comments
	L	% □ mgL/ppm ☑	°C	pH units	S/cm	mV	include SWL for low flow (mBTOC)
12:04	0.5	1.36	19.8	3.74	380,6	1395	clear.
12:05	1.0	1.04	19.2	3.69	3795	145.1	
12:06	1.5	0.77	19.7	3.64	377.1	153.0	
12:07	2.0	0.69	19.1	3.60	377.8	157.2	
12:08	2.5	0.63	19.1	3.56	386.8	145.6	
12:10	3.0	0.56	19.1	3.54	406.3	140.4	
12:11	3.5	0,60	19.1	3.52	407.2	140.4	
12:12	4.0	0.61	19.0	3.54	392.6	139-4	
12:14	4.5	0.59	19.0	3.54	396.7	127.6	
12:15	5.0	0.59	19.0	3.54	398.7	126.2.	
Acceptable Variation*	WAR SHOOM AND THE SHOOM	+/-10%	+/- 0.2 °C	+/-0.1 pH	+/-5%	+/-10mV	Results Acceptable: YES/ NO

LOW FLOW: Typical flow rate = 0.2- 0.4 L/min - Max. drawdown = 0.1 m - Well stable when 3 consecutive readings (either 3min apart or 1L apart)

PURGE: Min. sampling volume is 4 casing volumes or dry twice - 1 casing volume (50mm wells) = 2 L/m - 1 casing volume (100mm wells) = 8 L/m

Clarity:	clear.	Sheen:	YES /(NO)
Colour:		Odour:	YES (NO)

Primary sample ID:	MW03	No.	Container / Preservative
Duplicate sample:	YES / NO ID:		
Triplicate sample:	YES (NO ID:		
Rinsate sample:	YES NO ID:		
Sample on ice:	YES NO		
Field Filter Method:	0.45µm Filter / Not Filtered		
Water Quality Meter:			
Guaging Equipment:			
Pump Type:			

Notes:

Calculated Well Volume (L) = Water Column Depth (m) * Conversion Factor (from table)

Casing Diameter	25mm	50mm	100mm	150mm	300mm
Conversion Factor	0.98	1.96	7.85	49.1	196.3

Volume of water in well (L) = Π * radius of gravel pack (m)² * height of water column (m)

^{*}SA EPA Guidelines (June 2007) as referenced in NEPM

Project name: Part 1s/and Location: Well ID: GW-01 Project number: 544933 SW landry Person sampling: Sampling Date: 28.9.14 Weather: Fine

Casing Diameter (mm): Depth to NAPL (mBTOC): Well Completion: Flush Mount / Monument Depth to SWL (mBTOC): Well Cap Type: Cocking Cap / PVC / Other NAPL Thickness (m): **Well Condition:** Good / Compromised (see notes) Depth to EoH (mbtoc): 2.783 Calculated Well Volume (L): Water Column Depth (m): Sampling Method: Purge Volume: 4 Casings Vol. (L): **NAPL Visually Verified?** Low Flow: Pump Submersion depth (mBTOC):

CANCEL CONTRACTOR CONT	Volume	Discolusion	THE PARTY OF THE	THE RESERVE OF THE PARTY OF THE			
Time	Purged	Dissolved Oxygen	Temp.	рН	EC	ORP	Comments
	L	% □ mgL/ppm ☑	°C	pH units	S/cm	mV	include SWL for low flow (mBTOC)
	0.5	17.94	20.9	5.72	894	-2.2	clear
	1.0	1.24	9.9	5.59	832	-14.0	esecer
	1.5	1.39	19.9	5.59	797	-18.0	,
	2.0	1.38	19.8	5.60	774	-22.9	
	2.5	1.33	19.8	5.59	766	-25.1	
	3.0	1.28	19.7	5.58	760	-293	
				- 22			
Acceptable							
Variation*		+/-10%	+/- 0.2 °C		+/-5%	+/-10mV	Results Acceptable: YES / NO

0.2- 0.4 L/min - Max. drawdown = 0.1 m - Well stable when 3 consecutive readings (either 3min apart or 1L apart)

PURGE: Min. sampling volume is 4 casing volumes or dry twice - 1 casing volume (50mm wells) = 2 L/m - 1 casing volume (100mm wells) = 8 L/m Clarity: Sheen: YES //NO/ Colour: Odour: YES / NO

Primary sample ID:	GWOI		No.	Container / D
Duplicate sample:	YÊŞ / NO	ID: 7QA 2019		Container / Preservative
Triplicate sample:	YES / NO	ID:	04728201	
Rinsate sample:	YES / NO	ID:		
Sample on ice:	YES / NO			
Field Filter Method:		ilter / Not Filtered		
Water Quality Meter:		, Hot Intered		
Guaging Equipment:				
Pump Type:				

Notes:

QA20180928-01 Calculated Well Volume (L) = Water Column Depth (m) * Conversion Factor (from table)

Casing Diameter 25mm 50mm 100mm 150mm 300mm Conversion Factor 0.98 1.96 7.85 49.1 196.3

Volume of water in well (L) = Π * radius of gravel pack (m)² * height of water column (m)

^{*}SA EPA Guidelines (June 2007) as referenced in NEPM

Project name: 59933

Project number: Peat Island

Person sampling: IC/RL

Location: Well ID: Gw02

NE Iand

Sampling Date: 28.9.18 Weather: File

Casing Diameter (mm):

Well Completion: Flush Mount / Monument

Well Cap Type: Locking Cap / PVC / Other

Well Condition: Good / Compromised (see notes)

Calculated Well Volume (L):

Sampling Method: Purge Volume: 4 Casings Vol. (L):

Depth to NAPL (mBTOC):

NAPL Thickness (m):

Depth to EoH (mbtoc): 4.882

Water Column Depth (m):

NAPL Visually Verified?

Low Flow: Pump Submersion depth (mBTOC):

Time	Volume Purged	Dissolved Oxygen	Temp.	рН	EC	ORP	Comments
	L	% 🔲 mgL/ppm 🔲	°C	pH units	S/cm	mV	include SWL for low flow (mBTOC)
1.20	0.5	4.78	18.9	4.64	300.3	82.5	slightly turbide
1.22	1.0	4.74	18.3	4.41	297.9	93-5	"11"
1.23	1.5	4.75	17.9	4.11	296.2	97.4	11
1.25	20	4.69	17.8	4.11	296.3	96.1	11
1.27	2.5	4.70	17.8	4.10	296.2	93.9	1,
	S.						
Acceptable Variation*		+/-10%	+/- 0.2 °C	+/-0.1 pH	+/-5%	+/-10mV	Results Acceptable: YES/ NO

LOW FLOW: Typical flow rate = 0.2- 0.4 L/min - Max. drawdown = 0.1 m - Well stable when 3 consecutive readings (either 3min apart or 1L apart) PURGE: Min. sampling volume is 4 casing volumes or dry twice - 1 casing volume (50mm wells) = 2 L/m - 1 casing volume (100mm wells) = 8 L/m

Clarity:	Slight tubid-Cloar	Sheen:	YES / NO
Colour:		Odour:	YES / NO

Primary sample ID:	ALCW07	No.	Container / Preservative
Duplicate sample:	YES / NO ID:		
Triplicate sample:	YES / NO ID:		
Rinsate sample:	YES / NO ID:		
Sample on ice:	YES / NO		
Field Filter Method:	0.45 m Filter / Not Filtered		
Water Quality Meter:			
Guaging Equipment:			
Pump Type:			

Notes:

Calculated Well Volume (L) = Water Column Depth (m) * Conversion Factor (from table)

Casing Diameter	25mm	50mm	100mm	150mm	300mm
Conversion Factor	0.98	1.96	7.85	49.1	196.3

Volume of water in well (L) = \prod * radius of gravel pack (m)² * height of water column (m)

^{*}SA EPA Guidelines (June 2007) as referenced in NEPM

Project name: Part Island	Location:	Well ID: GW_03
Project number: 54933		service Station North. Ro
Person sampling: JC	Sampling Date: 28 9.18	Weather: tim

Casing Diameter (n	nm);	Depth to NAPL (mBTOC):	
Well Completion:	Flush Mount / Monument	Depth to SWL (mBTOC): 5.84	
Well Cap Type:	Locking Cap / Nother	NAPL Thickness (m):	
Well Condition:	Good / Compromised (see notes)	Depth to EoH (mbtoc): 4.50	
Calculated Well Volume (L):		Water Column Depth (m): $\sim 3.7_m$	
Sampling Method:	Purge Volume: 4 Casings Vol. (L):	NAPL Visually Verified?	
	Low Flow: Pump Submersion depth (mBTOC):		

Time	Volume Purged	Dissolved Oxygen	Temp.	рН	EC	ORP	Comments
	L	% □ mgL/ppm ☑	°C	pH units	<u></u> ∠∠S/cm	mV	include SWL for low flow (mBTOC)
11:25	1	MM 3.68	20.4	4.93	609	21.9	slightly turbid.
1127	2	3.53	20.1	4.91	610	17.7	1'
1128	3	3-45	20.0	4.89	553	19.5	· (
11:29	4 3.1	BURG	20.0	4.85	608	16.2	q.
11:30	5	3.00	20.0	4686.	606	17.4	
11:32	C	2.95	20.0	4.88	603	17.5	
11:33	5	2.97	20.0	4.87	606	17.3	上
							,
Acceptable Variation*		+/-10%	+/- 0.2 °C	+/-0.1 pH	+/-5%	+/-10mV	Results Acceptable: YES / NO

LOW FLOW: Typical flow rate = 0.2- 0.4 L/min - Max. drawdown = 0.1 m - Well stable when 3 consecutive readings (either 3min apart or 1L apart) PURGE: Min. sampling volume is 4 casing volumes or dry twice - 1 casing volume (50mm wells) = 2 L/m - 1 casing volume (100mm wells) = 8 L/m

Clarity:	5/19	+ turbid	Sheen:	YES / NO
Colour:		aear-610	Un Odour:	YES / NO
Primary sam	ple ID:	6WQ3	No.	Container / Preservative
	nple:	YES / (NO) ID:		

Primary sample ID:	6WQ3	No.	Container / Preservative
Duplicate sample:	YES / NO ID:		
Triplicate sample:	YES / NO ID:		
Rinsate sample:	YES / NO ID:		
Sample on ice:	YES / NO		
Field Filter Method:	0.45µm Filter / Not Filtered		
Water Quality Meter:			
Guaging Equipment:			
Pump Type:			

Notes:

Calculated Well Volume (L) = Water Column Depth (m) * Conversion Factor (from table)

Casing Diameter	25mm	50mm	100mm	150mm	300mm
Conversion Factor	0.98	1.96	7.85	49.1	196.3

Volume of water in well (L) = Π * radius of gravel pack (m)² * height of water column (m)

^{*}SA EPA Guidelines (June 2007) as referenced in NEPM

Project name: /Pan Location: S Bridge Well ID: Project number: 549 Island Person sampling: Sampling Date: 28 9.18 Weather:

Casing Diameter (mm): Depth to NAPL (mBTOC): Well Completion: Flush Mount / Monument Depth to SWL (mBTOC): 1.061 Well Cap Type: Locking Cap / PVC / Other NAPL Thickness (m): **Well Condition:** Good/ Compromised (see notes) Depth to EoH (mbtoc): ヨ・403 Calculated Well Volume (L): Water Column Depth (m): \sim 2 .4 $_{m}$ Sampling Method: Purge Volume: 4 Casings Vol. (L): **NAPL Visually Verified?** Low Flow: Pump Submersion depth (mBTOC):

Time	Volume Purged	Dissolved Oxygen	Temp.	рН	EC	ORP	Comments
	L	% □ mgL/ppm 🛣	°C	pH units	₩S/cm	mV	include SWL for low flow (mBTOC)
14:12 14:13 14:14 14:15	0.5 1.0 1.5 2.0 2.5	2.35 2.24 2.69 1.94	17.9 17.9 17.9 17.9	5.48 5.38 5.36 5.34	31153 31049 31010	-29.0 -31.0 -32.8 -34.3 -33.8	Clear.
14:16	3.0	1.85	17.8	5.33		- 33.3	
Acceptable Variation*		+/-10%	+/- 0.2 °C		+/-5%		

L/min - Max. drawdown = 0.1 m - Well stable when 3 consecutive readings (either 3min apart or 1L apart)PURGE: Min. sampling volume is 4 casing volumes or dry twice - 1 casing volume (50mm wells) = 2 L/m - 1 casing volume (100mm wells) = 8 L/m

Clarity: Sheen: YES NO Colour: Odour: YES /(NO)

Primary sample ID:	CW04	No.	Container / P
Duplicate sample:	YES / NO ID:	140.	Container / Preservative
Triplicate sample:	YES (NO) ID:		
Rinsate sample:	YES NO ID:		
Sample on ice:	YESV NO		
Field Filter Method:	0.45µm Filter / Not Filtered		
Water Quality Meter:	tot y not intered		
Guaging Equipment:			
Pump Type:			

Notes:

Calculated Well Volume (L) = Water Column Depth (m) * Conversion Factor (from table)

Casing Diameter	25mm	50mm	100mm	150mm	300mm
Conversion Factor	0.98	1.96	7.85	49.1	196.3
	the second secon	A STATE OF THE PARTY OF THE PAR	The state of the s	13.1	190.3

Volume of water in well (L) = $\Pi * \text{radius of gravel}$ pack (m)² * height of water column (m)

^{*}SA EPA Guidelines (June 2007) as referenced in NEPM

Project name: Peat 15

Project number: 54933

Person sampling:

Location: S Island Well ID: Quo S

Sampling Date: 28.9.18 Weather: Fire

Casing Diameter (r	nm):	Depth to NAPL (mBTOC):				
Well Completion:	Flush Mount / Monument	Depth to SWL (mBTOC): 1.290				
Well Cap Type:	Locking Cap / PVC / Other	NAPL Thickness (m):				
Well Condition:	Good / Compromised (see notes)	Depth to EoH (mbtoc): 3.382				
Calculated Well Vo	lume (L):	Water Column Depth (m):				
Sampling Method:	Purge Volume: 4 Casings Vol. (L):	NAPL Visually Verified?				
	Low Flow: Pump Submersion depth ((mBTOC):				

Time	Volume Purged	Dissolved Oxygen	Temp.	рН	EC	ORP	Comments
	L	% □ mgL/ppm ☑	°C	pH units	S/cm	mV	include SWL for low flow (mBTOC)
2:30	0.5	23 6236	19.1	5.42	38842	10-7	turbid brown
2:35	1.0	1.43	17.9	5.44	3 8494	2.1	
2:40	1.5	1.17	17. 7	5-37	38494	-5.9	
2:45	0,0	192,4	17.5	5.38	33501	-17-1	
2:50	2.5	12-1	17.5	5.40	38490	-17.5	
2:55	3,0	11.7	17.5	5.38	38491	47.J	
			1				
				CARDO CONTRACTOR DE CONTRACTOR			
Acceptable Variation*		+/-10%	+/- 0.2 °C	+/-0.1 pH	+/-5%	+/-10mV	Results Acceptable: YES / NO

LOW FLOW: Typical flow rate = 0.2- 0.4 L/min - Max. drawdown = 0.1 m - Well stable when 3 consecutive readings (either 3min apart or 1L apart) PURGE: Min. sampling volume is 4 casing volumes or dry twice - 1 casing volume (50mm wells) = 2 L/m - 1 casing volume (100mm wells) = 8 L/m

Clarity:	Clear - brown	Sheen:	YES / NO
Colour:		Odour:	YES / NO

Primary sample ID:	CW05	No.	Container / Preservative
Duplicate sample:	YES (NO) ID:		
Triplicate sample:	YES / NO ID:		
Rinsate sample:	YES / NO ID:		
Sample on ice:	YES NO		
Field Filter Method:	0.45µm Filter / Not Filtered		
Water Quality Meter:			
Guaging Equipment:			
Pump Type:			

Notes:

Calculated Well Volume (L) = Water Column Depth (m) * Conversion Factor (from table)

Casing Diameter	25mm	50mm	100mm	150mm	300mm
Conversion Factor	0.98	1.96	7.85	49.1	196.3

Volume of water in well (L) = Π * radius of gravel pack (m)² * height of water column (m)

^{*}SA EPA Guidelines (June 2007) as referenced in NEPM

Appendix H Statistical Assessment

4	A B C	D E UCL Statis	F tics for Unce	G ensored Full D	H ata Sets	ı	J	K	L
1									
2	User Selected Options	5							
3	Date/Time of Computation	ProUCL 5.116/10/2018 4	:56:12 PM						
4	From File	Lead - Peat Island.xls							
5	Full Precision	OFF							
6	Confidence Coefficient	95%							
7	Number of Bootstrap Operations	2000							
8	Number of Bootstrap Operations	2000							
9									
10	Lead								
11	Leau								
12			General	Statiation					
13	Tata	I Number of Observations	81	Statistics		Niversia	u of Diotinot (Observations	51
14	Tota	i Number of Observations	81						
15			_			Numbe	r or ivilssing v	Observations	4
16		Minimum	5					Mean	49.09
17		Maximum	530					Median	20
18		SD	81.16				Std. E	Error of Mean	9.018
19		Coefficient of Variation	1.653					Skewness	3.825
20									
21			Normal G	OF Test					
22		Shapiro Wilk Test Statistic	0.551			Shapiro Wi	lk GOF Test		
23		5% Shapiro Wilk P Value	0		Data Not	Normal at	5% Significa	nce Level	
24		Lilliefors Test Statistic	0.303			Lilliefors	GOF Test		
25	Ę	5% Lilliefors Critical Value	0.0985		Data Not	Normal at	5% Significa	nce Level	
26		Data Not	Normal at 5	% Significance	e Level				
27									
28		Ass	suming Norn	nal Distributior	า				
29	95% N	ormal UCL			95%	UCLs (Adju	sted for Ske	wness)	
30		95% Student's-t UCL	64.09		9	95% Adjuste	ed-CLT UCL	(Chen-1995)	68.01
31						95% Modifi	ed-t UCL (Jo	hnson-1978)	64.73
32									
33			Gamma (GOF Test					
34		A-D Test Statistic	4.738		Anders	on-Darling	Gamma GO	F Test	
35		5% A-D Critical Value	0.789	Dat	a Not Gamı	ma Distribu	ted at 5% Sig	gnificance Lev	əl
		K-S Test Statistic	0.2				v Gamma G	-	
36 37		5% K-S Critical Value	0.103	Dat				gnificance Lev	el
		Data Not Gamn							
38			12						
39			Gamma	Statistics					
40		k hat (MLE)	0.852			k	star (bias co	rrected MLE)	0.829
41		Theta hat (MLE)	57.59				•	rrected MLE)	59.21
42		nu hat (MLE)	138.1				•	as corrected)	134.3
43	N.	ILE Mean (bias corrected)	49.09				,	as corrected)	53.91
44	IVI	moan (blue conceted)	.5.55		/	Annrovimate	•	Value (0.05)	108.5
45	Vdin	sted Level of Significance	0.047					Square Value	108.3
46	Auju	Sica Level of Significance	0.047			A	ajusi c u OIII (Adams value	100.1
47		٨٥٥	umina Com	ma Distributio	<u> </u>				
48	0E0/ Approxima -+- 0		60.74	טווטטווטטוט טוע מווס		uotod O - ··	ma LICI /···	whon = 250	60.00
49	95% Approximate Gamm	a UCL (use when n>=50))	ου./4		95% Adj	usiea Gam	ına UCL (US	e when n<50)	60.98
50			1 ac	00F T					
51		District Mark To the state of	Lognormal	GUF Test	<u> </u>	18711: 1		· T4	
52		Shapiro Wilk Test Statistic	0.926		Shapi	Iro Wilk Log	normal GOF	· i est	

	Α	В	С	D	E	F	G	Н		J	K	L	
53				5% Shapiro \						5% Significa			
54					est Statistic				_	rmal GOF Te			
55			ţ	5% Lilliefors C		0.0985							
56					Data Not L	ognormal at	5% Significa	nce Level					
57													
58						Lognorma	Statistics						
59				Minimum of I							ogged Data	3.203	
60				Maximum of L	ogged Data	6.273	SD of logged Data 1.07						
61													
62	Assuming Lognormal Distribution												
63					95% H-UCL	57.4				Chebyshev (M	,	61.85	
64				Chebyshev (•	70.33			97.5% (Chebyshev (M	IVUE) UCL	82.1	
65			99%	Chebyshev (MVUE) UCL	105.2							
66													
67	Nonparametric Distribution Free UCL Statistics												
68				[Data do not f	ollow a Disce	ernible Distrib	oution (0.05)					
69													
70						rametric Dist	ribution Free	UCLs					
71					% CLT UCL	63.92					kknife UCL	64.09	
72				6 Standard Bo	-						strap-t UCL	73.47	
73			!	95% Hall's Bo	•	80.85			95% F	Percentile Boo	otstrap UCL	65.08	
74				95% BCA Bo	•	68.31							
75				hebyshev(Me		76.14				ebyshev(Mea	,	88.39	
76			97.5% C	hebyshev(Me	an, Sd) UCL	105.4			99% Ch	ebyshev(Mea	n, Sd) UCL	138.8	
77													
78						Suggested	UCL to Use						
79			95% Ch	nebyshev (Me	an, Sd) UCL	88.39							
80													
81		Note: Sugge	estions regar	ding the selec	tion of a 95%	6 UCL are pr	ovided to hel	p the user to	select the m	nost appropria	ate 95% UC	L.	
82				Recommenda		•	•						
83				ns are based ι					_				
84	Н	owever, simu	ulations resu	Its will not cov	er all Real W	/orld data se	ts; for additio	nal insight tl	he user may	want to consu	ılt a statistic	ian.	
85													

Appendix I QA/QC Assessment

QA/QC Results - Soil

The QA/QC result for soil samples collected are summarised in **Table I.1** and discussed below. Detailed QA/QC results are included following the discussion of DQI exceedances below.

Table I.1: QA/QC Results Summary - Soil

Data Quality Indicator	Results	DQO met?
Precision		
Blind duplicates (intra laboratory)	0-75 % RPDs Intra laboratory samples were analysed at a rate greater than 1 in 20 samples.	Partial ¹
Blind duplicates (inter laboratory)	0-143 % RPDs Inter laboratory were analysed at a rate greater than 1 in 20 samples.	Partial ¹
Laboratory duplicates	0-65 % RPD Laboratory samples were analysed in accordance with the DQOs.	Partial ¹
Accuracy		
Laboratory control samples (LCS)	63-137 % recovery	Yes
Surrogate spikes	21-184 % recovery Surrogate spikes were completed for all organic sample analyses	Partial ¹
Matrix spikes	52-142 % recovery Matrix spikes were completed at a suitable density with respect to laboratory batch size and sample analyses.	Partial ¹
Representativeness		
Samples extracted and analysed within holding times	All primary and duplicate samples were extracted within appropriate holding times.	Partial ¹
Sampling appropriate for media and analytes	Samples were collected using appropriate methodology with regard to the sample media (soil and groundwater) and analytes (volatile, semi-volatile and low volatility organics and inorganics)	Yes
Trip spike	70-130% recovery One completed per sampling event and associated laboratory batch	Yes
Trip blank	<lor< p=""> One completed per sampling event and associated laboratory batch</lor<>	Yes
Rinsate blank	<lor all="" analytes="" blanks.<="" for="" in="" most="" p="" rinsate=""> One completed per sampling event and associated laboratory batch</lor>	Partial ¹
Laboratory Blank	<lor< p=""> One completed per sampling event and associated laboratory batch</lor<>	Yes
Standard operating procedures used for sample collection and handling	Standard operating procedures used as described in JBS&G SAQP (2018) employed for all sampling events and samples collected	Yes
Comparability		
Standard analytical methods used for all analyses	Standard analytical methods used as shown in Appendix F	Yes
Consistent field conditions, field staff and laboratories	Sampling was conducted by the same field staff members. Standard operating procedures were implemented throughout the works. Field conditions remained the same throughout the works.	Yes
Limits of reporting appropriate and consistent	Limits of reporting were consistent and appropriate	Yes
Completeness		
Soil description and COCs completed and appropriate	All field documentation and COCs were completed appropriately.	Yes
Appropriate documentation	All field documentation was appropriately completed.	Yes

Data Quality Indicator	Results	DQO met?
Satisfactory frequency and result for QC samples	The QC results are considered adequate for the purposes of the investigation	Yes
Data from critical samples	Samples were analysed at locations designed to address the requirements of the investigation. All critical samples were analysed for appropriate contaminants of concern and the QA/QC assessment confirmed the reliability of this data.	Yes
Sensitivity		
Analytical methods and limits of recovery appropriate for media and adopted site assessment criteria	Analytical methods and limits of recovery were considered appropriate for media and adopted site validation criteria for all soil analytes.	Yes

Notes: 1. See discussion below for notes

Precision

Soil Blind Duplicates (intra-laboratory)

The rate of duplicate soil sampling and analysis was 1 duplicate per 20 primary samples. As such, the frequency of duplicate sample analysis for all key contaminants of concern met the nominated DQI frequency.

Generally, all results were below the LOR. Soil RPDs were calculated according to the NEPC (2013) guidelines and fell within the JBS&G acceptable limit (0-50%), with the exception of some TPH results, reporting recoveries outside the nominated DQI; ranging from 0 to 75%. A summary of RPD calculations for identified COPCs is provided as **Appendix I.** High RPDs in the soil blind duplicate sample can be expected when materials are heterogeneous and/or when analyte concentrations are close to LOR. Therefore, the elevated RPDs are considered not to affect the overall precision of the data set.

Soil Split Duplicates (inter-laboratory)

The rate of soil split duplicate sampling and analysis was 1 triplicate per 20 primary samples. As such, the frequency of triplicate sample analysis for all key contaminants of concern met the nominated DQI frequency.

Some soil blind duplicate RPDs were reported outside of the nominated DQIs and JBS&G acceptable limits, with RPDs ranging from 0 to 143%. Generally, the reported concentrations are within 10x the laboratory limit of reporting, and therefore any RPD is acceptable. Additionally, the RPDs for the inter-laboratory duplicates are considered to be the result of heterogeneity in the material sampled. The elevated RPD results are considered not to have adversely affected the data set for the purpose of making decisions identified in **Section 5.1.2**. As a conservative measure the highest concentration for the inter-laboratory duplicate pairs has been used for this assessment.

Laboratory Duplicates

The rate of laboratory duplicate analysis was within the JBS&G acceptance criteria of 1 per 20 primary samples. As such, the frequency of duplicate sample analysis for all key contaminants of concern met the nominated DQI frequency.

Laboratory duplicate RPDs are generally within the JBS&G acceptable criteria. Those noted outside of these limits pass the laboratory acceptance criteria (concentrations are within 10x the laboratory limit of reporting and therefore any RPD is acceptable). This is not considered to affect the reliability of the data.

Accuracy

Laboratory Control Samples

Some laboratory spike control (LCS) samples reported recoveries outside of the JBS&G acceptable range of 70 - 130 %.

However, LCS recoveries outside of the target range are not considered to affect the overall reliability of the data set as concentrations in characterisation samples were below the laboratory's LOR and within the laboratories NATA accredited limits (30%-130%).

Surrogate Spikes

Soil surrogate spikes were conducted in conjunction with organic contaminant analysis of all samples. Some surrogate spikes reported recoveries outside of the JBS&G acceptable range of 70 – 130 %.

However, the surrogate spike recoveries outside of the target range are not considered to affect the overall reliability of the data set as concentrations in characterisation samples were below the laboratory's LOR and within the laboratories NATA accredited limits (50%-150%).

Matrix Spikes

Soil matrix spikes were conducted in conjunction with organic contaminant analysis of all samples. Some matrix spikes reported recoveries outside of the JBS&G acceptable range of 70 - 130 %.

However, the soil matrix spike recoveries outside of the target range are not considered to affect the overall reliability of the data set as recoveries were within the range accepted by the laboratory.

Sampling appropriate for media and analytes

All sampling works completed during the investigation were conducted in accordance with JBS&G standard operating procedures as outlined in the Sampling, Analysis, and Quality Plan prepared for the assessment. Sample locations were undertaken for the purposes of visual inspection and/or olfactory assessment of fill/soil conditions and the collection of samples was considered appropriate for identified COPC.

Where soil samples were collected for PFAS analysis, the samples were collected with the use of a hand shovel. The shovel was decontaminated between sampling points with the use of PFAS free detergent. No sticker or labels were located on the shovel. Samples were collected with a fresh pair of PFAS free disposable gloves. Sample identification numbers were completed on the PFAS appropriate jars with the use of a ball point pen.

All samples were collected wearing a new pair of disposable nitrile gloves and collected from the centre of the excavator bucket, avoiding contact with the sides.

Holding Times

Copies of Sample Receipt Notes (SRNs) are included in relevant sections of the report (**Appendix F**) and sample extraction/analysis dates were reported in each laboratory report. All groundwater sample analyses were undertaken within appropriate holding times for the respective analytes. The majority of the soil analysis was completed within appropriate holding times. Analysis completed outside of holding times are not considered to impact the outcome of the assessment as no field indicators (odours, observations and PID readings) were observed to indicate the likely presence of impacted soils. All samples were stored within refrigerators at appropriate low temperatures at the laboratory which would minimise the potential for any volatile loss or degradation. As such, it is considered that the analysis completed outside of holding times would not impact the outcome of this investigation.

Trip Spike

A trip spike was submitted with characterisation samples collected during each sampling event. All trip spike recoveries were within the JBS&G acceptable limit of 70-130 %.

Storage Blank

A storage blank was carried during all soil and groundwater sampling events and was submitted with each lab batch, meeting the overall nominated frequency thresholds. There were no reported concentrations of BTEX compounds above the laboratory LOR, achieving the nominated DQIs.

Rinsate Blank

Rinsate samples were prepared during the sampling events and subsequently submitted with the appropriate lab batch for analysis of key contaminants of concern. Generally, all analytes reported concentrations below the laboratory LOR, with the exception of Zinc (filtered) in rinsate samples collected on 28 September 2018. Results are reported as minor exceedances of the LOR and are not considered to affect the overall reliability of the data.

Laboratory Blank

One Laboratory blank was completed per sampling event and analytes were all below the laboratory limit of reporting LOR.

All non-single use field equipment was decontaminated as per the procedure identified in **Section 5.2.1**

Experienced JBS&G personnel undertook all sampling in accordance with standard JBS&G sampling methods.

The laboratory LORs are consistent and are considered appropriate.

Comparability

Eurofins, the primary laboratory, and Envirolab, the secondary laboratory, were NATA accredited for all analytical methods used. The laboratories used similar analytical methods and the analytical data was considered to be comparable between the laboratories as indicated by the results of interlaboratory duplicate analyses. Where different LORs were adopted by the laboratories, the primary laboratory typically had a lower LOR than the secondary laboratory, and as such, consideration of the data set was not impacted.

Furthermore, the samples collected for assessment purposes are considered comparable as all samples were collected by experienced JBS&G personnel in accordance with standard JBS&G sampling methods.

Completeness

Documentation

All laboratory documentation is complete and correct. Chain of custody documentation is provided with laboratory reports in **Appendix F.**

Frequency for QA/QC Samples

QA/QC samples were collected at a frequency of 1 per 20 primary samples, meeting the sample frequency DQOs for all analyses including asbestos, heavy metals, TRH/BTEX, PAHs and OCPs/PCBs. The data set is considered complete and reliable.

QA/QC Results - Groundwater

The QA/QC result for groundwater samples collected are summarised in **Table I.2** and discussed below. Detailed QA/QC results are included following the discussion of DQI exceedances below.

Table I.2: QA/QC Results Summary - Groundwater

Table 112. Qry QC hesalts summary Groundwater					
Data Quality Indicator	Results	DQO met?			
Precision					
	0-67 % RPDs				
Blind duplicates (intra laboratory)	Intra laboratory samples were analysed at a rate greater than	Partial ¹			
	1 in 20 samples.				
Blind duplicates (inter laboratory)	0-100 % RPDs	Partial ¹			

Data Quality Indicator	Results	DQO met?
	Inter laboratory were analysed at a rate greater than 1 in 20	
	samples.	
	0-3 % RPD	
Laboratory duplicates	Laboratory samples were analysed in accordance with the	Yes
, ,	DQOs.	
Accuracy		
Laboratory control samples (LCS)	78-128 % recovery	Yes
(200)	77-127 % recovery	. 65
Surrogate spikes	Surrogate spikes were completed for all organic sample	Yes
Surrogate spines	analyses	163
	73-117 % recovery	
Matrix spikes	Matrix spikes were completed at a suitable density with	Yes
Matrix spikes	respect to laboratory batch size and sample analyses.	163
Representativeness	respect to laboratory batch size and sample analyses.	
•	All princers and distribute according to the extend within	
Samples extracted and analysed within	All primary and duplicate samples were extracted within	Yes
holding times	appropriate holding times.	
	Samples were collected using appropriate methodology with	
Sampling appropriate for media and	regard to the sample media (groundwater) and analytes	Yes
analytes	(volatile, semi-volatile and low volatility organics and	. 55
	inorganics)	
	70-130% recovery	
Trip spike	One completed per sampling event and associated laboratory	Yes
	batch	
	<lor< td=""><td></td></lor<>	
Trip blank	One completed per sampling event and associated laboratory	Yes
·	batch	
	<lor all="" analytes="" blanks.<="" for="" in="" most="" rinsate="" td=""><td></td></lor>	
Rinsate blank	One completed per sampling event and associated laboratory	Yes
	batch	. 55
	<lor< td=""><td></td></lor<>	
Laboratory Blank	One completed per sampling event and associated laboratory	Yes
Laboratory Diank	batch	1 53
	Standard operating procedures used as described in JBS&G	
Standard operating procedures used		Voc
for sample collection and handling	SAQP (2018) employed for all sampling events and samples collected	Yes
Name and Editor	collected	
Comparability		
Standard analytical methods used for	Standard analytical methods used as shown in Appendix F	Yes
all analyses		
	Sampling was conducted by the same field staff members.	
Consistent field conditions, field staff	Standard operating procedures were implemented	Yes
	throughout the works. Field conditions remained the same	103
and laboratories		
and laboratories	throughout the works.	
and laboratories Limits of reporting appropriate and	throughout the works.	Voc
	_	Yes
Limits of reporting appropriate and consistent	throughout the works.	Yes
Limits of reporting appropriate and consistent	throughout the works.	
Limits of reporting appropriate and consistent Completeness Groundwater description and COCs	throughout the works. Limits of reporting were consistent and appropriate	Yes
Limits of reporting appropriate and consistent Completeness Groundwater description and COCs completed and appropriate	throughout the works. Limits of reporting were consistent and appropriate All field documentation and COCs were completed appropriately.	Yes
Limits of reporting appropriate and consistent Completeness Groundwater description and COCs completed and appropriate Appropriate documentation	throughout the works. Limits of reporting were consistent and appropriate All field documentation and COCs were completed appropriately. All field documentation was appropriately completed.	
Limits of reporting appropriate and consistent Completeness Groundwater description and COCs completed and appropriate Appropriate documentation Satisfactory frequency and result for	throughout the works. Limits of reporting were consistent and appropriate All field documentation and COCs were completed appropriately. All field documentation was appropriately completed. The QC results are considered adequate for the purposes of	Yes
Limits of reporting appropriate and consistent Completeness Groundwater description and COCs completed and appropriate Appropriate documentation	throughout the works. Limits of reporting were consistent and appropriate All field documentation and COCs were completed appropriately. All field documentation was appropriately completed. The QC results are considered adequate for the purposes of the investigation	Yes Yes
Limits of reporting appropriate and consistent Completeness Groundwater description and COCs completed and appropriate Appropriate documentation Satisfactory frequency and result for	throughout the works. Limits of reporting were consistent and appropriate All field documentation and COCs were completed appropriately. All field documentation was appropriately completed. The QC results are considered adequate for the purposes of the investigation Samples were analysed at locations designed to address the	Yes Yes
Limits of reporting appropriate and consistent Completeness Groundwater description and COCs completed and appropriate Appropriate documentation Satisfactory frequency and result for	All field documentation and COCs were completed appropriately. All field documentation was appropriately completed. The QC results are considered adequate for the purposes of the investigation Samples were analysed at locations designed to address the requirements of the investigation. All critical samples were	Yes Yes
Limits of reporting appropriate and consistent Completeness Groundwater description and COCs completed and appropriate Appropriate documentation Satisfactory frequency and result for QC samples	All field documentation and COCs were completed appropriately. All field documentation was appropriately completed. The QC results are considered adequate for the purposes of the investigation Samples were analysed at locations designed to address the requirements of the investigation. All critical samples were analysed for appropriate contaminants of concern and the	Yes Yes Yes
Limits of reporting appropriate and consistent Completeness Groundwater description and COCs completed and appropriate Appropriate documentation Satisfactory frequency and result for QC samples Data from critical samples	All field documentation and COCs were completed appropriately. All field documentation was appropriately completed. The QC results are considered adequate for the purposes of the investigation Samples were analysed at locations designed to address the requirements of the investigation. All critical samples were	Yes Yes Yes
Limits of reporting appropriate and consistent Completeness Groundwater description and COCs completed and appropriate Appropriate documentation Satisfactory frequency and result for QC samples Data from critical samples	throughout the works. Limits of reporting were consistent and appropriate All field documentation and COCs were completed appropriately. All field documentation was appropriately completed. The QC results are considered adequate for the purposes of the investigation Samples were analysed at locations designed to address the requirements of the investigation. All critical samples were analysed for appropriate contaminants of concern and the QA/QC assessment confirmed the reliability of this data.	Yes Yes Yes
Limits of reporting appropriate and consistent Completeness Groundwater description and COCs completed and appropriate Appropriate documentation Satisfactory frequency and result for QC samples Data from critical samples Sensitivity Analytical methods and limits of	All field documentation and COCs were completed appropriately. All field documentation was appropriately completed. The QC results are considered adequate for the purposes of the investigation Samples were analysed at locations designed to address the requirements of the investigation. All critical samples were analysed for appropriate contaminants of concern and the QA/QC assessment confirmed the reliability of this data. Analytical methods and limits of recovery were considered	Yes Yes Yes
Limits of reporting appropriate and consistent Completeness Groundwater description and COCs completed and appropriate Appropriate documentation Satisfactory frequency and result for QC samples Data from critical samples	throughout the works. Limits of reporting were consistent and appropriate All field documentation and COCs were completed appropriately. All field documentation was appropriately completed. The QC results are considered adequate for the purposes of the investigation Samples were analysed at locations designed to address the requirements of the investigation. All critical samples were analysed for appropriate contaminants of concern and the QA/QC assessment confirmed the reliability of this data.	Yes Yes Yes

Notes: 1. See discussion below for notes

Precision

Groundwater Blind Duplicates (intra-laboratory)

The rate of duplicate groundwater sampling and analysis was 1 duplicate per 8 primary samples. As such, the frequency of duplicate sample analysis for all key contaminants of concern met the nominated DQI frequency.

Generally, all results were below the LOR. The RPDs were calculated according to the NEPC (2013) guidelines and fell within the JBS&G acceptable limit (0-50%), with the exception of copper (53%) and Zinc (67%) marginally above the adopted limit. A summary of RPD calculations for identified COPCs is provided as **Appendix I.** The review of the elevated RPDs are not considered to impact the outcome of the assessment as the RPDs were marginally outside the acceptable limit and the highest reported concentrations was within the primary sample.

Groundwater Split Duplicates (inter-laboratory)

The rate of split duplicate sampling and analysis was 1 triplicate per 8 primary samples. As such, the frequency of triplicate sample analysis for all key contaminants of concern met the nominated DQI frequency.

Generally, the reported concentrations are within the JBS&G acceptable limit with the exception of copper (100%), nickel (67%) and zinc (96%). The concentrations of copper and nickel were noted to be within 10x the laboratory limit of reporting. As a conservative measure the highest concentration for the inter-laboratory duplicate pairs has been used for this assessment. The elevated RPDs are not considered to impact the outcome of the assessment.

Laboratory Duplicates

The rate of laboratory duplicate analysis was within the JBS&G acceptance criteria of at least 1 per 20 primary samples. As such, the frequency of duplicate sample analysis for all key contaminants of concern met the nominated DQI frequency.

RPDs were considered to be appropriate for this assessment.

Accuracy

Laboratory Control Samples

All laboratory spike control (LCS) samples reported recoveries were reported within the JBS&G acceptable range of 70 - 130 %.

Surrogate Spikes

All surrogate spikes reported recoveries within the JBS&G acceptable range of 70 – 130 %.

Matrix Spikes

Matrix spikes were conducted in conjunction with organic contaminant analysis of all samples. All matrix spikes reported recoveries within the JBS&G acceptable range of 70 – 130 %.

Sampling appropriate for media and analytes

All sampling works completed during the investigation were conducted in accordance with JBS&G standard operating procedures as outlined in the Sampling, Analysis, and Quality Plan prepared for the assessment. Sample locations were undertaken for the purposes of visual inspection and/or olfactory assessment of fill/soil conditions and the collection of samples was considered appropriate for identified COPC.

All samples were collected wearing a new pair of disposable nitrile gloves and collected from the centre of the excavator bucket, avoiding contact with the sides.

Holding Times

All groundwater sample analyses were undertaken within appropriate holding times for the respective analytes.

Trip Spike

A trip spike was submitted with characterisation samples collected during each sampling event. All trip spike recoveries were within the JBS&G acceptable limit of 70-130 %.

Storage Blank

A storage blank was carried during the groundwater sampling event and was submitted with each lab batch, meeting the overall nominated frequency thresholds. There were no reported concentrations of BTEX compounds above the laboratory LOR, achieving the nominated DQIs.

Rinsate Blank

Rinsate samples were prepared during the sampling events and subsequently submitted with the appropriate lab batch for analysis of key contaminants of concern. Generally, all analytes reported concentrations below the laboratory LOR, with the exception of Zinc (filtered) in rinsate sample collected on 28 September 2018. As the zinc was identified within both rinsate samples collected on the same day, it is considered that the source of the zinc was the rinsate water. It is considered unlikely that the presence of zinc within the rinsate would cross contaminate the equipment at a concentration that would alter the outcome of the assessment. As such, the presence of zinc within the rinsate water is not considered to impact the outcome of the assessment.

Laboratory Blank

One Laboratory blank was completed per sampling event and analytes were all below the laboratory limit of reporting LOR.

All non-single use field equipment was decontaminated as per the procedure identified in **Section 5.2.1**.

Experienced JBS&G personnel undertook all sampling in accordance with standard JBS&G sampling methods.

The laboratory LORs are consistent and are considered appropriate.

Comparability

Eurofins, the primary laboratory, and Envirolab, the secondary laboratory, were NATA accredited for all analytical methods used. The laboratories used similar analytical methods and the analytical data was considered to be comparable between the laboratories as indicated by the results of interlaboratory duplicate analyses. Where different LORs were adopted by the laboratories, the primary laboratory typically had a lower LOR than the secondary laboratory, and as such, consideration of the data set was not impacted.

Furthermore, the samples collected for assessment purposes are considered comparable as all samples were collected by experienced JBS&G personnel in accordance with standard JBS&G sampling methods.

Completeness

Documentation

All laboratory documentation is complete and correct. Chain of custody documentation is provided with laboratory reports in **Appendix F.**

Frequency for QA/QC Samples

QA/QC samples were collected at a frequency of 1 per 8 primary samples, meeting the sample frequency DQOs for all analyses including heavy metals, TRH/BTEX and PAHs. The data set is considered complete and reliable.

Assessment of QA/QC

The field sampling and handling procedures produced QA/QC results which indicate that the collected soil analytical data are of an acceptable quality and suitable for use with respect to characterisation of the assessment area.

The NATA certified laboratory results sheets indicate that the project laboratory was generally achieving levels of performance within its recommended control limits during the period when the samples for this project were analysed.

On the basis of the results of the field and laboratory QA/QC program, the soil data is of an acceptable quality in order to achieve the objectives of the assessment.

Appendix J Calibration Records

PROJECT NAME: Peat Island
PROJECT NO: 54933

FIELD DATES: 18/9/18.

FIELD STAFF: CB

CALIBRATION SUMMARY

EQUIPMENT: PID

CALIBRATION STANDARD: 100 130 Ppm.

DATE	TIME	READING (ppm _v)	COMMENTS
18.9.18	7:19	99.8	lal passed

DECONTAMINATION SUMMARY			
EQUIPMENT: Nil 1eusable.			
1. Was the equipment decontaminated appropriately prior to sampling at each location?	Υ	N	NA
2. Was excess soil removed by scraping, brushing or wiping with disposable towels?	Υ	N	NA
3. Was the equipment contaminated with grease, tar or similar material? If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane?	Y Y	N N	NA
4. Was phosphate-free detergent used to wash the equipment?	Υ	N	NA
5. Was the equipment rinsed with clean water?	Υ	N	NA
6. Was the equipment then rinsed with deionised water?	Υ	N	NA
7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?	Υ	N	NA
were any additional decontamination measures required? provide details. Fiesh nitile gloves at each location			

PROJECT NAME: feat /s/and PROJECT NO: 54933

FIELD DATES: 19/9/18

FIELD STAFF: CB

CALIBRATION SUMMARY	
EQUIPMENT: PID	
CALIBRATION STANDARD: 100 150 ppm	

DATE	TIME	READING (ppm _v)	COMMENTS
19/9/18	8.00	99.9	Calibration possed

DECONTAMINATION SUMMARY			
EQUIPMENT: / Nevsable_			
1. Was the equipment decontaminated appropriately prior to sampling at each location?	Υ	N	NA
2. Was excess soil removed by scraping, brushing or wiping with disposable towels?	Υ	N	NA
3. Was the equipment contaminated with grease, tar or similar material? If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane?	Y Y	N N	NA
4. Was phosphate-free detergent used to wash the equipment?	Υ	N	NA
5. Was the equipment rinsed with clean water?	Y	N	NA
6. Was the equipment then rinsed with deionised water?	Υ	N	NA
7. Were all sample containers cleaned and acid or solvent washed prior to sample collection?	Y	N	NA
WERE ANY ADDITIONAL DECONTAMINATION MEASURES REQUIRED? PROVIDE DETAILS.	Sparry,		
Fresh nitrite gloves per sample/10 catio.			

Peat Island PROJECT NAME: PROJECT NO: FIELD DATES: FIELD STAFF: **CALIBRATION SUMMARY** EQUIPMENT: PID CALIBRATION STANDARD: 100 150 ppm DATE TIME READING (ppm_v) COMMENTS **DECONTAMINATION SUMMARY EQUIPMENT:** 1. Was the equipment decontaminated appropriately prior to sampling at each location? Ν NA 2. Was excess soil removed by scraping, brushing or wiping with disposable towels? Ν NA 3. Was the equipment contaminated with grease, tar or similar material? If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane? NA 4. Was phosphate-free detergent used to wash the equipment? NA 5. Was the equipment rinsed with clean water? NA 6. Was the equipment then rinsed with deionised water? Ν 7. Were all sample containers cleaned and acid or solvent washed prior to sample collection? The Supplied NA NA" WERE ANY ADDITIONAL DECONTAMINATION MEASURES REQUIRED? PROVIDE DETAILS.

PROJECT NAME		f Island	F	PROJECT NO: 5	493	3	
FIELD DATES:	21/9	7/18		TELD STAFF:			
Γ							
CALIBRATION	SUMMARY						
EQUIPMENT:	PID						
CALIBRATION	STANDARD:	00 iso ppi	vi.				
DATE	TIME	READING (ppm _v)	COMMENTS				
21/9/18	8.00	99.9					
		100.1	Cal passed	····			·
			Car Joseph				
		· · · · · · · · · · · · · · · · · · ·	- · · ·				
	/ • • · · · · · · · · · · · · · · · · ·	enn en een een en en en en en en en en e			÷		
		—,—,—,—,—,—,—,—,—,—,—,—,—,—,—,—,—,—,—,					
	S			···			
			·			_,	
		· · · · · · · · · · · · · · · · · · ·					
			en en en en en en en en en en en en en e				
							Ē
DECONTAMINA	TION SUMMARY						
EQUIPMENT:	/	, -,					
Mana	2 ang	er, shovel					
						· ,	
		ated appropriately prior to sampling			0	N	NA
		ping, brushing or wiping with dispos			0	N	NA
. Was the equip so, was the equ	ment contaminate Jipment steam cle	ed with grease, tar or similar materia aned or rinsed with pesticide-grade a	?		Υ Υ	(N)	NA
		used to wash the equipment?	ecetone:nexane?		Y		
	ment rinsed with a				\mathcal{O}_{-}	N ————	NA
		with deionised water?			_ <u>Ø</u> _	N _	NA .
				/		N	NA
Avere all sampl	e containers clean	ed and acid or solvent washed prior	to sample collection? Plab Suf	oplied	Υ	N	(A)
_		MINALION MENSORES REGULEEDS E	ROVIDE DETAILS.				
ra)h	nitile	gloves pei	Sample/locat	ion	·		1

PROJECT NAME: PRAT /Slance PROJECT NO: 54933 FIELD DATES: FIELD STAFF: CALIBRATION SUMMARY **EQUIPMENT:** CALIBRATION STANDARD: 100 150 ppm DATE TIME READING (ppm_v) **COMMENTS** 8.01 99.9 Cal passed DECONTAMINATION SUMMARY EQUIPMENT: 1. Was the equipment decontaminated appropriately prior to sampling at each location? 2. Was excess soil removed by scraping, brushing or wiping with disposable towels? NA 3. Was the equipment contaminated with grease, tar or similar material? NA If so, was the equipment steam cleaned or rinsed with pesticide-grade acetone:hexane? NA 4. Was phosphate-free detergent used to wash the equipment? 5. Was the equipment rinsed with clean water? NΑ 6. Was the equipment then rinsed with deionised water? NA 7. Were all sample containers cleaned and acid or solvent washed prior to sample collection? (a.b. 50P) NA WERE ANY ADDITIONAL DECONTAMINATION MEASURES REQUIRED? PROVIDE DETAILS. NA

© JBS&G

This document is and shall remain the property of JBS&G. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited

Document Distribution

Rev No.	Copies	Recipient	Date
А	1 x electronic	Peter Graham (Property NSW) Brad May (Epic Environmental)	19 October 2018
0	1 x electronic	Peter Graham (Property NSW) Brad May (Epic Environmental)	30 October 2018
1	1 x electronic	Peter Graham (Property NSW) Revised for updated Concept Plan (Rev J)	30 September 2020
2	1 x electronic	Scott Burrows (Property NSW) Revised for updated Concept Plan (Rev K)	3 August 2021
3	1 x electronic	Scott Burrows (Property NSW) Revised for updated Concept Plan (Rev K)	5 August 2021

Document Status

Dou No. Author		Reviewer	Approved for Issue			
Rev No.	Author	Name	Name	Signature	Date	
А	Scott Burrows	Matthew Bennett	Matthew Bennett	DRAFT	19 October 2018	
0	Scott Burrows	Seth Molinari	Seth Molinari	Sett m	30 October 2018	
1	Scott Burrows	Matthew Bennett	Matthew Bennett	Aberth	30 September 2020	
2	Scott Burrows	Matthew Bennett	Matthew Bennett	Appentit	3 August 2021	
3	Scott Burrows	Matthew Bennett	Matthew Bennett	Aberth	5 August 2021	

