Central Coast Council **Terrigal Boardwalk** Geotechnical Interpretive Report

TBP-GE-GN-RPT-002

Rev A | 6 November 2018

This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no responsibility

Job number 261648

is undertaken to any third party.

Arup Pty Ltd ABN 18 000 966 165

Arup Level 5 151 Clarence Street Sydney NSW 2000 Australia www.arup.com

ARUP

Document Verification

ARUP

Job title		Terrigal Bo	ardwalk	Job number					
				261648					
Document titl	e	Geotechnica	al Interpretive Report	File reference					
Document ref	•	TBP-GE-G	TBP-GE-GN-RPT-002						
Revision	Date	Filename	TBP-GE-GN-RPT-0	002.docx					
Draft 1 8 June 2018		Description	First draft	First draft					
			Prepared by	Checked by	Approved by				
		Name	Rebecca Szczurowski	Landi Proctor	Timothy Mote				
		Signature		R	71 1154				
DraftRev A Nov		Filename	TBP-GE-GN-RPT-002_RevAdocx						
	2018	Description	Draft issue to Client						
			Prepared by	Checked by	Approved by				
		Name	Adrian Callus	Tim Mote	David Dack				
		Signature							
Rev A	6 Nov	Filename	TBP-GE-GN-RPT-0	002_RevAdocx					
	2018	Description	Final Issued to Client						
			Prepared by	Checked by	Approved by				
		Name	Adrian Callus	Tim Mote	David Dack				
		Signature	Alle	71 MA	Repland				
		Filename							
		Description							
			Prepared by	Checked by	Approved by				
		Name							
		Signature							
			Issue Documer	nt Verification with l	Document				

Contents

			Page
1	Introd	uction	1
	1.1	Project overview	1
	1.2	Purpose of the report	1
	1.3	Disclaimer	1
2	Propos	sed Structure	2
3	Investi	igation	3
	3.1	Fieldwork	3
	3.2	Groundwater observations	4
	3.3	Laboratory testing	4
4	The sit	te	5
	4.1	Site location	5
	4.2	Topography	5
	4.3	Existing structures	5
	4.4	Services	6
	4.5	Subsurface conditions	6
	4.6	Summary of stratigraphy	7
	4.7	Groundwater	8
	4.8	In-situ testing	8
	4.9	Laboratory test results	10
	4.10	Geological mapping	12
5	Risk A	ssessment	20
	5.1	Risk to life – person most at risk	20
	5.2	Hazard identification	20
	5.3	Annual probability of the failure event	21
	5.4	Probability of Spatial Impact	21
	5.5	Vulnerability	25
	5.6	Temporal spatial probability	26
	5.7	Assessed risk to life – person most at risk	26
	5.8	Assessed risk to life – societal	27
6	Risk to	o Property	29
7	Geoteo	chnical Design parameters	30
	7.1	Design parameters for soils	30
	7.2	Rock mass characteristics	31
8	Comm	ents and recommendations	34

Refer	ences	42
Summ	nary	41
8.8	Slope risk management	40
8.7	Remediation and stabilisation measures	39
8.6	Seismic classification	39
8.5	Exposure classification	39
8.4	Retaining walls	39
8.3	Foundation options	37
8.2	Site preparation	36
8.1	Construction method	34
	8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 Sumn Referen	 8.1 Construction method 8.2 Site preparation 8.3 Foundation options 8.4 Retaining walls 8.5 Exposure classification 8.6 Seismic classification 8.7 Remediation and stabilisation measures 8.8 Slope risk management Summary References

Drawings

Drawing 1 - Ground investigation location plan
Drawing 2 – Geological cross section

Appendices

Appendix A

Geotechnical Explanatory Notes

Appendix B

Borehole Logs

Appendix C **DCP** Test Results

Appendix D Point Load Strength Index Test Results

Appendix E

Laboratory Test Result Certificates

1 Introduction

1.1 Project overview

The proposed Terrigal Beach promenade to The Haven boardwalk (hereafter referred to as 'the boardwalk') is intended to improve the amenity and accessibility for tourists visiting the region. It is Central Coast Council's ('Council') ambition that the boardwalk would become a tourist attraction and a destination enhancing experience which compliments the natural coastal environment.

1.2 Purpose of the report

A geotechnical investigation has been undertaken by Arup to inform the design of the of the boardwalk. This geotechnical interpretive report presents the following:

- An overview of the existing topographical, geological and geomorphological information of the site.
- Geological and geomorphological mapping of existing site features, to assess the stability of the site, assess current risk levels and identify geotechnical issues and constraints on the proposed boardwalk.
- Factual data obtained during the geotechnical investigation performed by Arup in May 2018.
- Geotechnical interpretation of the ground conditions and engineering design parameters, identified site constraints and recommendations on constructability and detailed design of the boardwalk

1.3 Disclaimer

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties that vary from place to place and can change through time. Geotechnical engineering involves gathering and assimilating the facts about these characteristics and properties in order to understand or predict the behaviour of the ground and groundwater on a particular site under certain conditions.

Arup may report such facts obtained by observation, excavation, probing and sampling, testing or by other means of investigation. If so, they are directly relevant only to the ground and groundwater at the place where, and the time when, the investigation was carried out, and are believed to be reported accurately.

Any interpretation or recommendation given by Arup shall be understood to be based on judgement and experience and not on greater knowledge of the facts than the reported investigations would imply. The information contained within this report shall be considered as for reference only. This report has been prepared for the use of our Client in connection with the aforementioned project and takes into account particular requirements and instructions. It is not intended for use by any third party and no responsibility is undertaken to any third party.

2 Proposed Structure

Following consultation with the Council, the preferred option to carry through to Concept Design is an elevated boardwalk comprising of timber and perforated decking that would allow people to view the water beneath the viewing platforms. The eastern and western ends of the boardwalk, at The Haven and Terrigal Beach respectively, is to be on grade. While the portion adjacent to the existing rock platform and intertidal zone of The Haven are to be suspended on steel and concrete piers.

Figure 1 - Visualisation of proposed boardwalk (looking south-east)

3 Investigation

3.1 Fieldwork

The fieldwork for the subsurface investigation took place between the 22 May and the 25 May 2018 and comprised of the following:

- Four Boreholes (BH1 to BH4) progressed by auger and diamond core drilling techniques to final depths ranging between 8.29 metres below ground level (mbgl) and 8.80 mbgl. The boreholes were drilled by Rockwell Drilling Services Pty Ltd.
- Nine DCPs were performed on the overlying soil strength material to refusal on rock ranging in depth between 0.40 mbgl to 0.82 mbgl.

Prior to the ground investigation the site was cleared of services using electronic locating equipment from specialist sub consultants Down Under Detection Services Pty Ltd.

The fieldwork was carried out under the direction of an Arup geotechnical engineer who was present full time on site. The geotechnical engineer set out borehole locations, directed sub-contractors, logged the encountered subsurface profile and nominated sampling and testing.

The borehole and DCP locations are shown in Figure 3. The borehole logs (including field test results, Point Strength Index test results and groundwater observations) are provided in Appendix B. For details of the investigation procedure reference should be made to the Arup Geotechnical Explanatory Notes provided in Appendix A.

The test locations were set out by taped measurements from existing site features. The surface levels at the test locations have been estimated from spot levels on the provided survey plan (Plan Number: 7650 Issue: A dated 07/07/2017) prepared by Stephen Thorne and Associates Pty Ltd. The site datum is Australian Height Datum (AHD).

The cored rock strength material was assessed by examination of the recovered core and correlation with Point Load Strength Index tests. The recovered rock core was photographed and Point Load Strength Index tests were completed, at an approximate frequency of one test per metre, by the geotechnical engineer on site during the fieldwork. The results of the Point Load Strength Index tests are attached as Appendix D. The core photographs are presented with the borehole logs in Appendix B.

The DCP test results were correlated to density of the overlying the coarse grained material and used to inform the variation in rock levels across the site.

3.2 Groundwater observations

Groundwater observations were made in the boreholes during and on completion of coring. Water has been introduced as part of the coring process which may have obscured groundwater depth measurement in the time period after coring.

3.3 Laboratory testing

Selected samples were submitted to a NATA registered laboratory (Macquarie Geotech Pty Ltd) for soil and rock testing including:

- Particle size distribution (PSD) on two soil samples;
- Aggressivity tests on five core samples; and
- Unconfined compressive strength (UCS) tests on eight core samples.

The test results are presented in Section 4.5

4 The site

4.1 Site location

The extent of the proposed boardwalk is presented in Figure 1 (shown as the red dotted line), located along Terrigal Esplanade, Terrigal, NSW.

Figure 2 - Site location map (Central Coast Council Terrigal Master Plan Concept, 2017)

4.2 Topography

Based on the provided survey contour plan, and observations carried out during the fieldwork, the approximate proposed boardwalk alignment is located along the coastline bordered to the south by an inclined slope with variable steepness. The proposed boardwalk extends out around the headland where the rock face becomes very steep. There are rocky outcrops at the base of the slope and within the intertidal zone between the beach and the headland.

4.3 Existing structures

At the time of fieldwork, the site contained a stacked sandstone revetment wall, and stacked concrete culverts. South-east of the site there is a café/restaurant, the Reef Restaurant & Cove Café positioned at an elevated level of approximately 4.5 mAHD behind the stone wall structure.

4.4 Services

A utilities search has been performed via Dial Before You Dig (DBYD) service. Results of this survey indicated a storm water drainage culvert within the site. Visual Inspection of the Site indicate gas lines in proximity to the beach.

4.5 Subsurface conditions

4.5.1 Geology

Reference to the 1:100,000 geological map of Gosford-Lake Macquarie Special indicates that the site is underlain by the Terrigal Formation. It is described as interbedded laminate, shale and fine to coarse grained quartz to quartz-lithic sandstone; minor red claystone. This is consistent with the encountered conditions observed during the investigation.

For detailed subsurface conditions at each borehole location, reference should be made to the borehole logs in Appendix B. A geological cross section is presented in Drawing 2. The location of the geological section is presented in Drawing 1. A summary of the pertinent subsurface conditions is presented below.

4.5.2 Sand

Marine sand was encountered in all borehole locations. The thickness of sand was between 0.65m and 1.00m. The levels and thickness of sand for each borehole is summarised in Table 1.

4.5.3 Clay

High plasticity residual clay was encountered in three borehole locations. The clay was positioned directly above bedrock and was between 60mm and 200mm thick. The levels and thickness of clay for each borehole is summarised in Table 1

4.5.4 Sandstone

Interbedded sandstone and siltstone was encountered below sand and clay. The Sandstone was assessed to be moderately weathered to slightly weathered and low to medium strength.

The following defects were recorded:

- Horizontal extremely weathered seams up to 100mm thick;
- A number of undulating to planar bedding partings between 0-25 degrees;
- A number of undulating, stepped and planar joints between 15-90 degrees were recorded. Some joints were healed;
- Crushed seam up to 30mm thick typically filled with rock fragments and clay; and One clay seam 30mm thick was recorded.

The following core-loss was also recorded:

• BH2 at 8.55 150mm.

The core loss zones may be interpreted as representing clay seams, weathered seams or fractured bands of bedrock

4.5.5 Siltstone

Interbedded sandstone and siltstone was encountered below sand and clay. The siltstone was assessed to be highly weathered to moderately and very low to medium strength.

The following defects were recorded:

• Horizontal extremely weathered seams up to 90mm thick: and

One clay seam 40mm thick was recorded

4.6 Summary of stratigraphy

A summary of the stratigraphy encountered is summarised in Table 2 following. Bedrock units are classified based on Pells (1998) rock mass classification system. The siltstone lithology is classified under the Shale rock classification. A geological cross section is presented in Drawing 2.

Borehol	e	BH1	BH2	BH3	BH4
Sand	Depth (mbgl)	0.00 - 0.65	0.00 - 1.00	0.00 - 0.90	0.00 - 0.65
	Thickness (m)	0.65	1.00	0.90	0.65
Clay	Depth (mbgl)	-	1.00 - 1.14	0.90 - 1.10	0.65 - 0.71
	Thickness (m)	-	0.14	0.2	0.06
Class	Depth (mbgl)	Shale: 2.63 – 3.75	-	-	-
V	Thickness (m)	Shale: 1.12	-	-	-
Class	Depth (mbgl)	Shale: 5.23 –	Sandstone:	Shale: 1.10 –	Shale: 1.05 –
IV		7.60,	1.30 - 7.35	3.20, 7.82 –	1.45,
		Sandstone:1.45 -		8.29, Sandstone:	Sandstone:
		2.63, 3.75 – 5.23		3.2 - 6.25, 6.85	1.45 - 5.00
				- 7.82	
	Thickness (m)	Shale: 2.37,	Sandstone:	Shale: 2.10,	Shale: 0.4,
		Sandstone: 1.18,	6.05	0.47, Sandstone:	Sandstone:
		1.48		3.05, 0.97	3.55
Class	Depth (mbgl)	Shale: 0.85 – 1.45	-	-	Sandstone:
III					5.00 - 7.25
	Thickness (m)	Shale: 0.60	-	-	Sandstone:
					2.55
Class	Depth (mbgl)	Sandstone: 7.60 –	-	-	Sandstone:
II		8.55			7.25 - 8.80
	Thickness (m)	Sandstone: 0.95	-	-	Sandstone:
					1.55

Table 1 - General stratigraphy encountered

4.7 Groundwater

Groundwater was typically encountered between 0.5mbgl in line with sea level. Water was introduced during core drilling and can obscures groundwater measurements during the course of fieldwork.

Water flush returns were typically 100% except in BH2 where the flush returns varied between 80-100%. This indicates a relatively impermeable rock mass. Ground water levels were measured after drilling. The water level was typically measured at between 0.9 mbgl and 2.00 mbgl.

Borehole ID	Encountered groundwater depth during drilling (mbgl)	Measured groundwater depth after drilling (mbgl)
BH1	0.5	1.5
BH2	0.5	0.9
BH3	Not recorded	2.0
BH4	Not recorded	1.0

Table 2 - Groundwater depths

4.8 In-situ testing

4.8.1 SPT tests

Standard Penetrometer Tests (SPTs) were undertaken almost continuously on the soil strength material in boreholes until reaching refusal on the underlying bedrock. The SPT tests show the coarse grained material to range in density between very loose to medium dense with the density typically increasing with depth. The SPT results are presented in the borehole logs in Appendix B. A summary of the density correlation with depth is presented in Table 3.

Depth of SPT test	Borehole ID					
(mbgl)	BH1	BH2	BH3	BH4		
0-0.45	VL	VL	VL	VL		
0.5-0.95	VL	VL-MD	VL	VL-L (refusal)		
1.00-1.45	-	MD (refusal)	MD (refusal)	-		

Table 3 - Summary of SPT results

4.8.2 DCP tests

A total of nine Dynamic Cone Penetrometer (DCP) tests were undertaken at the locations indicated on Figure 3 until refusal on bedrock. The DCP tests show that the sand was very loose to very dense, with density generally increasing with depth. Depth of refusal is indicative of depth to bedrock. The DCP logs are presented in Appendix C.

A summary of the correlated density with depth is presented in Table 4 below.

Depth					DCP ID				
(mbgl)	DCP 1	DCP 2	DCP 3	DCP 4	DCP 5	DCP 6	DCP 7	DCP 8	DCP 9
0-0.1	VL	VL	L	VL	VL	VL	VL	VL	VL
0.1-0.2	VL	VL	L	VL	VL	VL	L	VL	VL
0.2-0.3	VL	VL	MD	VL	VL	L	L	VL	L
0.3-0.4	MD	MD	VD	L	MD	MD	MD	L	L
0.4-0.5	D	MD		L	D	MD	MD	VD	MD
0.5-0.6	VD	D		MD	VD	MD	VD		MD
0.6-0.7	VD	VD		VD		VD			D
0.7-0.8		VD				VD			VD

Table 4 - Summary of DCP test results

4.8.3 **Point load strength index**

A total of 78 point load strength index tests were undertaken on rock core samples recovered from boreholes.

The point load tests indicated the Is(50) index strength ranged from 0.02 MPa to 0.74 MPa and 0.04MPa to 1.11MPa for diametral and axial tests respectively.

A plot of Is(50) index strength versus reduced level is presented in Figure 3. The profile of Is(50) with depth can be seen to be relatively uniform. The point load test results indicate that the rock core strength ranged from very low to high but was typically low to medium strength. There is a general trend of increase of rock strength with depth.

Figure 3 - Point load index strength vs reduced level

4.9 Laboratory test results

4.9.1 Particle size distribution tests

Particle size distribution (PSD) tests were completed for two samples. The test results indicate the two samples consist of predominately medium sized sand with one sample (BH1 0.5m to 0.65m) containing up to 22% fine grained material. Results of the PSD test are shown in Figure 4.

Figure 4 - Results of particle size distribution

4.9.2 Uniaxial compressive strength tests

A total of eight cored samples were tested for uniaxial compressive strength (UCS). Seven of the tests were performed in sandstone and one test was performed in siltstone. Testing results indicate sandstone to be of medium strength and siltstone to be of upper bound of very low strength. The test results by rock mass classification are summarised in Table 5.

UCS Test Summary	Sandstone Class II	Sandstone Class III	Sandstone Class IV	Shale Class IV
Number of UCS Tests	2	2	3	1
Min UCS (MPa)	9.1	7.7	7.6	1.9
Max UCS (MPa)	13.0	9.9	10.0	1.9
Average UCS (MPa)	11.1	8.8	9.2	1.9

Table 5 - Summary of UCS testing

Relationship between point load Is(50) values to UCS for sandstone are shown in Figure 5 - Point load Is(50) vs UCS Figure 5. The recommended correlation factor for Is(50) to UCS is summarised in Table 6.

Figure 5 - Point load Is(50) vs UCS Table 6 - Recommended Is(50) to UCS correlation factor

Rock Mass Lithology Type	Is(50) to UCS Correlation Factor
Shale	20
Sandstone	20

4.9.3 Aggressivity tests

A total of 5 rock samples were tested for aggressivity and are presented in Table 7. The exposure classification for concrete in accordance with AS2159 and AS5100 are shown in Table 8.

Aggressivity testing indicate the bedrock to be typically 'non-aggressive' to 'mild' for concrete piles. However, given the location of the project is situated within an active coastal environment, marine exposure classification is recommended.

BH_ID	BH1	BH2	BH3	BH4	BH4
From (m)	6.00	3.06	2.50	6.00	8.00
To (m)	6.10	3.23	2.60	6.10	8.17
Rock Class ¹	SH-IV	SS-IV	SH-IV	SS-III	SS-II

Table 7 - Summary of aggressivity tests

BH_ID	BH1	BH2	BH3	BH4	BH4
Sulphate Content (ppm)	12.4	103	16.5	14.4	10.3
Sulphate Content (%)	0	0	0	0	0
Chloride ion content (ppm)	327.9	673.6	124.1	195	31
Chloride ion content (%)	0.03	0.07	0.01	0.02	0
рН	6.1	6	6.9	6.7	6.9

Note: 1. SH = SHALE, SS = Sandstone

 Table 8 - Exposure classification

Australian Standard	Surface and Exposure Environment	Exposure Classification
AS2159	Sea water – Tidal/ splash zone	Severe
AS5100-2017	In tidal/ splash zone	C2

4.10 Geological mapping

Geological mapping was undertaken for the project area.

The project area can be classified into distinct geomorphological zones. The ground conditions encountered in each zone are summarised in Table 9 below. Reference should be made to Figure 6 for the location of the geomorphological zones described.

Figure 6 - Geological domains and geomorphological	zones
--	-------

Table 9 - Summary of ground conditio	- Summary of ground condition	Table 9	T
--------------------------------------	-------------------------------	---------	---

Geomorphological Zone	Description	Ground conditions
Zone 1	Wave-cut platform	Exposed sandstone and siltstone bedrock. The wave-cut platform is formed by a competent sandstone bed of the Terrigal Formation, approximately 1.6m thick. The platform has

\GLOBALARUP.COMAUSTRALASIAISYD/PROJECTS/261000/261648-00 TERRIGAL BOARDWALK\WORK\INTERNAL/261648 TERRIGAL\GEOTECH/03 INTERPRETIVE REPORTITEP-GE-GN-RPT-002_REVA.DOCX

Geomorphological Zone	Description	Ground conditions
	Exposed rock creating the headland between Terrigal beach and The Haven	minor interbeds of siltstone, which have undergone preferential weathering, resulting in undercutting of the rock platform. The cliff behind the wave-cut platform is approximately 14m high based on the provided 2017 survey plan prepared by Stephen Thorne and Associates. The cliff comprises soil and/or extremely weathered rock, overlying interbedded sandstone and siltstone of the Terrigal Formation, variably weathered. The upper portion of the slope is covered by dense vegetation. Evidence of rockfalls was observed during 1994, 1997 and 2018 site walkover inspections. Sub-surface investigation was not undertaken at this location.
Zone 2	Tidal zone	Shallow marine sand overlying sandstone and siltstone bedrock. Exposed rock can be seen in the shallow water. Sub-surface investigation was not undertaken at this location.
Zone 3	Beach zone	Shallow marine sands (approximately 1m depth) overlying sandstone and siltstone bedrock. Sub-surface investigation undertaken within this zone.

Nine geological domains were delineated based on geological, geomorphological, and slope hazard classifications. Within each geologic domain slope stability hazards are identified. These include:

- 1. Small rockfall (<0.5m diameter) out of the steeper slope from weathering and root jacking.
- 2. Rockfall of boulders (0.5m to 2m in diameter) out of the near vertical cliff. Structural controlled from either the cliff face or above the eroding siltstone.
- 3. Soil debris flows off the crest of the slope.
- 4. Cliff collapse (up to 10m L x 3m W x 7m H) due to erosion of the weaker siltstone layer at the base of the geologic profile.
- 5. Landslide. Rotational or translation slides through the soil/residual soil profile

4.10.1 Domain 1

Domain 1 is predominantly a soil slope. The angle of the slope ranges from $\sim 15^{\circ}$ at the crest of the slope to around 45° at its steepest point. The average slope angle across the Domain is $\sim 25^{\circ}$.

The slope stability hazards identified within Domain 1 are deep-seated rotational landslides or smaller surficial soil debris slump/flow.

Figure 7 - Wall and vegetated slope in Domain 1

4.10.2 Domain 2

Domain 2 is predominantly a soil slope above a layer of siltstone. The angle of the slope ranges from $\sim 15^{\circ}$ at the crest to an average of 35° for most of the slope.

The main slope stability hazard identified within Domain 1 is surficial soil debris slump/flow off the crest or rockfall from root jacking of boulders less than 0.5m in diameter.

Figure 8 - Profile photo of Domain 2 slope

4.10.3 Domain 3

The angle of the Domain 3 slope ranges from $\sim 15^{\circ}$ at the slope crest to 70° at the beach. The average slope angle across the Domain is $\sim 45^{\circ}$.

Slope hazards present in Domain 3 are larger rockfalls (>0.5m diameter) and debris flows off the crest. The weaker siltstone layers has not been significantly eroded in Domain 3.

Figure 9 - Domain 3 cliff face

4.10.4 Domain 4

Domain 4 captures a natural bend in the cliff face and the focus of drainage from the crest. The angle of the Domain 4 slope ranges from $\sim 10^{\circ}$ at the slope crest to a maximum angle of 65° at the beach. The average slope angle across the Domain is $\sim 50^{\circ}$. The weaker siltstone layer in Domain 4 is eroded back to $\sim 2m$ from the present cliff face. This is likely due to focused wave action or increase groundwater in the bend.

The slope hazards identified with Domain 4 are rockfalls, debris flows, and cliff collapse from wave erosion.

Figure 10 - Domain 4 cliff face

4.10.5 Domain 5

The angle of the Domain 5 slope ranges from $<10^{\circ}$ which gradually becomes steeper to reach a maximum angle of 70° at the beach. The average slope angle across the Domain is $\sim 50^{\circ}$.

The major hazard within Domain 5 is cliff collapse from the wave erosion of the weaker siltstone and undercutting the sandstone. Debris flows off the crest and smaller rockfall are also identified hazards.

Figure 11 - Domain 5 cliff face

4.10.6 Domain 6

Domain 6 represents the cliff nose. This is a moderately to steeply sloping cliff face that extends from Domain 7 to the rock platform. The slope angle gradually

increases from ~15° up to ~65° across the Domain. The average slope angle is ~50°.

Rockfall hazard exists out of the steep cutting.

Figure 12 - Domain 6 (cliff nose) cliff face

4.10.7 Domain 7

Domain 7 has a moderately dipping slope that is relatively consistent across the Domain. The slope angle ranges from $\sim 10^{\circ}$ at the slope crest to a maximum steepness of 60°. The average slope angle across the Domain is $\sim 40^{\circ}$.

Debris flows are the main slope hazard present.

Figure 13 - Domain 7 cliff face

4.10.8 Domain 8

Domain 8 has a moderately sloping cliff face. This Domain includes an existing footpath with benches set a few metres in front of the cliff face. The slope angle of Domain 8 ranges from ~45° up to 60°. The average slope angle across the Domain is ~45°.

The main hazard present in Domain 8 is rockfall and debris flow off the crest.

Figure 14 - Footpath, bench, and cliff face in Domain 8

4.10.9 Domain 9

Domain 9 has a moderately dipping slope. Domain 9 includes an existing footpath at both the crest and toe of the slope. The slope angle ranges from a maximum of

 55° at the top of the slope down to $\sim 10^{\circ}$ at the base of the slope. The average slope angle is $\sim 35^{\circ}$.

Landslide is the identified hazard in Domain 9.

Figure 15 - View of Domain 9 (vegetated slope) from Domain 8

5 Risk Assessment

A risk assessment of the proposed boardwalk has been carried out in accordance to the Australian Geomechanics Society (AGS) Guidelines for Landslide Risk Management (2007). The assessment is based on the information from our site observations and investigations which has allowed a qualitative assessment to both life and property.

- The assessment looks at risk to property
- Risk to person most at risk and
- Societal risk given the large tourism visitation.

The assessment has assumed that the elements most at risk are:

• The proposed boardwalk

Persons (such as residents, recreational users or Council employees etc) at the base of the slope and cliff face, or on the proposed boardwalk

The proposed boardwalk alignment at the time of writing this report is the concept design.

5.1 Risk to life – person most at risk

The annual probability of loss of life for the person most at risk from cliff regression was estimated using the equation:

$$R(lol) = P(H) \times P(S|H) \times P(T|S) \times V(D|T)$$

Where:

- H is an identified hazard
- R(lol) is the risk (annual probability of loss of life of an individual)
- P(H) is the annual probability of failure
- P (S|H) is the probability of spatial impact of the failure reaching a person present on the boardwalk taking into account the size of the hazard, travel distance and the length of the boardwalk.
- P(T|S) is the temporal spatial probability that a person is present
- V(D|T) is the vulnerability of the individual loss of life from person present at the time of failure.

5.2 Hazard identification

Five hazards with the potential to impact persons on the boardwalk were identified during the site geologic mapping (Table 10) with respect to each of the nine geologic domains (reference Section 4.10). Representative hazard sizes were estimated from the geologic mapping.

Hazard	Description Extend of slope effected/ size of failure Trigge		Trigger
SF	Small rockfall	<0.5m maximum diameter	Annual weather events and tree root jacking
RF	Boulder sized rockfall	>0.5m - 2m	1:10-year weather events and tree root jacking
DB	Soil debris off crest	3m x 5m x 1m	1:10-year rainfall event
CC	Cliff collapse	10m x 3m x 10m	Coastal erosion, Earthquake
LS	Landslide	5m x 10m x 2m	Extreme rainfall event (1:100- year), Earthquake

Table 10 - Identified hazards

5.3 Annual probability of the failure event

The annual probability or likelihood P(H) of the five failure events within each respective domain are provided in Table 11. The probabilities are estimated by considering the recurrence of triggering events and are calibrated with observations of recent failure made on site and of historic records (e.g. recent cliff failure at the Skillion).

Domain	Hazard	P(H) Annual probability of failure event
1	SF	1.0
	DB	0.1
	LS	0.01
2	SF	1.0
	DB	0.1
3	RF	0.1
	DB	0.1
4	RF	0.1
	DB	0.1
	CC	0.01
5	SF	1.0
	DB	0.1
	CC	0.01
6	SF	1.0
	RF	0.01
7	DB	0.1
8	SF	0.1
	DB	0.1
9	LS	0.01

Table 11 - Annual probability of failure

5.4 **Probability of Spatial Impact**

The probability of spatial impact, P(S|H), estimates the likelihood of the failure impacting a person on the boardwalk taking into account the hazard sizes, travel distance, and length of the boardwalk impacted in each domain if a person is present.

The probability of the hazard reaching the boardwalk is estimated from the mapping and indicative cross-sections define each geologic domain provided in the figures below. Run-out and rockfall bounce are estimated using a 1:1 shadow angle plotted against the planning location of the boardwalk relative to the slow. This will be refined in the detailed design.

The probability that a hazard will impact a person if it reaches the board walk considered the hazard size is defined in Table 1 and the length of boardwalk in the domain. For example, a 1m boulder will only impact a portion of a 20m length of boardwalk.

Figure 17 - Profile sketch through Domain 2

Figure 18 - Profile sketch through Domain 3

Figure 20 - Profile sketch through Domain 5

Figure 21 - Profile sketch through Domain 6

Figure 22 - Profile sketch through Domain 7

Figure 24 - Profile sketch through Domain 9

Domain	Perpendicular Length of Domain	Hazard	Probability of the hazard reaching the boardwalk	P(S H) Probability that a person will be impacted by the Hazard if present
1	45m	SF	0.01	0.001
		DB	0.01	0.001
		LS	0.1	0.022
2	20m	SF	0.01	0.002
		DB	0.01	0.002
3	25m	RF	0.1	0.012
		DB	0.1	0.012
4	10m	RF	0.01	0.003
		DB	0.01	0.003
		CC	0.01	0.010
5	60m	SF	0.001	0.000
		DB	0.001	0.000
		CC	0.01	0.002
6	20m	SF	0.01	0.002
		RF	0.01	0.002
7	30m	DB	0.1	0.010
8	25m	RF	0.1	0.012
		DB	1.0	0.120
9	20m	LS	1.0	0.500

Table 12 - Probability of spatial impact

5.5 Vulnerability

The vulnerability (V (D|T)) of a person being killed by a rockfall if present and hit considers the size of the hazard.

A vulnerability of 0.5 is used for a direct impact of boulder >0.5m diameter following application of the AGS 2007 Landslide Guidance for Rockfall applied in Christchurch after the Canterbury Earthquake sequence in 2011.

A vulnerability of 0.10 is used for small rockfall and debris flow impacts.

Hazard	Description	P(V T) Vulnerability
SF	Small rockfall	0.10
RF	Boulder rockfall	0.50
DB	Soil debris flows off crest	0.10
CC	Cliff collapse	0.50
LS	Large landslide	0.50

Table 13 - Vulnerability

5.6 Temporal spatial probability

Considering the person-most-at-risk, the following users of the boardwalk have been considered;

- Council workers carrying out maintenance on the boardwalk 1 hour per day
- Local resident walking on boardwalk daily with average walking rate of 4 seconds per 5m length every day of the year
- Tourist on the boardwalk with single visit of 2 hours.

 Table 14 - Temporal spatial probability

Person	Description	P(T S) Temporal spatial probability
Council Worker	1 hour per day	0.027
Resident Walker	10 minutes per day	0.007
Single visit tourist	1 hour over a single visit	0.0002

The Council Worker, with an annual occupancy of 1 hour per day, is considered the person-most-at-risk.

These estimates should be confirmed with Council during detailed design.

5.7 Assessed risk to life – person most at risk

The annual probability of loss of life for the person-most-at-risk across the geologic domains, considering the identified hazards is presented below summarises the risk for life of the person most at risk.

Domain	Hazard	P(H)	P(S H)	P(T S)	V(D T)	R(lol)
1	SF	1.000	0.001	0.027	0.10	10-6
	DB	0.100	0.001	0.027	0.10	10-7
	LS	0.010	0.022	0.027	0.50	10-6
2	SF	1.000	0.002	0.027	0.10	10-5
	DB	0.100	0.002	0.027	0.10	10-6
3	RF	0.100	0.012	0.027	0.50	10-5
	DB	0.100	0.012	0.027	0.10	10-6
4	RF	0.100	0.003	0.027	0.50	10-5
	DB	0.100	0.003	0.027	0.10	10-6
	CC	0.010	0.010	0.027	0.50	10-6
5	SF	1.000	0.0001	0.027	0.10	10-7
	DB	0.100	0.0001	0.027	0.10	10-8
	CC	0.010	0.002	0.027	0.50	10-7
6	SF	1.000	0.002	0.027	0.10	10-5
	RF	0.010	0.002	0.027	0.50	10-7
7	DB	0.100	0.010	0.027	0.10	10-6

 Table 15 - Assessed risk to life for person most at risk

Domain	Hazard	P(H)	P(S H)	P(T S)	V(D T)	R(lol)
8	RF	0.100	0.012	0.027	0.50	10-5
	DB	0.100	0.120	0.027	0.10	10-5
9	LS	0.010	0.500	0.027	0.10	10-5

AGS (2007) provides guidance for Tolerable Loss of Life Risk for a person-most at risk (Table 16). Considering this is a new development, acceptable risk level is recommended to be at or below $10^{-5}/annum$.

Table 16 AGS Suggested Tolerable loss of life individual risk

Situation	Suggested Tolerable Loss of Life Risk for the person most at risk
Existing Slope (1) / Existing Development (2)	10^{-4} / annum
New Constructed Slope (3) / New Development (4) / Existing Landslide (5)	10^{-5} / annum

The calculated risk to the person most at risk considering the conceptual design shows the risk is at acceptable levels (Table 15).

5.8 Assessed risk to life – societal

Recognising the significant tourist population to the Central Coast and Terrigal and assessment of societal risk is considered appropriate. AGS 2007 provides guidance for the person-most-at-risk and recommends following ANCOLD 2003 for Societal Risk.

Only the larger coastal cliff collapse and landslides in Domains 1, 4, 5 and 9 are considered credible hazards that pose a risk to a larger population.

5.8.1 **Population at risk**

At the time of writing this report, estimates for boardwalk patronage had not been made available to Arup. An assumption of 1 million visitors per annum or 3,650 visitors per day assumptions have been made in order to complete the assessment.

For reference the Coogee to Bondi coastal walk, NSW, and the Twelve Apostles, Vic, have approximately 8,000 and 12,000 visitors per day, respectively.

Туре	Number of people per year	Average time spent on boardwalk	Population per annum
Visitors to Terrigal	1,000,000	10 minutes	20

Table 17 - Summary of assumed boardwalk patronage

A population per annum of 20 means with 10 minutes average occupancy means that for every minute of the year there is 20 people on the boardwalk.

These estimates should be confirmed with Council during detailed design.

5.8.2 Cliff collapse event

Considering 20 people on the 255m boardwalk and a 10m cliff collapse/landslide, the population at risk exposed at any one time along the boardwalk is 1 person. Using a vulnerability of 0.5 for fatality from the hazard, the population at risk is 0.5 persons. As the population is less than 1, it suggests that considering societal risk for this failure is not appropriate.

5.8.3 Earthquake event triggering with widespread rockfall and cliff collapse

Considering a population of 20 during widespread rockfall and cliff collapse/landslides across the boardwalk, the populations exposed is conservatively estimated at 10 persons. Using a vulnerability of 0.5, the population at risk from fatality is 5.

A significant earthquake event that could generate ground accelerations to trigger widespread rockfall and cliff collapse across the boardwalk (Peak Ground Acceleration > 0.5g) has an annual probability of exceedance approaching 1:10,000 (10^{-5}). The probability of the widespread rockfall, landslide and cliff collapse reaching the boardwalk is 10^{-2} , therefore the frequency of this fatal failure is 10^{-7} .

Plotting five fatalities with a 10⁻⁷ frequency on the F-N diagram (ANCOLD 2003) shows the Societal Risk is Broadly Acceptable (Figure 25).

Figure 25 - Frequency vs Number of Fatalities considering 1M visitors per annum

6 Risk to Property

The proposed boardwalk alignment has been adopted with the setbacks provided for each Domain in Section 3.1 which will provide sufficient buffer should a failure occur and have negligible impact of the boardwalk.

In determining the consequences to the boardwalk, it has been assumed that size of slope failures will be limited to the extents outlined in Table 10 and that there is little detrimental impact on the adjoining sections of the boardwalk, and the rate of failure will be instantaneous. Further the cost of reconstruction and/or repair of the boardwalk has been established on a lineal rate estimated from the current project capital cost of \$4.5M and a boardwalk length of approximately 200m. This results in a unit rate of \$22,500 per metre of boardwalk. Therefore, the following approximate costs of have been adopted for each identified hazard.

Hazard	Extend of slope	Approximate Cost of damage		Assessed	
	effected/ size of	Approximate	Indicative Value	Consequence	
	failure	cost		to property	
Small rockfall	<0.5m	¢22.500	0.50/	In all and finant	
Boulder rockfall	>0.5m	\$22,500	0.5%	Insignificant	
Soil debris flows	2	¢225.000	50/	Minon	
off crest	5m x 10m x 1m	\$225,000	5%	Minor	
Cliff collapse due					
to erosion of	10m x 3m x 10m	\$ 450,000	1.00/	Madin	
siltstone layer		\$430,000	10%	Medium	
Landslide	5m x 10m x 2m				

Table	18 - 2	Assessed	consequences	to	Property
		100000000		•••	- roperty

Table 10 summaries the qualitative assessment of each of the geo hazards identified and the assessed consequences to the proposed boardwalk. In accordance with the criteria provided in AGS (2007) Low risk levels would be considered to be 'acceptable', Moderate risk levels would be considered to be 'tolerable'.

Geohazard	Small rockfall	Boulder rockfall	Soil debris flows off crest	Cliff collapse due to erosion of siltstone layer	Landslide
Affected Domains	1, 2, 3, 8	4, 5, 6, 7	2, 3, 4, 6, 7, 9	5, 6, 7	1, 2, 3
Size of Failure	<0.5m	>1m	10m	20m	20m
Assessed Likelihood	Almost Certain	Possible	Likely	Possible	Rare
Assessed Consequences	Insignificant	Minor	Insignificant	Minor	Medium
Risk	Moderate	Moderate	Moderate	Moderate	Low

Table 19 - Summary of risk to property.

7 Geotechnical Design parameters

The following section summarises the strength and deformation parameters for soil and rock units encountered along the proposed boardwalk. The recommendations have been made with consideration of the data collected during the investigation, published relationships and engineering judgement based upon previous experience.

7.1 Design parameters for soils

Limited soil was encountered overlying rock, and therefore limited testing has been carried out. The suggested design parameters have been based on the interpretation of the limited SPT 'N" values and DCP test results and are summarised in Table 20. Poisson's ratio typically ranges between 0.2 to 0.4 for unsaturated clays and sand. A value of 0.3 has been adopted.

Active, at-rest and passive earth pressures presented below have been derived from representative drained soil parameters and are for level backfill. Modification for the earth pressure coefficients will be required where a sloping backfill is apparent.

The shallow footing capacities for soil included in the table below are based on a specific geometry and are suitable for preliminary design, but require further refinement at subsequent design stages.

7.2 Rock mass characteristics

The behaviour of rock containing discontinuities or planes of weakness within them is controlled by the rock mass rather than the intact condition, the derivation of parameters for rock masses is inherently challenging because of the number of features to consider and their own variability in the field. Therefore, a rock mass classification, as outlined in Section 4.6, has been carried out to allow for the variation of the intact rock quality and the frequency condition to be rationalised along discrete classes.

The rock mass modulus and strength parameters have been adopted based on results of the investigation, published parameters and pervious experience with similar materials.

Table 20 - Summary of soil design parameters

Material type	Consistency	Bulk unit weight (kN/m^3)	Peak friction angle (°)	Undrained shear strength (kPa)	Elastic modulus (MPa)	Poisson's Ratio	Ultimate capacity of shallow pad (kPa) ¹	Ultimate end bearing capacity (kPa) ²	Ultimate shaft capacity (kPa)
Marine	Very loose to loose	17	28	-	5 - 10	0.3	-	-	10
Sands	Medium dense	19	33	-	40	0.3	200	200 x z (max 1MPa)	25

Table 20 notes:

- 1. Assumed depth of shallow footing minimum of 0.5m below a horizontal ground surface and vertically applied load. These values do not account for groundwater table.
- 2. Minimum of 4 pile diameters in the founding material required to achieve provided bearing capacities, z is the depth below ground.

Table 21 - Summary of earth pressure coefficients

Material type	Drained analysis						
	Active earth pressure coefficient (Ka) Passive earth pressure coefficient (Kp) At-rest earth pressure coefficient (Ko)						
Marine sands – Very loose to loose	0.36	2.8	0.53				
Marine sands – Medium dense	0.29	3.4	0.46				

Table 21 notes:

- 1. Assume horizontal surface in-front and behind a vertical wall.
- 2. No wall/soil friction has been assumed in earth pressure calculations.
- 3. In order to mobilise the full passive pressure, displacement is required and therefore must be considered in the design.

Table 22 - Summary of rock design parameters

Unit	Rock Class	Bulk unit weight (kN/m^3)	Poisson's Ratio	Rock Mass Modulus (MPa)	Ultimate end bearing ¹ (MPa)	Ultimate shaft adhesion ^{1,4} (kPa)	Allowable end bearing ^{2,3} (MPa)
	Ι	24	0.2	2000	100	1000	6
	II	24	0.2	1000	60	800	2
Siltstone	III	24	0.25	600	20	500	1.5
	IV	24	0.25	300	5	150	1
	V	24	0.3	75	3	75	0.7
	Ι	23	0.2	2000	120	3000	8
	II	23	0.2	1200	80	2500	6
Sandstone	III	23	0.25	800	30	1200	4
	IV	23	0.25	400	10	500	3
	V	23	0.3	75	3	150	1
Table 22 notes:

- 1. Ultimate capacities are mobilized at large displacements—generally 5% to 10% of pile diameter (or minimum footing dimension) —and require reduction by ϕg for ULS design accordance with AS2159 2009 [1]. A lower bound value $\phi g = 0.40$ is advised for preliminary design, though it may be possible to justify higher values with pile testing during construction.
- 2. Serviceability capacities are mobilised at displacements of 1% pile diameter (or minimum footing dimension).
- 3. Where the design is dependent upon end-bearing resistance, piles must extend at least one pile diameter into the founding stratum to develop full design end-bearing and found at least three pile diameters above underlying weaker strata. A minimum of 0.5m embedment in the founding material to achieve shaft resistance.
- 4. Assumes a rock socket roughness category R2 (grooves of depth 1 mm to 4 mm, width greater than 2 mm, at spacing 50 mm to 200 mm) or better (Walker and Pells [2])
- 5. In the event of uplift, only ULS shaft friction can be relied upon and these values must be reduced by a factor of 0.75 in addition to the geotechnical reduction factor, and mechanisms of piston and cone failure must be considered (Pells et al [3]). Cone failure often controls for large tension forces in short rock sockets, particularly near ground surface.

8 Comments and recommendations

8.1 Construction method

Preliminary constructability assessments have been completed as part of the concept design process. Four distinct zones have been identified, as shown in Figure 26, which take into account access considerations and main construction activities anticipated to be carried out in each zone. The anticipated construction activities are summarised in Table 23, note that this is not an exhaustive list of possible activities.

Figure 26 - Proposed construction methodology

The following construction considerations should be considered as they will impact the ultimate design solution, include additional construction activities than those listed in Table 23, and could have significant cost implications on the project:

- Foundation construction is to be both land and water based, depending on foundation positions. It is recommended that an Early Contractor Involvement (ECI) period be carried out alongside detail design to ensure adequate understanding of the constraints and constructability of the final boardwalk design.
- Locations the barge can access may be limited and consideration of tides will be required. Due to the shallow rock in the water will put limitations on the type of barge and it anchoring locations.
- Vibrations caused by heavy construction equipment either tracking or during excavation may increase the risk of rock fall from the nearby slope and cliff.

Table 23 - Construction	n methodology for	each defined	construction zone
-------------------------	-------------------	--------------	-------------------

	Areas within the construction zones	Brief description of the proposed works
Construction Zone 1	 Terrigal rockpool Existing footpath onto the rock platform at western end of proposal 	 Closure of the Terrigal rockpool Carry out cliff stabilisation and remediation works Install piles to rock Assemble and install boardwalk steelwork and decking
Construction Zone 2	Rock platform areaBarge footprint in the ocean	 Establishment of marine plant into fixed position north of the rock platform, if required Install piles into rock and prefabricated steel pier Lift prefabricated boardwalk superstructure to the piers and fix into position Install decking and other fixtures as required
Construction Zone 3	• Intertidal zone between the rock platform and the proposed sandstone wall extension	 Establishment of temporary causeway over the intertidal zone to enable land-based access Install piles into rock and prefabricated steel pier Lift prefabricated boardwalk superstructure to the piers and fix into position Install decking and other fixtures as required
Construction Zone 4	 Beach area at eastern end of proposal Existing sandstone wall at the Haven precinct 	 Establishment of platform to enable access for land-based plant along beach Remove part of existing seawall for realignment and extension Excavate sand to top of rock level and install sandstone blockwork wall Fill behind new blockwork wall in staged increments Reinstate drainage and culvert Install footpath and miscellaneous items

8.2 Site preparation

To allow for construction of the on-grade portion of the boardwalk and access track in Construction Zones 1 and 4, adequate preparation. Therefore, it is recommended that the existing sandy subgrade, in Construction Zone 4 be proof rolled to improve the near surface compaction of the soils and assist in identifying any soft or unstable areas and should be completed in the following sequence:

- Removal of vegetation and stripping of any root affected soils if encountered.
- Proof roll the existing soil subgrade with at least eight passes of a minimum 8 tonne deadweight smooth drum roller. The sand subgrade will need to be thoroughly moistened before commencing proof rolling.
- A thin layer of road base (75mm thick) should be provided over the sand subgrade to allow of near surface compaction and prevent shearing during rolling.
- Any soft or unstable areas identified during proof rolling should be locally excavated down to a competent base and replace with engineered fill comprising DGS40 as defined by RMS QA Specification 3051, and compacted to at least 95% Modified Maximum Dry Density (MMDD) using an 8 tonne deadweight drum roller.
- Density tests should be carried out on the engineered fill to confirm the required density is achieved. The frequency of density testing should be in accordance to the requirements for Level 1 control in AS3798.

The temporary causeway material shall comprise of high strength and durable angular rock fill such as good quality sandstone. The rock fill shall have the following parameters:

- Single sized, 300mm crushed rock;
- Saturated Point Load Index (Is(50)) no less than 1.5MPa, and
- Maximum sulfate weight loss of 25%.

The rock full must not be end dumped and should be placed in maximum 0.6m thick loose layers using a large excavator. Each layer should be rigorously tamped down using the excavator bucket prior to placing of subsequent layers. Once the rock fill has extended up above the tidal variation, the surface should be graded level and heavily compacted with a smooth drum roller. The upper portion of the cause way above the tidal variation should comprise DGS40 material, as referenced above, may be utilised as a working surface.

Further, it is noted that a number of rock under cuts have been identified over the rock platform in Construction Zone 2. Therefore, it is recommended that prior to site works commencing, a qualified geotechnical engineer/engineering geologist inspect the rock platform and identify the location and extend of the rock under

cuttings and these areas be demarcated to prevent surcharging the under cuttings with plant of building materials.

8.3 Foundation options

The following section summarises the geotechnical recommendations for the foundations of the proposed boardwalk.

8.3.1 Shallow foundations

It is recommended that shallow foundation be founded on rock, in order to avoid scour and undermining of the footings if founded in sands. Shallow footings, such as strip footings are feasible for the extension of the sandstone block wall in Construction Zone 4 and proposed retaining wall in Construction Zone 1 may be founded on rock and designed using the suggested ultimate bearing pressures presented in Table 22.

The geotechnical strength reduction factor, Φg , for design of pad or strip footings and culvert base slabs, shall be in accordance with AS5100.3-2017 (Tables 5.3.3.3A and 5.3.3.3B) [4]. The range of Φg indicated within AS5100.3 for pad footings ranges from 0.35 to 0.65. Based on the current investigation a Φg of 0.65 in considered appropriate.

It is recommended that footing excavations are inspected by a suitably qualified and experienced geotechnical engineer or engineering geologist during construction to ensure founding conditions are consistent with those on which design recommendations are based. Any loose or water-softened material should be removed prior to pouring concrete or a blinding layer is provided to the footing base.

8.3.2 Piled foundation

Based on the current design the boardwalk is suspended in parts of Construction Zone1 and of Construction Zones 2 and 3. Bored cast in place piles are considered most suitable for the foundation of the suspended portion of the boardwalk.

In Construction Zone 1 bored piles can be completed without the use of temporary casing to stabilise the bores during pile construction. However, bored piles located over Construction Zone 3, may require temporary casing when drilling through the existing sandy soils and the temporary causeway fill.

In Construction Zone 4, and potentially the northern portion of Construction Zone 3, piles are anticipated to be installed using a piling equipment mounted on a barge. Sacrificial steel casing will be reamed into the rock surface to seal against water inflows at the seabed level. the soil, if encountered, and rock profile would then be drilled out using conventional bored piling techniques.

It is recommended that concrete be poured using tremie methods, and as such concrete specifications should consider the required workability parameters. Concrete should be poured without delay, preferably immediately following completion of drilling and inspection, in order to avoid softening of the exposed foundation material.

High strength rock is anticipated on site, therefore, adequately sized piling rigs should be considered. It is noted that site access is constrained in Construction Zone 1 and 2. Smaller piling rigs will be required in this area, which will effect productivity rates and impact overall program.

Bored cast-in-place piles are to be constructed in accordance with AS 2159-2009 [1]. Based on an assessment of the site conditions an average risk rating for the design of bored piles socketed in weathered rock or better is between 2 to 2.5. In Table 4.3.2 (C) of AS2159-2009 [1], an average risk rating between 2 to 2.5 is defined as low risk and a Φ g of 0.56 can be adopted.

AS2159-2009 requires integrity testing to be undertaken on piles where the adopted Φg is greater than 0.4. Based on the current proposed foundations which involves a bored pile with a plunged steel pier, and site access constraints, it is considered that the required amount of integrity testing may be difficult to be completed. The ultimate foundation design must consider these limitations when adopting reduction factors.

It is recommended that a qualified Geotechnical Engineer or Engineering Geologist inspect all piles to confirm that the anticipated ground conditions and design assumptions are satisfied.

Modulus of subgrade reaction, if required for soil for lateral pile support, these can be further developed using the proposed design stiffness parameters as provided in Table 22.

It is recommended to ignore the top 1.5D (AS 2159-2009, [1]) and the depth of any proposed scour when considering the lateral and vertical support to the pile foundation.

The rock platform in located in northern portion of Construction Zone 1 and in Construction Zone 2 may potential be undermined by wave action and erosion of a siltstone band located within the tidal variation height. Therefore, it recommended that the piles in the area, found below the siltstone band.

A serviceability check on the pile foundation under lateral and vertical load is also required, in accordance with AS 2159-2009 [1]. The pile shall be designed for serviceability by controlling or limiting pile movements so that deflections do not exceed the deflection limits. Calculations of lateral deflection and rotation of a pile and a pile group shall be carried out using geotechnical parameters that are appropriately selected and to which no reduction factor is applied. The designer shall select such parameters, taking into account the type of pile, the ground conditions, installation condition of the shaft and base and the direction and type of loading.

Refer to Section 8.5 for the exposure classification of the structures.

8.4 **Retaining walls**

The following list includes, but not limited to, considerations for the designs of gravity retaining walls:

- Retaining walls shall be assessed for stability and strength with appropriate design factors in accordance with AS5100.3:2017 [4].
- The design of the shallow foundations for the retaining wall shall consider the dimensions of the foundation for bearing capacity, base sliding and overturning failures.
- Where the ground level behind and/or in front of the wall vary, the wall should be assessed in representative sections to capture the variation in height.
- Passive resistance to the wall toe should not be considered in design.
- Groundwater levels over the life of the structure to be considered in design. Adequate drainage to be allowed for and maintenance of the drainage system should also be considered.
- Construction sequencing should be considered in the design, given the offset to the exiting slope. This would include temporary batters and over-excavation considerations prior to completion of the wall.
- Method of compaction of the retained soil should be considered so that the structure is not damaged. Compaction pressures should be allowed for in the design. Any surcharge affecting retaining structures should be allowed in the design.

8.5 Exposure classification

Based on the marine environment of the project site, exposure classifications for concrete in accordance with AS2159-2009 (Table 6.4.2 (A)) and AS5100.5-2017 (Table 4.3) are 'Severe' and 'C2' respectively.

8.6 Seismic classification

Based on the advice provided in AS1170.4-2007 'Structural design actions Part 4: Earthquake actions in Australia' we consider the site to be classified as Class Be - Rock (based on Clause 4.2).

8.7 **Remediation and stabilisation measures**

The current concept alignment has been adopted to minimise the risk to both the boardwalk and the public using the boardwalk, which based on the current assessment, this has been achieved. However, should council wish to further reduce the perceived risks the following stabilisation measures can be consider. The design and implementation of any of the listed remediation works will be further developed as part of the detailed design as required.

- Cliff face scaling removal of loose surface debris using chains attached to excavators and dragged across the face of the cliff prior to construction of the boardwalk;
- Removal of overground vegetation/unstable trees;
- Support of potentially unstable blocks or wedges with hot dipped galvanised or stainless steel fully grouted rock bolts;
- Support of siltstone bands, weak and/or fractured zones of bedrock with reinforced shotcrete supported by fully grouted rock bolts;
- Support of overhangs or undercuts at the base of cliff faces using cast insitu underpins.
- In areas of potential soil debris/ or instability of the soil profile, use of erosion protection such as 'jute mesh', held in place with pins to promote vegetation growth.

The stabilisation measures outlined above may poorly impact the aesthetic outcome of the project if not completed by experienced contractors. At this stage of design, it is preferred that remediation be limited to cliff scaling and vegetation growth.

8.8 Slope risk management

The following various measures seek to manage and where appropriate maintain risk to 'acceptable' levels. These recommendations form an integral part of slope risk management and will also assist in the development of emergency response to safeguard the community from severe coastal storm events.

8.8.1 Monitoring

The identified potential hazards within the site area should be monitored on an annual basis and after periods of prolonged or heavy rainfall and significant storm events in order to assess existing conditions and any indicators of deterioration such as debris/boulders on the beach, rock platform, and/or damage to the proposed boardwalk.

As a basis, the following tentative definition of heavy rainfall and prolonged rainfall are provided as guidance and will be confirmed during detailed design:

- Heavy rainfall: at least 100mm of rainfall in one day; and
- Prolonged rainfall: at least 150mm of rainfall over a 5 day period.

It is recommended that a formal process with adequate documentation and reporting frequency be defined. Should instability occur during the monitoring period the following details must be recorded as part of the monitoring reports.

- Date of incident
- Weather conditions on the day and leading up to the incident

- Location sketch plan,
- Photographs and dimensions of the failed section (ie. block size, tension crack widths, landslide features).

Following an incident, completed monitoring reports should be provided to geotechnical engineers so that additional advice may be provided or assessment of specific stabilisation measures.

In addition, a detailed assessment of the slope should be undertaken by ab experienced engineering geologist/geotechnical engineer to assess current conditions against pervious monitoring reports.

8.8.2 Stormwater drainage

All existing subsurface drains, sewers and any other water carrying pipelines (eg, drainage pipe observed in Domain 1) must be subject to regular maintenance by asset owners. Maintenance should also include leak and/or damage detection for water carrying pipelines by experienced plumbers.

9 Summary

Preliminary foundation design and constructability recommendations have been completed as part of the concept design process considering ground conditions encountered at site during the investigation.

The currently proposed construction methodology is considered feasible, however early contractor engagement is recommended to provide additional constructability advice and highlight potential site constraints.

The currently documented boardwalk concept alignment has been assessed to be 10⁻⁵ or less for the person most at risk and 10⁻⁷ for societal risk which are considered acceptable levels of risk based on AGS (2007) and ANCOLD (2003) respectively. Further, on average the risk to property has been assessed to be moderate. Based on AGS guidelines, moderate risk levels can be tolerated.

It is considered that the newly constructed boardwalk with ongoing monitoring by Council and intermittent geotechnical assessment are an adequate method of slope risk management.

10 References

- [1] Australian Standard, "AS2159-2009, Piling Design and Installation," 2009.
- [2] B. F. a. P. P. J. N. Walker, "Construction of Bored Piles," *Australian Geomechanics*, 1998.
- [3] P. J. N. M. G. a. W. B. F. Pells, "Foundations on Sandstone and Shale in the Sydney Region," *Australian Geomechanics*.
- [4] Australian Standard, "AS5100.3-2017, Bridge Design, Part 3: Foundation and soil-supporting structures," 2017.
- [5] Pells, P.J.N, "SUBSTANCE AND MASS PROPERTIES FOR THE DESIGN OF ENGINEERING STRUCTURES IN THE HAWKESBURY SANDSTONE," Australian Geomechnics, vol. 39, no. 3, 2004.
- [6] Australian Geomechanics Society, "Practice Note Guidelines For Landslide Risk Management," Australian Geomechanics Journal and News of the Australian Geomechanics Society, vol. Volume 42, no. 1, 2007.
- [7] Australian National Committee on Large Dams, "Guidelines on Risk Assessment," *ANCOLD*, 2003.

Drawings

Drawing 1 – Ground investigation location plan

Drawing 2 – Geological cross section

Appendix A

Geotechnical Explanatory Notes

Geotechnical Explanatory Notes

The report contains the results of a geotechnical investigation conducted for a specific purpose and client. The results should not be used by other parties, or for other purposes, as they may contain neither adequate nor appropriate information. In particular, the investigation does not cover contamination issues unless specifically required to do so by the Client.

DESCRIPTION AND CLASSIFICATION METHODS

Soil and rock descriptions are generally in accordance with the recommendations of Australian Standards AS 1726-2017 and cover the following properties:

SOIL Classification Group ROCK Rock Name Soil Name Grain Size Plasticity Colour Grain Size (and shape) Fabric and Texture Colour Strength Texture and Fabric Weathering Secondary Components Defects Minor Components Weathering and / or alteration Moisture Consistency Structure Origin Other Relevant Information

CLASSIFICATION OF COARSE GRAINED SOILS (Table 9 AS1726:2017)

Hole. Cu Coeli	letent of uniornity,	CC COCIII				
Major divisions Grou		Group symbol	Typical names	Field classification of sand and gravel	Laboratory classification	
Coarse Gil grained soil (n (more than of 65% of soil fra excluding lan oversize mm fraction is greater than 0.075 mm)	GRAVEL (more than half of coarse fraction is	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤5% fines	Cu >4 1 <cc <3<="" td=""></cc>
	larger than 2.36 mm)	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤5% Fines	Fails to comply with above
		GM	Gravel-silt mixtures and gravel-sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥12% fines, fines are silty	Fines behave as silt
		GC	Gravel-clay mixtures and gravel-sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥12% fines, fines are clayey	Fines behave as clay
	SAND (more than half of coarse fraction	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤5 fines	Cu >6 1 <cc>3</cc>
	is smaller than 2.36 mm)	SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤5% fines	Fails to comply with above
		SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥12% fines, fines are silty	NA
		SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥12% fines, fines are clayey	

Dual classification (e.g. GP-GM) comprising the two group symbols separated by a dash are given to coarse grained soil with fines contents between 5% and 12%.

CLASSIFICATION OF FINE GRAINED SOILS (Table 10 AS1726:2017)

Major Divisions		Group	Typical names	Field classi	fication of silt a	Laboratory classification	
		symbol		Dry strength	Dilatancy	Toughness	% < 0.075 mm
Fine grained soils (more than 35% of	SILT and CLAY (low to medium	ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line
soil excluding oversize	plasticity, %	CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line
fraction is		OL	Organic silt	Low to medium	Slow	Low	Below A line
less than 0.075 mm)	SILT and CLAY (high	MH	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line
	plasticity)	CH	Inorganic clay of high plasticity	High to very high	None	High	Above A line
		OH	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line
	Highly organic soil	Pt	Peat, highly organic soil				

COMPOSITE SOIL TYPE

As most natural soils are a mixture of basic soil types, the primary soil is described and modified by secondary constituents as follows:

Designation of		In co	In fine grained soils			
components	% Fines	Terminology	% Accessory Coarse fraction	Terminology	% Sand/ gravel	Terminology
Minor	≤5	Add 'trace clay/silt' to description, as applicable	≤15	Add 'trace sand/gravel' to description, as applicable	≤15	Use 'trace'
	>5,≤12	Add 'with clay/silt to description', as applicable	>15, ≤30	Add 'with and/gravel' to description, as applicable	>15, ≤30	Add 'with sand/gravel' to description, as applicable
Secondary	>12	Prefix soil name as 'silty' or 'clayey', as applicable	>30	Prefix soil name with 'sandy' or 'gravelly' as applicable	>30	Prefix soil name with 'sandy' or 'gravelly', as applicable

GRAIN SIZE

	Fines		Sand		Gravel			Cobbles	Boulders	
Designation	Clay	Silt	Fine	Medium	Coarse	Fine	Medium	Coarse		
			(f)	(m)	(c)	(f)	(m)	(c)		
Grain size (mm)	< 0.002	0.002 - 0.075	0.075 - 0.21	0.21 - 0.6	0.60 - 2.36	2.36 - 6.7	6.7 - 19	19 - 63	63 - 200	>200

COLOUR

Individual assessment of colour has been made at field moisture condition, or as received, using simple terms like **black**, white, grey, red, brown, orange, yellow, green or blue. No reference has been made to standard colour charts unless specifically stated. These may be modified where necessary using 'pale', or 'dark' or 'mottled'. Borderline colours are described as a combination of colours e.g. red-brown etc. If one colour is more dominant this shall be the 2nd term e.g. If brown is dominant then 'red-brown'.

Mottling is described as '(primary colour) mottled (secondary colour)'. Where a soil consists of two colours present in roughly equal proportions the colour description should be 'Mottled (first colour) and (second colour)'.

SOIL MOISTURE CONDITION

Condition	Cohesive	Granular
DRY (D)	Hard and friable or powdery, well dry of plastic limit	Cohesionless and free- running
MOIST (M)	Cool, darkened in colour, can be moulded	Cool, darkened in colour, tends to cohere
WET (W)	Weakened. Free water forms on hands when handling, soil tends to stick together	Tends to cohere

Symbol	Description
w < PL	Moist, dry of plastic limit
$\mathbf{w}\approx PL$	Moist, near plastic limit
w > PL	Moist, wet of plastic limit
$\mathbf{w}\approx LL$	Wet, near liquid limit
w > LL	Wet, wet of liquid limit

CONSISTENCY / RELATIVE DENSITY

Soil consistency / relative density is assessed based on a combination of in-situ testing and tactile field assessments. Where no in-situ testing is available, soil consistency is based solely on the tactile field assessment of the Engineer/Geologist.

Designation	Field test	Undrained shear strength kPa
Very Soft (VS)	Exudes between fingers when squeezed	<12
Soft (S)	Moulded by light finger pressure	>12 and ≤25
Firm (F)	Moulded by strong finger pressure	>25 and ≤ 50
Stiff (St)	Indented by thumb, cannot be moulded by fingers	>50 and ≤100
Very Stiff (VSt)	Indented by thumbnail	<100 and ≤200
Hard (H)	Indented with difficulty by thumbnail	>200
Friable Can be easily crumbled or broken into small pieces by hand		-

Designation	Density index %
Very loose (VL)	≤15
Loose (L)	>15 and ≤35
Medium Dense (MD)	>35 and ≤65
Dense (D)	$>65 \text{ and } \le 85$
Very Dense (VD)	>85

ROCK CLASSIFICATION TABLE (as per AS1726:2017)

Cuoin Sigo	Codimentory	Matamannhia	Igneous			
Grain Size	Seumentary	Metamorphic	Acid	Intermediate	Basic	
>2mm	Conglomerate, Breccia, Limestone	Gneiss	Granite	Diorite	Gabbro	
0.06 - 2mm	Sandstone, Tuff, Limestone	Schist	Microgranite	Microdiorite	Dolorite	
<0.06mm	Mudstone, Siltstone, Shale, Claystone, Limestone	Phyllite, Slate	Rhyolite	Andesite	Basalt	

ROCK STRENGTH (as per AS1726:2017)

Desig	nation	Very Low (VL)	Low (L)	Medium (M)	High (H)	Very High (VH)	Extremely High (EH)
Guide to strength	Field test	Material crumbles under firm blows with sharp end of pick. Pieces up to 3cm thick can be broken by finger pressure	Easily scored with knife. A piece of core 150mm long and 50mm diameter may be broken by hand.	Readily scored by knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with single firm blow	Hand specimen breaks with pick after more than one blow; rock rings under hammer	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer
8	Point Load Strength Index Is ₅₀ (MPa)	0.03 - 0.10	0.10 - 0.30	0.30 - 1.0	1.0 - 3.0	3.0 - 10.0	>10.0
Uniaxial C Strengt	ompressive h (MPa)	0.6 - 2.0	2.0 - 6.0	6.0 - 20.0	20.0 - 60.0	60.0 - 200	>200

ROCK WEATHERING Based on visual identification as per AS1726:2017

Term		Symbol	Field appearance
Residual Soil RS		RS	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported
Extremely Weathered		XW	Rock is weathered to an extent that it has 'soil' properties, i.e. it either disintegrates or can be remoulded, in water
tinctly thered JW)	Highly Weathered ¹	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Dist Wea (I	Moderately Weathered ¹	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly Weathered		SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock.
Fresh		FR	Rock shows no sign of decomposition or staining

1. Notes: Where it is not practical to distinguish between highly weathered and moderately weathered, rock, the term 'Distinctly Weathered' may be used. 'Distinctly Weathered' is defined as: 'Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores. There is some change in rock strength.'

BEDDING STRATIFICATION

Term		Description	Separation of Stratification Planes
Stratification not recognisable		Massive	-
		Very thickly bedded	>2 m
	Bedded	Thickly bedded	0.6 - 2 m
Stratification more than 20 mm apart		Medium bedded	0.2 - 0.6 m
		Thinly bedded	60 mm-0.2 m
		Very thinly bedded	20-60 mm
Stratification along loss than 20 mm anost	Lowinstad	Thickly laminated	6 – 20 mm
Stratification planes less than 20 min apart	Laminated	Thinly laminated	<6 mm

Table based on Geological Society of London Engineering Group Working Party report on *The Logging of Rock Cores for Engineering Purposes* - Q J Eng Geol Vol 3, 1970, pp1-24.

DEFECT DESCRIPTION

All natural defects are marked on the core using an 'X'.

Defect Type

Symbol	Description		
BP	Bedding plane parting - arrangement in layers of mineral grains of similar sizes, near parallel to surface of deposition along which a continuous observable parting		
	occurs. Generally no microfractures.		
JT	Joint - a fracture across which rock has little or no tensile strength and is not obviously related to rock fabric.		
SZ	Sheared Zone - zone of multiple closely spaced fracture planes with roughly parallel planar boundaries, usually forming blocks of lenticular or wedge-shaped		
	intact material. Fractures are typically smooth, polished or slickensided; and curved.		
FL	Foliation Parting - As for bedding plane parting except discontinuous microfractures may be present near parallel to the layering.		
CR	Crushed Seam - zone with roughly parallel, planar boundaries (commonly slickensided) containing disoriented usually angular rock fragments of variable size		
	often in a soil matrix.		
WE	Weathered Zone - zone of any shape but commonly with parallel planar boundaries containing moderately to gradational boundaries into fresher rock.		
DB	Drilling Break		
DL	Drilling Lift		
HB	Handling Break		
SM	Infilled seam - Seam of soil material usually with distinct roughly parallel boundaries formed by the migration of soil into an open cavity or joint, infilled seam		
	less than 1mm thick may be described as a veneer or coating on a joint surface.		
SS	Sheared Surface - A near planar, curved or undulating surface which is usually smooth, polished or slickensided and which shows evidence of shear displacement.		
VN	Vein		
CL	Cleavage		

Inclination

For specific defects, the orientation of each individual defect is noted in degrees from core normal. If the orientation cannot be measured, a dash (-) is used.

ARUP

Defect Spacing

Defect Spacing, as per BS5930:2015			
Spacing/Width (mm)	Descriptor	Symbol	
<20	Extremely Close	EC	
20-60	Very Close	VC	
60-200	Close	С	
200-600	Medium	М	
600-2000	Wide	W	
2000-6000	Very Wide	VW	
>6000	Extremely Wide	EW	

Shape			
Symbol	Description		
PR	Planar - the defect does not vary in orientation		
IR	Irregular – the defect has many sharp changes of orientation		
CU	Curved - the defect has a gradual change in orientation		
UN	Undulating - the defect has a wavy surface shape		
ST	Stepped - the defect has one or more well-defined steps		
DIS	Discontinuous defect		

Roughness		
POL	Polished - shiny smooth surface	
SL	Slickensided - grooved or striated surface, usually polished	
S	Smooth – smooth to touch. Few or no surface irregularities	
RF	Rough – many small surface irregularities (amplitude generally less than 1 mm). Feels like fine to coarse sand paper.	
VR	Very rough – Many large surface irregularities (amplitude generally more than 1mm). Feels like coarse than very coarse sand paper	

CORE RECOVERY DEFINITIONS

Total core recovery (TCR) is defined as the ratio of total length of core recovered to length of core run drilled (expressed as a percentage).

$$\Gamma CR = \frac{L_{core recovered}}{L_{core run}}$$

Solid core recovered (SCR) is defined as the ratio of the sum of length of solid core pieces recovered at full diameter to length of core run drilled (expressed as a percentage).

$SCR = \frac{L_{solid core recovered}}{L_{core run}}$

Rock quality designation (RQD) is defined as the ratio of length of solid core recovered in pieces 100mm or longer to length of core run drilled (expressed as a percentage).

$$RQD = \frac{L_{solid core > 100mm}}{L_{core run}}$$

Block Shape Terms (AS1726)			
Term	Description		
Blocky	Equidimensional		
Tabular	Thickness much less than length or width		
Columnar	Height much greater than cross section		

Infill Type				
Symbol Description		Symbol	Description	
CA	Calcite	MS	Secondary Mineral	
Х	Carbonaceous material	MU	Unidentified Mineral	
KT	Chlorite	Clay	Clay	
CT	Carbonate	QZ	Quartz	
FE	Iron oxide	MN	Manganese	

Coating		
CN	Clean – no visible coating	
SN	Stained - no visible coating but surfaces are discoloured	
VNR	Veneer – a visible coating of soil or mineral, too thin to measure; may be patchy	
CO	Coating – a visible coating up to 1mm thick. Thicker soil material shall be described using defect terms (e.g. infilled seam). Thicker rock strength material shall be described as a vein.	

STANDARD PENETRATION TEST (SPT) REPORTING

The results of SPTs are reported on borehole logs. Typically the test is reported as the number of blows for the seating drive followed by a semi colon (;) and the number of blows of the two increments of the main drive e.g., 5; 10, 15. The N value is reported as the sum of the two values of the main drive, e.g., N=25.

For a test which is terminated during the main drive, the blows for the seating drive are reported followed by the total number of blows and the total distance driven (mm) e.g., 15; 50/250.

For a test which is terminated during the seating drive, the total number of blows and the distance driven (mm) is reported and the result is suffixed with an "s" to designate the test was terminated during the seating drive e.g., 50/75s.

For a test that is terminated before achieving the full main drive penetration, the N values is determined by extrapolation of the penetration and number of blows recorded and is denoted with "*".

For a test that is terminated within the seating drive the N value is determined by extrapolation of the penetration and number of blows recorded and is denoted with "**".

SYMBOLS & ABBREVIATIONS

Drilling

Method	
AD	Auger drilling (bit unspecified)
AD/V	Auger drilling – Steel 'V' bit
AD/TC	Auger drilling – Tungsten carbide bit
RR	Tricone (rock roller) bit
WB	Washboring
NMLC, BMLC	Triple tube rotary core drilling (52mm, 35mm diameter)
NH, HQ	Wireline core drilling
D	Diatube coring

Field Testing

PL	Point load test (A – axial, D – diametral test)	· >	Inflow
Is(50)	Point load strength index (MPa)		Outflow (loss)
qc	Cone resistance (from CPT)	····· \	Level (date)
CPT	Cone penetration test	∢	Partial loss
SPT	Standard penetration test		
Ν	SPT blow count (blows/300 mm)	Soil Properties	
R	SPT refusal		
RW	SPT rod weight only causing penetration	CBR	California Bearing Ratio
HW	SPT hammer and rod weight causing penetration	NMC	Natural moisture content
HB	SPT hammer double bouncing	OMC	Optimum moisture content from compaction test
PT	Pressuremeter test	LI	Liquidity index
PP	Pocket penetrometer undrained shear strength (kPa)	LL	Liquidity limit
V	In situ yana test, neak/residual yalua (kPa)	LS	Linear shrinkage
•	in situ vane test, peak/resituar varue (kr a)	PI	Plasticity index
Water – Mo	isture	PL	Plastic limit
W	Wet	q _u , UCS	Unconfined compressive strength
М	Moist	w	Moisture content (% of dry weight)
D	Dry		
S	Standpipe installed to depth shown		
Р	Piezometer installed at depth shown		

Support W M C T U

Water Mud

Casing Timbering Unsupported

D S P

Sample Codes

ampie Cou	es		
C	Core Sample	J	Jar
В	Bulk Sample	K	Amber chemical jar
D	Disturbed Sample	LB	Large bulk disturbed
AMAL	Amalgamated sample	LDS	Large disturbed
В	Bulk disturbed	М	Mazier type
BLK	Block	Р	Piston
CBR	CBR mould	TW	Thin walled push-in
CD	Plastic tub for chemical analysis	U	Undisturbed – open drive
D	Small disturbed	U100	100mm diameter undisturbed
DEN	Denison sample	U63	63mm diameter undisturbed
DENm	Denison Sampler (modified)	U76	76mm diameter undisturbed
Е	Environmental	W	Water
G	Gas		

ARUP

Appendix B

Borehole Logs

1	4	R	U	P		I	BC	N PRE	ION-CORED HOLE RECORD	В	H'	1	SHEET 1 OF 2
С	LIEN	Т		Central	Coast Cou	ncil				LOGGED E CHECKED	BY BY	F	RS NC
P C D L	ROJE ONT RILL RILLI OCA	ECT RACT MODI ER FION	OR EL	Terrigal Roc Trac KM Hav	Board wal kwell ck-mounted en Beach,	k d Terriga	 I		ANGLE Vertical BEARING - HOLE DIAMETER 110mm MOUNT BIT	DRILLED D GROUND I LOCATION ELEVATION COORDINAT	DATE LEVEL I DATUM TE SYS	2 - F 3 M A TEM N	2-May-18 & 0.70m 55738.0 E 6297959.7 N ustralian Height Datum (AHD 1GA94
	DRIL	LING			STRATA	Ą			MATERIAL DESCRIPTION	1	CONE	DITION	OBSERVATION
& CASING	WATER	DRILLING PENETRATION	GROUNDWATER	SAMPLES	FIELD TESTS	DEPTH (R.L) m (m)	GROUP SYMBOL	GRAPHIC LOG	SOIL TYPE Plasticity / Grain Size, Colour, Minor Compone	nts	WATER / MOISTURE	CONSISTENCY	Comments / Penetration Rate
← AD/T ●		E	Ā	0.50m SPT 0.65m	SPT 1, 0, 1 N=1 SPT 4/150s		SW		SAND: fine to coarse, rounded, orange brown, with shell	I fragments	M W	VL	MAR
NOT	ES					10		-	See exp abbrevio descript	- planatory notes for detail: ations and basis of tions	s of	JOB	261648

C	LIEN	Т		Central C	Coast Co	ouncil						BY	RS	
Ρ	ROJI	ECT		Terrigal E	Board w	alk					DRILLED	DAT	E 22-May	-18
	ONT RILL RILL OCA	RAC MOI ER TION	TOR DEL	Rock Tracł KM Have	well k-mount n Beach	ed n, Terri	ANGLE BEARING HOLE DIAMETI gal MOUNT	V - ER 1 ⁻ B	′ertical 10mm IT		GROUNE LOCATIO ELEVATIO COORDIN) LEV)N N DA ⁻ ATE S	EL RL 0.70 355738 VM Australia VSTEM MGA94)m .0 E 6297959.7 in Height Datum (A
	DRIL	LING	6	ST	RATA		MATERIAL DESCRIPTIO	N					DISCONTINUIT	IES
& CASING	CORE LOSS % TCR % (Drill rate)	SCR % / (RQD %)	FLUSH RETURN % (TYPE)	SAMPLES & FIELD TESTS	DEPTH (R.L.) m (m)	GRAPHIC LOG	ROCK TYPE Grain Size, Texture/Fabric, Colour, Minor Components	WEATHERING	●-Axial o-Diametral ESTIMATE ROCK STRENGTI	EH ± U Is 50 (MPa)	20 40 500 SPACING 500 (mm)	VISUAL LOG	GENERA Angle, Sh Infill	DESCRIPTION ape, Roughness, Thickness
HW casing		95(92)	80% Return	-	$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	××××××××××××××××××××××××××××××××××××××	Continued from borehole SILTSTONE, grey, thinly laminated SANDSTONE, fine to medium grained, grey SILTSTONE, grey SILTSTONE, fine grained, grey SILTSTONE, fine grained, grey SILTSTONE, grey SILTSTONE, grey SILTSTONE, grey, with fine grained sand			D D 0.13 A A3 0.04 D 0.07 A 0.04 D 0.07 A 0.04 A 0.04 D 0.07 A 0.43 D 0.12 A 0.43			- JT 70-80° PL VR - BP 15° ST PL S - BP 10° PL S - BP 15° CN PL S - Cr 0-5° UN RF 20mm - JT 85° VN UN RF CR 0° 100mm Rock JT 85° PL RF BP 0-5° UN S	I Rock Fragments
	- 100	100/(100)	20% Return	-		××××××××××××××××××××××××××××××××××××××	SANDSTONE, fine grained, grey	- sw	• •	D 0.07 A 0.06 0.05 0.07 0.13 0.07			Cr 0° IR VR 10mm ⊐ SM 0° Clay 30mm	
	¥			-	+ + 8,555 - (7,89) - + - - - - - - - - - - - - - - - - -		End of borehole at 8.55m Termination: Groundwater:			D 0.02 0.81				

ARUP	BOREHOLE	E PHOTO REC	ORD	BH1	OF 1
CLIENT Central C PROJECT Terrigal E	oast Council Joard walk			LOGGED BY CHECKED BY DRILLED DATE	RS AC 22-May-18
CONTRACTOR Rock DRILL MODEL Track DRILLER KM LOCATION Have	well -mounted n Beach,	ANGLE BEARING HOLE DIAMETER	Vertical - 110mm (Diamond)	GROUND LEVEL LOCATION ELEVATION DATUM COORDINATE SYSTEM	RL 0.70mmAHD 355738.0 E 6297959.7 N Australian Height Datum (AH M Map Grid of Australia (MGA)
	Colour	Control Patches	0.85	5 00	
1	Job No.		START CORING AT	0.85	

BH1: 00.85m to 05.00m

	261648		daman	Date: 23/	/05/18	a da da	
		1. 0 0.00 g			The designed in		nense)
	a a main a full		The Physics		and the second		Y
2	A AT AN		Martin The Town		The second provide the second		
				End of BH	at 8.55		
8				End of BH	at 8:55"		

JOB

NOTES

CLIENT Central Coast Council LogGED BY RS PROJECT Terrigal Board walk DRILLED DATE 23-May-18 to 23-Ma CONTRACTOR Rockwell Drilling ANGLE Vertical DRILLE MDDEL Track-mounted BEARING - DRILLE NDDEL KM HOLE DIAMETER Itom LOCATION STRATA MATERIAL DESCRIPTION CONDINATE SYSTEM MGA94 DRILLING STRATA MATERIAL DESCRIPTION CONDINON OBSERVA SOIL TYPE SOIL TYPE SOIL TYPE Plasticity SANDSTONE: fine to coarse, orange brown, trace shell fragments M VL Up SOIL TYPE SOIL TYPE W MAR Up Soil SAND: fine to coarse, orange brown, trace shell fragments M VL Up Soil SANDSTONE: fine to medium grained, pale grey. Recovered as CLAY, high W ≤ SR Up Soil SANDSTONE: fine to medium grained, pale grey. Recovered as CLAY, high W ≤ SR
PROJECT Forger State DRILLED DATE 23-May 18 to 23-May CONTRACTOR DRILLMODEL DRILLER Rockwell Drilling Track-mounted KM ANGLE KM Vertical BEARING - HOLE DIAMETER GROUND LEVEL LOCATION RL 0.95m LOCATION DRILLING STRATA MOUNT BIT CONDINON OBSERVA CONDINON DRILLING STRATA MATERIAL DESCRIPTION CONDINON OBSERVA CONDINON U STRATA MATERIAL DESCRIPTION CONDINON OBSERVA CONDINON U STRATA MATERIAL DESCRIPTION CONDINON OBSERVA Continent U STRATA SAND TONE fine to coarse, orange brown, trace shell fragments M VL U SANDSTONE: fine to medium grained, pale grey. Recovered as CLAY, high W SI
DRILLING STRATA MATERIAL DESCRIPTION CONDITION OBSERVA 9N17182 91 91 91 90 90 91 90 9
NUMERAL Solid TYPE NUMINAR Solid TYPE NUMINAR NUMAR NUMAR NUMAR <td< th=""></td<>
Provide SPT SPT SAND: the to coarse, orange brown, trace shell tragments M VL Provide SPT SPT SW W MD Set Set SV SW W MD Set Set SANDSTONE: fine to medium grained, pale grey. Recovered as CLAY, high W < St BRK 130m 130m CH SANDSTONE: fine to medium grained, pale grey. Recovered as CLAY, high W < St BRK
Image: Second
25/140s - 1.30
NOTES See explanatory notes for details of abbreviations and basis of descriptions 261648

© Апр РУ ЦИ 2018 1.01.1 КОКОСОБЕ DG (AS126) 1.01.1 Ала и Али Солман втол Аказбульто цетеговолоте вако и террили и имориитерии, извака террили и сетего и имо

		T		Central C	oast Co	ouncil					LOGGED	BY	RS	OF 2
F C C	PROJE CONT DRILL	ECT RAC [®] MOE ER	TOR DEL	Terrigal E Rock Track KM	Board w well Dri c-mount	alk Iling æd	ANGLE BEARING HOLE DIAMETE	۷ - ۲ 1	ertical 10mm		GROUND LOCATIO		E 23-May /EL RL 0.9 355768 TUM Australia	/-18 to 23-May-19 5m 3.4 E 6297958.5 an Height Datum (Al
L		LING		Have	RATA	n, Terr	Igai MOUNT MATERIAL DESCRIPTION	В	11		COORDINA	ATE S	USTEM MGA94	TIES
	% ite)	(%	% N	~ (0		go		ŰZ	• - Axial	(1	(1)	ŋ	GENERA	L DESCRIPTION
& CASING	CORE LOSS TCR % (Drill re	SCR % / (RQD	FLUSH RETUR (TYPE)	SAMPLES { FIELD TEST	DEPTH (R.L.) m (m)	GRAPHIC L	ROCK TYPE Grain Size, Texture/Fabric, Colour, Minor Components	WEATHERI	ESTIMATED ROCK STRENGTH ⋜_⊇≤±⋛ਜ਼	Is 50 (MP	20 40 32 300 5 (mm) 1000	VISUAL LO	Angle, Sh Infil	ape, Roughness, , Thickness
■ HW casing		92/(39) 100/(38) 100/(38) 100/(38) 100/(100)	a 0% Return - 90% Return - 100% Return - 100		$\begin{array}{c} - & & \\$	· · · · · · · · · · · · · · · · · · ·	Continued from borehole SANDSTONE, fine grained, grey, thinly laminated at 0 - 10° SANDSTONE, fine grained, grey, thinly laminated at SILTSTONE, grey SANDSTONE, fine grained, grey, thinly laminated at 0 - 10° End of borehole at 8.70m Termination: Groundwater:	MW to SW		D1145 D3452			¬ WE 0° 30mm WE 0° 60mm WE 0° 100mm WE 0° 40mm WE 0° 40mm WE 0° 40mm Cr 0° 10mm Rock F BP 0° 5T PL S IWE 0° 30mm ICR 0° CN 30mm Ro JT 45° CN UN S WE 0° 30mm ICR 0° CN 60mm Ro - WE 0° 50mm - We 0° 50mm	ragments ck Fragments 5° PL ck Fragments
NO	TES				10				See explana abbreviatior	atory	notes for deta	l ils of	JOB	04040

ARUP	BOREHOL	e photo ri	ECORD	BH2	SHEET 1 OF 1
CLIENT Central C	coast Council				RS AC
PROJECT Terrigal E	3oard walk			DRILLED DATE	23-May-18 to 23-May-19
CONTRACTOR Rock DRILL MODEL Track DRILLER KM LOCATION Have	well Drilling (-mounted n Beach,	ANGLE BEARING HOLE DIAMETE	Vertical - R 110mm (Diamo	GROUND LEVEL LOCATION ELEVATION DATUM COORDINATE SYSTE	RL 0.95mmAHD 355768.4 E 6297958.5 N Australian Height Datum (AH Map Grid of Australia (MGA)
2	ARUP Job No. GIG48	our Control Patches	ocation: B Depth: 1. Date: 2	H2 30-6.00 4/05/18	
Star	coring at 1.3mbig	hadran	Mulum	diailia	dame
					A A A A A A A A A A A A A A A A A A A
2		and the second second	1	11-1-1-1	and the second second
3					The second se
4		ARTIC POLICE			
5))		

A 2616	RUP Job No.	olour Control Patches	Project: TE Location: BH Depth: 6.0 Date: 24	RRIGAL BOARDW 2 10-8.70 /05/18	ALK
6 6				فيليغيا	D
7		2			R
8			No Core	END OF BH AT 8.7 m	big
		2	IND CORE	-	7

261648

	A	R	U	P			BC	N RE	ION-CORED EHOLE RECORD	В	H:	3		SHEET 1 OF 2
0		T		Central (L Coast Cour Board walk	ncil				LOGGED E CHECKED	BY BY	F	RS AC	
	CONT DRILL DRILL DRILL	RACTO MODE ER TION	DR E	Rock Trac KM Have	k-mounted	l Terriga			ANGLE Vertical BEARING - HOLE DIAMETER 110mm MOUNT BIT	DRILLED E GROUND LOCATION ELEVATION COORDINAT	DATE LEVEL I DATUN TE SYS	- F 3 M A TEM N	22-May- RL 2.20 355787 Australia MGA94	·18 m .1 E 6297946.0 N n Height Datum (AHD)
	DRIL	LING			STRATA	ι.			MATERIAL DESCRIPTION		CONE	DITION		OBSERVATION
& CASING	WATER	DRILLING PENETRATION CEDUINDWATED	LEVELS	SAMPLES	FIELD TESTS	DEPTH (R.L) m (m)	GROUP SYMBOL	GRAPHIC LOG	SOIL TYPE Plasticity / Grain Size, Colour, Minor Components		WATER / MOISTURE	CONSISTENCY		Comments / Penetration Rate
		Е	Z	8.91™ 50mm 0.50m SPT 0.90m	SPT 0,1,1 N=2 SPT 1,2,3 N=5	0.90	sw		SAND: fine to coarse, well graded, orange brown, trace shell f	ragments	M	VL	MAR Becom	ing dark grey
- - - - -			-	SROm		1.10 - - - -	CH	- - - -	plasticity Continued as cored borehole	as CLAT, High		D		
-						- - - - 3		-			-			
-						+ + + +		-			-			
-					-	- - 5		-		- - -	-			
- - -						- - 6		-			-			
-						- - - -		-			-			
-						+ + - 8 -		-			-			
-						+ - - 9 -		- - -			-			
-						10		-			-			
NO	TES	· · · · ·			·				See explanat abbreviations descriptions	ory notes for detail and basis of	s of	JOE	20	61648

A	R	U	P	C	:0	RED BOREHOLE RE	C	ORD		E	₿⊢	13	SHEET 2 OF 2
CLIEN	IT ECT		Central (Terrigal I	L Coast Co Board w	ouncil alk						BY DBY DAT	RS AC F 22-May	
Cont Drill Drill Loca	RAC MOD ER	TOR IEL	Rock Trac KM Have	well k-mount	ed n, Terri	ANGLE BEARING HOLE DIAMETER MOUNT	V - 1 B	ertical 10mm IT		GROUND LOCATIO ELEVATION COORDINA	LEV N N DAT	/EL RL 2.2 35578 ICUM Australi YSTEM MGA94	0m 7.1 E 6297946.0 N an Height Datum (AHD
DRIL	LING		S	TRATA		MATERIAL DESCRIPTION					I	DISCONTINUI	TIES
& CASING CORE LOSS % TCR % (Drill rate)	SCR % / (RQD %)	FLUSH RETURN % (TYPE)	SAMPLES & FIELD TESTS	DEPTH (R.L.) m (m)	GRAPHIC LOG	ROCK TYPE Grain Size, Texture/Fabric, Colour, Minor Components	WEATHERING	●-Axial O-Diametral ESTIMATED ROCK STRENGTH	Is 50 (MPa)	20 40 300 g 300 (mm) 1000	VISUAL LOG	GENERA Angle, Sł Infil	L DESCRIPTION hape, Roughness, I, Thickness
	1 00(100)	2006 Contraction	- SPT	- - - - - - - - - - - - - - - - - - -	***********	Continued from borehole	SW	σ	D 0.02 0.29 0.22 0.22 0.82			¬ We 0° 20mm ∙ WE 0° 10mm We 0° 150mm	
- HW casing	(100)/66	100% Return	-	- 3,200 	× ×	SANDSTONE, fine to medium grained, grey		0 0 0 0 0 0	D 0.177 A 0.557 A 0.255 D 0.255 D 0.255 D 0.255 D 0.212 D 0.12 0.16 A 0.60 0.090 A 0.51			i We 0-10° 50mm We 0° 30mm We 0° 30mm We 0° 20mm Rock GR 0° 20mm Rock CR 0° 20mm Rock	Tragments
100	100/(90)	100% Return		+ + + + + + + + + + + + + + + + + + +				•	D 0.33 A 0.85 D 0.31 A 0.40			I We 0° 40mm - BP 0° ST PL S 3mn - CR 0° VR 5mm Roo - JT 85° IR VR - JT 40° UN S	۱ k Fragments ۱۱۱
		_	-	- 7.82 (5.60) - 8.29 - (5.60) - (5.60) 	····× × × × × × × × × ×	SILTSTONE, grey, porphyritic, thinly laminated at O-5° - End of borehole at 8.29m Termination: Groundwater:			D 0.09 A 0.11			WE 0° 10mm JM 0° Clay 30mm We 0° 100mm	
NOTES	<u> </u>			10				See explan abbreviation description	atory ns ar s	notes for detand basis of	ils of	_{ЈОВ}	61648

© Arup Pty Ltd 2018 1.0.2.2 AUS CORED CORE LOGS (AS1726)

ARUP	BOREH	OLE PHOTO	D RECORD	BH3	SHEET 1 OF 1
CLIENT Central PROJECT Terriga	Coast Council Board walk			LOGGED BY CHECKED BY DRILLED DATE	RS AC 22-May-18
CONTRACTOR Roo DRILL MODEL Tra DRILLER KM LOCATION Have	kwell ck-mounted ven Beach,	ANGLE BEARIN HOLE I	: Vertical NG - DIAMETER 110mm (Diamond)	GROUND LEVEL LOCATION ELEVATION DATUM COORDINATE SYSTEM	RL 2.20mmAHD 355787.1 E 6297946.0 N Australian Height Datum (AHD Map Grid of Australia (MGA)
	ARUP Job No. 261648	Grey Scale	Project: TERRIGA Location: BH3 Depth: 1.10-8.29 Date: 22/05/18	L BOARDWALK	

BH3: 01.10m to 08.39m

The second

M

END AT 3.29

4

5

6

7

8

NOTES	JOB
	261648

ARUP BOR							30	N RE	ION-CORED HOLE RECORD	В	Η	1	SHEET 1 OF 2
	CLIEN PROJI CONT DRILL DRILL OCA	T ECT RACT MOD ER TION	OR	Central (Terrigal Rock Trac KM Have	Coast Cour Board wall kwell k-mounted	ncil K			ANGLE Vertical BEARING - HOLE DIAMETER 110mm MOUNT BIT	LOGGED E CHECKED DRILLED D GROUND I LOCATION ELEVATION COORDINAT	BY BY DATE LEVEL I DATUM E SYS	F 2 F 3 M A TEM M	RS AC 24-May-18 RL 1.10m 355748.0 E 6297957.9 N Australian Height Datum (AHD /GA94
	DRIL	LING			STRATA				MATERIAL DESCRIPTION		CONE	DITION	OBSERVATION
& CASING	WATER	DRILLING PENETRATION	GROUNDWATER LEVELS	SAMPLES	FIELD TESTS	DEPTH (R.L) m (m)	GROUP SYMBOL	GRAPHIC LOG	SOIL TYPE Plasticity / Grain Size, Colour, Minor Components		WATER / MOISTURE	CONSISTENCY	Comments / Penetration Rate
–ÅD/T ' ● łW casing●		E		680m 0.50m SPT	SPT 1, 0, 2 N=2 2 SPT 3, 7/60s	0.65	SW		SAND: fine to coarse, orange BROWN, with shell fragments	-	M	VL	MAR
- ⁺ - V V - V V				0.71m 1.05m		1 1.05	СН		SANDSTONE: fine to medium grained, pale grey. Recovered as plasticity Continued as cored borehole	s CLAY, high - -	w < PL	St	BRK
-						+ + +		-		-			
-					-	-		-		-			
-						- - -		-		-			
-						+ +		-		-			
-					-	4		-		-			
-						5		-		-			
-						+		-		-			
-						6		-		-			
-						7		-		- -			
-						+ + +		-		-			
-						8		-		-			
-						9		-		-			
-						+ + +		-		-			
NOT	TES					10			See explanator abbreviations a descriptions	y notes for details and basis of	s of	JOE	261648

~		т		Central	Coast C	uncil					LOGGED	BY	RS	01 2
P		CT		Terrigal E	Board w	alk					CHECKEI	D BY DAT	AC E 24-May	/-18
CONTRACTOR Rockwell DRILL MODEL Track-mounted DRILLER KM LOCATION Haven Beach, Terrigal					well k-mount n Beach	ed n, Terr	ANGLE BEARING HOLE DIAMETE MOUNT	GROUND LOCATIO ELEVATIO COORDINA) LEV)N N DAT ATE S	EL RL 1.1 355748 UM Australi YSTEM MGA94	0m 3.0 E 6297957.9 an Height Datum (A			
	DRIL	LING		ST	RATA		MATERIAL DESCRIPTIO	1				[DISCONTINUI	TIES
& CASING	CORE LOSS % TCR % (Drill rate)	SCR % / (RQD %)	FLUSH RETURN % (TYPE)	SAMPLES & FIELD TESTS	DEPTH (R.L.) m (m)	GRAPHIC LOG	ROCK TYPE Grain Size, Texture/Fabric, Colour, Minor Components	WEATHERING	o-Axial o-Diametral ESTIMATED ROCK STRENGTH	ls 50 (MPa)	+20 +00 ⇒00 → 000 +000 +000	VISUAL LOG	GENERA Angle, Sł Infil	L DESCRIPTION hape, Roughness, I, Thickness
•	100	100/(100)		-	- - - - - - - - - - - - - - - - - - -	× × × × × × × × × × × × × × × × × × ×	- Continued from borehole - Continued from borehole SILTSTONE, grey, thinly laminated - SANDSTONE, fine grained, grey		0	D 005 A 022 D 0.11				
sing	100	98/(98)	100% Return		+ + - + + + + + + + + + + + + + +		- - - - - - - - -	- MW		0 62 0.16 A A 0.28 D 0.05 D 0.05 D 0.05			□ WE 0° 30mm □ WE 0° 50mm □ CR 0° 20mm Rock I □ VE 0° 20mm Rock I □ VE 0° 10mm □ BP 10-15° Clay IR S	Tragments 5 5mm
HW ca	<u>*</u>	X	- Y	-	5 5.00 (339) - - - - - - - - - - - - - - - - - - -	: x x x x x x x x x x x x x x x x x x x	SILTSTONE, grey, thinly laminated	- - - - - - - - - - - - - - - - - - -		D 0.08 0.04 0.14 D 0.04 A 0.08			WE 5-10° 90mm	
	▲ 100 —	■ 100/(100) -		_	- 7.25 (6.15)* - - - - - - - - - - - - - - - - - - -	× × × ×	SANDSTONE, fine grained, grey, thinly laminated		9 9 0	D 0.10 0.866 D 0.20 A 0.52 0.10 A 1.11			WE 15° 70mm ⊐WE 5° 40mm	
					9 		End of borehole at 8.80m – Termination: Groundwater: –	-						

ARUP	BOREHO	DLE PHOTO	RECOR	D BH	-14 s	HEET 1
111.01			_		С	DF 1
CLIENT Centra PROJECT Terrig	al Coast Council al Board walk			LOGGED BY CHECKED BY	RS Y AC	0
CONTRACTOR R	ockwell	ANGLE	Vertical	GROUND LE	VEL RL 1.10m	8 ImAHD
DRILL MODEL Tr DRILLER KN	ack-mounted M	BEARING HOLE D	G - IAMETER 110mm (Dia	iamond) LOCATION	355748.0 TUM Australian	E 6297957. Height Datum (
LOCATION Ha	aven Beach,			COORDINATE	SYSTEM Map Grid o	of Australia (MG
		Grey Scale	Project	TERRIGAL BOAR	DWALK	
	ARUP	15 175 J75 J05 105 105 105 105 105	Location:	BH4		
	Job No.	Colour Control Patches	Depth:	1.05-6.00		
	261648		Date:	23703718		
Start at 1.0	5.4				0.1.0.	
2	•	-			-	
3						
1					-	3
+		1				
				and the second se		and the second se
		BH4: 01.05m	n to 06.00m			
		BH4: 01.05m	n to 06.00m			
		BH4: 01.05m	to 06.00m			
	ARUP	BH4: 01.05m	to 06.00m Project: Location:	TERRIGAL BOARI BH4	DWALK	
	ARUP Job No.	BH4: 01.05m	to 06.00m Project: Location: Depth:	TERRIGAL BOARI BH4 6.00-8.80	DWALK	
	ARUP Job No. 2GIG48	BH4: 01.05m	to 06.00m Project: Location: Depth: Date:	TERRIGAL BOARI BH4 6.00-8.80 23/05/18	DWALK	
	АПИР Јов №. 2.61648	BH4: 01.05m	to 06.00m Project: Location: Depth: Date:	TERRIGAL BOARI BH4 6.00-8.80 23/05/18	DWALK	
	ARUP Job No. 2.G1648	BH4: 01.05m	to 06.00m	TERRIGAL BOARI BH4 6.00-8.80 23/05/18	DWALK	
	ARUP Job No. 261648	BH4: 01.05m	to 06.00m	TERRIGAL BOARI BH4 6.00-8.80 23/05/18	DWALK	
	ARUP Job No. 2.GIG48	BH4: 01.05m	to 06.00m	TERRIGAL BOARI BH4 6.00-8.80 23/05/18	DWALK END OF BH at 3	
	Дарир Јов No. 261648	BH4: 01.05m	to 06.00m	TERRIGAL BOARI BH4 6.00-8.80 23/05/18	DWALK END OF BH or 8-	
	АРИР Job No. 261648	BH4: 01.05m	to 06.00m	TERRIGAL BOARI BH4 6.00-8.80 23/05/18	DWALK	
	ARUP Job No. 2GIG48	BH4: 01.05m	to 06.00m	TERRIGAL BOARI BH4 6.00-8.80 23/05/18	DWALK END OF BH at 8	
	ARUP Job No. 2GIG48	EH4: 01.05m	to 06.00m	TERRIGAL BOARI BH4 6.00-8.80 23/05/18	DWALK END OF DH at 8	
OTES	Job No. 2GIG48	BH4: 01.05m	to 06.00m	TERRIGAL BOAR BH4 6.00-8.80 23/05/18	DWALK END OF DH at 8	

	ARUP JOB NO. 261648	Grey Scale	Project: TERRIGAL Location: BH4 Depth: 6.00-8.80 Date: 23/05/18	BOARDWALK
6				END OF BH at 818

Appendix C

DCP Test Results

			Date: 22/05/2018								
AK	JP		Sheet 1 of								
Project Name: T	Job No.: 261648										
Made by: RS		Comments:									
Test No.	DCP 1	DCP 2	DCP 6	DCP 7	DCP 8	DCP 9	DCP 3	DCP 5	DCP 4		
Surface RL	0.75	1.3	1.3	1.45	1.3	1.3	0.25	0.85	1.3		
Depth below surface (m)		Blows/ 100mm (n)									
0.0 - 0.1	1	1	1	1	1	1	2	1	0		
0.1 - 0.2	\checkmark	\checkmark	\checkmark	2	1	\checkmark	2	1	1		
0.2 - 0.3	1	1	2	2	1	2	3	2	1		
0.3 - 0.4	4	3	4	5	2	2	17/40mm	4	2		
0.4 - 0.5	7	4	5	5	20/50mm	5	refusal	9	2		
0.5 - 0.6	12	6	5	25/50mm	refusal	4		14	5		
0.6 - 0.7	23	12	12	End		6		10/0mm	11/70mm		
0.7 - 0.8	30/50mm	23	22/50mm			8/8mm		refusal	refusal		
0.8 - 0.9	End	12/20mm	End			Refusal					
0.9 - 1.0		bouncing									
1.0 - 1.1											
1.1 - 1.2											
1.2 - 1.3											
1.3 - 1.4											
1.4 - 1.5											
1.5 - 1.6											
1.6 - 1.7											
1.7 - 1.8											
1.8 - 1.9											
1.9 - 2.0											
Remarks:	1. The procedure used	for this test is in accord	ance with AS1289.6.3.	2-1997							
	2. 8 blows per 20mm i	s taken as refusal									
	3. Datum is AHD										

Appendix D

Point Load Strength Index Test Results

			POINT LOAD STRENGTH INDEX											1		
					Т	EST	RES	SUL	TS				OF	1		
PR	OJECT NA	ME	Terrigal Boardwalk													
	LOCATION	1	TEST DATA											RESULTS		
TEST No.	LOCATION ID	Depth (m)	SAMPLE DESCRIPTION	MOISTURE CONDITION	TEST TYPE	L (mm)	D (mm)	W (mm)	GAUGE FACTOR, f	SIZE CORRECTION FACTOR, K	FAILURE LOAD, P (kN)	FAILURE DESCRIPTION	Is (50) MPa	STRENGTH CLASSIFICATION		
1	BH1	2.28	Sandstone	F	D	44	51		1.00	1.01	0.33	2	0.13	L		
2	BH1	2.28	Sandstone	F	А		44	51	1.00	1.03	1.00	1	0.36	М		
3	BH1	3.79	Sandstone	F	D	40	51		1.00	1.01	0.19	1	0.07	VL		
4	BH1	3.83	Sandstone	F	A		44	51	1.00	1.03	0.86	1	0.31	М		
5	BH1	4.35	Sandstone	F	D	32	51		1.00	1.01	0.30	1	0.12	L		
6	BH1	4.35	Sandstone	F	A		32	51	1.00	0.96	0.93	1	0.43	M		
7	BHI	5.60	Siltstone	F	D	30	51	C1	1.00	1.01	0.17	1	0.07	VL		
8	BHI	5.60	Siltstone	F	A	42	50	51	1.00	0.95	0.13	1	0.06	VL VI		
9	BH1 DU1	6.92	Siltstone	Г Г	D	42	31	51	1.00	1.01	0.18	1	0.07	VL I		
10	DI I	0.92	Sinstone	Г F	A D	32	42 51	51	1.00	1.02	0.30	4	0.13	L		
11	BH1	7.70	Sandstone	г F		32	32	51	1.00	0.96	1.68	1	0.13	M		
13	BH1	8 29	Sandstone	F	D	42	51	51	1.00	1.01	0.04	3	0.02	EL.		
14	BH1	8.29	Sandstone	F	A	12	42	51	1.00	1.02	2.16	4	0.81	M		
15	BH1	3.50	Sandstone	F	D	40	51		1.00	1.01	0.09	3	0.03	VL		
16	BH1	3.50	Sandstone	F	А		40	51	1.00	1.01	0.11	1	0.04	VL		
17																
18																
19																
20																
21																
22																
23																
24																
25																
26																
27																
28																
29																
30																
32																
33																
34																
₽Ţ	$\begin{array}{c} 34 \\ \hline \\ D \\ \hline \\ D \\ \hline \\ D \\ \hline \\ D \\ D \\ e \\ D \\ \hline \\ D \\ e \\ D \\ e \\ \hline \\ D \\ \hline \\ D \\ E \\ \hline \\ D \\ \hline \\ D \\ E \\ \hline \\ D $					< D < W $4DW/\pi$) L > 0.5D 0.6W < D < W D _e = $\sqrt{4DW/\pi}$ Irregular Lump (L)							Is (50) = 1000 x fKP / De^2 (MPa) P = Failure Load (kN) De = Equivalent core diameter(mm) K = Size Correction Factor f = Gauge Factor			
FAILURE	E DESCRIPTI	ION:										MADE BY:		JW		
1. Fractur	e through fab	ric of specin	nen not influenced by weak p	olanes.								CHECKED BY	<i>!</i> :	AC		
2. Fractur	e along beddi	ng. 	1 (1)		D 1 .	1 1.						DATE:		22/05/2018		
 Fractur Chip or 	e influenced b Partial Fract	oy pre-existi ure	ng plane (J), microfracture (l	vi), vein (v), chemic	al alterati	on (C)					JOB N0: VERIFIFD BV	:	201648		
POINT L	OAD TESTE	R SERIAL N	No:	6510-061	7	DATE O	F CALIBF	RATION:		17/	10/2016	DATE VERIFI	ED:			
			PC	POINT LOAD STRENGTH INDEX									SHEFT	1		
--	-----------------	---------------	--------------------------------	---------------------------	------------	--	---------------	--------	-----------------	------------------------------	-------------------------	------------------------	-------------	----------------------------		
					Т	EST	RES	SUL	TS				OF	1		
PR	ROJECT NA	ME	Terrigal Boardwalk													
	LOCATION	1				1	FEST DA	TA					RES	ULTS		
TEST No.	LOCATION ID	Depth (m)	SAMPLE DESCRIPTION	MOISTURE CONDITION	TEST TYPE	L (mm)	D (mm)	W (mm)	3AUGE FACTOR, f	SIZE CORRECTION FACTOR, K	FAILURE LOAD, P (kN)	FAILURE DESCRIPTION	Is (50) MPa	STRENGTH CLASSIFICATION		
1	BH2	1.42	Sandstone	F	D	32	51		1.00	1.01	0.28	1	0.11	L		
2	BH2	1.42	Sandstone	F	А		32	51	1.00	0.96	0.56	4	0.26	L		
3	BH2	2.70	Sandstone	F	D	34	51		1.00	1.01	0.05	3	0.02	EL		
4	BH2	2.70	Sandstone	F	Α		34	51	1.00	0.97	0.50	1	0.22	L		
5	BH2	3.22	Sandstone	F	D	36	51		1.00	1.01	0.17	1	0.07	VL		
6	BH2	3.22	Sandstone	F	Α		36	51	1.00	0.99	0.48	1	0.20	L		
7	BH2	4.52	Sandstone	F	D	30	51		1.00	1.01	0.33	1	0.13	L		
8	BH2	4.52	Sandstone	F	Α		30	51	1.00	0.95	0.69	4	0.33	М		
9	BH2	4.86	Sandstone	F	D	30	51		1.00	1.01	0.51	1	0.20	L		
10	BH2	4.86	Sandstone	F	Α		30	51	1.00	0.95	1.30	1	0.63	М		
11	BH2	5.49	Sandstone	F	D	34	51		1.00	1.01	0.40	1	0.16	L		
12	BH2	5.49	Sandstone	F	Α		34	51	1.00	0.97	0.79	1	0.35	М		
13	BH2	6.17	Sandstone	F	D	35	51		1.00	1.01	0.94	1	0.36	М		
14	BH2	6.17	Sandstone	F	A		35	51	1.00	0.98	1.48	1	0.64	М		
15	BH2	7.65	Sandstone	F	D	42	51		1.00	1.01	1.01	1	0.39	М		
16	BH2	7.65	Sandstone	F	A		42	51	0.99	1.02	2.77	1	1.03	Н		
17	BH2	7.86	Sandstone	F	D	33	51		1.00	1.01	0.20	3	0.08	VL		
18	BH2	7.86	Sandstone	F	A		33	51	1.00	0.97	0.85	1	0.38	М		
19	BH2	8.45	Sandstone	F	D	34	51		1.00	1.01	0.95	1	0.37	M		
20	BH2	8.45	Sandstone	F	A		34	51	1.00	0.97	1.50	1	0.66	М		
21					-											
22																
23																
24																
25																
20																
27																
28																
30																
31																
32																
33																
34																
$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $						x fKP / De^2 (1 d (kN) at core diamete ction Factor or	MPa) r(mm)									
FAILURE	E DESCRIPTI	ION:										MADE BY:		JW		
1. Fractur	e through fab	ric of specin	nen not influenced by weak p	olanes.								CHECKED BY	·	AC		
2. Fractur	e along beddi	ng.										DATE:		23/05/2018		
Fractur	e influenced b	oy pre-existi	ng plane (J), microfracture (I	M), vein (V), chemio	cal alterati	on (C)					JOB No:		261648		
4. Chip or	r Partial Fract	ure	T	(510.07)	-	DATE -	E GIVE	ATION		1.7	10/2017	VERIFIED BY	: ED.			
POINT L	UAD TESTE	k SEKIAL I	NO:	0510-061	/	DATEO	f CALIBF	ATION:		17/	10/2016	DATE VERIFI	ED:			

			PC	POINT LOAD STRENGTH INDEX									SHEFT	1
					Т	EST	RES	SUL	TS				OF	1
PR	ROJECT NA	ME	Terrigal Boardwalk	BH3										
	LOCATION	1				1	TEST DA	TA					RES	ULTS
TEST No.	LOCATION ID	Depth (m)	SAMPLE DESCRIPTION	MOISTURE CONDITION	TEST TYPE	L (mm)	D (mm)	W (mm)	3AUGE FACTOR, f	SIZE CORRECTION FACTOR, K	FAILURE LOAD, P (kN)	FAILURE DESCRIPTION	Is (50) MPa	STRENGTH CLASSIFICATION
1	BH3	1.19	Siltstone	F	D	35	51		1.00	1.01	0.05	3	0.02	EL
2	BH3	1.19	Siltstone	F	А		35	51	1.00	0.98	0.22	4	0.09	VL
3	BH3	2.26	Siltstone	F	D	37	51		1.00	1.01	0.58	1	0.22	L
4	BH3	2.26	Siltstone	F	Α		37	51	1.00	0.99	1.99	1	0.82	М
5	BH3	3.29	Sandstone	F	D	42	51		1.00	1.01	0.45	1	0.17	L
6	BH3	3.29	Sandstone	F	Α		42	51	1.00	1.02	1.52	1	0.57	М
7	BH3	4.79	Sandstone	F	D	38	51		1.00	1.01	0.24	1	0.09	VL
8	BH3	4.79	Sandstone	F	Α		38	51	1.00	1.00	1.27	1	0.51	М
9	BH3	3.47	Sandstone	F	D	42	51		1.00	1.01	0.31	1	0.12	L
10	BH3	3.47	Sandstone	F	А		42	51	1.00	1.02	0.68	4	0.25	L
11	BH3	3.78	Sandstone	F	D	41	51		1.00	1.01	0.41	1	0.16	L
12	BH3	3.78	Sandstone	F	А		41	51	1.00	1.01	1.58	1	0.60	М
13	BH3	5.04	Sandstone	F	D	32	51		1.00	1.01	0.25	1	0.10	VL
14	BH3	5.04	Sandstone	F	А		32	51	1.00	0.96	1.11	1	0.51	М
15	BH3	6.07	Sandstone	F	D	41	51		1.00	1.01	0.84	1	0.33	М
16	BH3	6.07	Sandstone	F	А		41	51	1.00	1.01	2.24	1	0.85	М
17	BH3	7.04	Sandstone	F	D	36	51		1.00	1.01	0.81	1	0.31	М
18	BH3	7.04	Sandstone	F	А		36	51	1.00	0.99	0.95	1	0.40	М
19	BH3	8.15	Siltstone	F	D	31	51		1.00	1.01	0.24	1	0.09	VL
20	BH3	8.15	Siltstone	F	А		31	51	1.00	0.95	0.24	4	0.11	L
21														
22														
23														
24														
25														
26														
27														
28														
29														
30														
31														
32														
33														
34														
b = b = b = b = b = b = b = b = b = b =						x fKP / De^2 (l d (kN) ht core diamete ction Factor pr	MPa) r(mm)							
FAILURE	E DESCRIPTI	ION:					-					MADE BY:		JW
1. Fractur	e through fab	ric of specir	nen not influenced by weak	planes.								CHECKED BY	:	AC
2. Fractur	e along beddi	ng.	-									DATE:		22/05/2018
Fractur	e influenced b	oy pre-existi	ng plane (J), microfracture (M), vein (V), chemio	cal alterati	on (C)					JOB No:		261648
4. Chip or	r Partial Fract	ure										VERIFIED BY	:	
POINT L	OAD TESTE	R SERIAL 1	No:	6510-061	7	DATE O	F CALIB	RATION:		17/	10/2016	DATE VERIFI	ED:	

			PC	POINT LOAD STRENGTH INDEX									SHEET	1
					Т	EST	RES	SUL	TS				OF	1
PR	OJECT NA	ME	Terrigal Boardwalk											
	LOCATION	1				1	TEST DA	TA					RES	ULTS
TEST No.	LOCATION ID	Depth (m)	SAMPLE DESCRIPTION	MOISTURE CONDITION	TEST TYPE	L (mm)	D (mm)	W (mm)	3AUGE FACTOR, f	SIZE CORRECTION FACTOR, K	FAILURE LOAD, P (kN)	FAILURE DESCRIPTION	Is (50) MPa	STRENGTH CLASSIFICATION
1	BH4	1.73	Sandstone	F	D	34	51		1.00	1.01	0.12	1	0.05	VL
2	BH4	1.73	Sandstone	F	А		34	51	1.00	0.97	0.50	1	0.22	L
3	BH4	2.25	Sandstone	F	D	37	51		1.00	1.01	0.28	1	0.11	L
4	BH4	2.25	Sandstone	F	А		37	51	1.00	0.99	0.78	1	0.32	М
5	BH4	2.46	Sandstone	F	D	43	51		1.00	1.01	0.42	1	0.16	L
6	BH4	2.46	Sandstone	F	А		43	51	1.00	1.03	0.77	1	0.28	L
7	BH4	3.08	Sandstone	F	D	39	51		1.00	1.01	0.12	3	0.05	VL
8	BH4	3.08	Sandstone	F	А		39	51	1.00	1.00	0.73	4	0.29	L
9	BH4	3.31	Sandstone	F	D	39	51		1.00	1.01	0.13	1	0.05	VL
10	BH4	3.31	Sandstone	F	Α		39	51	1.00	1.00	0.58	4	0.23	L
11	BH4	4.81	Sandstone	F	D	39	51		1.00	1.01	1.92	1	0.74	М
12	BH4	4.81	Sandstone	F	А		39	51	0.99	1.00	2.70	1	1.06	Н
13	BH4	5.62	Siltstone	F	D	38	51		1.00	1.01	0.20	3	0.08	VL
14	BH4	5.62	Siltstone	F	Α		38	51	1.00	1.00	0.34	4	0.14	L
15	BH4	6.00	Siltstone	F	D	47	51		1.00	1.01	0.11	1	0.04	VL
16	BH4	6.00	Siltstone	F	Α		47	51	1.00	1.05	0.22	4	0.08	VL
17	BH4	7.68	Sandstone	F	D	36	51		1.00	1.01	0.26	1	0.10	L
18	BH4	7.68	Sandstone	F	Α		36	51	1.00	0.99	2.04	1	0.86	М
19	BH4	8.16	Sandstone	F	D	38	51		1.00	1.01	0.26	1	0.10	L
20	BH4	8.16	Sandstone	F	Α		38	51	0.99	1.00	2.78	1	1.11	Н
21	BH4	7.95	Sandstone	F	D	26	51		1.00	1.01	0.52	1	0.20	L
22	BH4	7.95	Sandstone	F	A		26	51	1.00	0.92	0.96	1	0.52	М
23														
24														
25														
26														
27														
28														
29														
30														
31														
32														
34														
57		1	. W/		1	1	1	1						
D = Failure Load $D = Failure Load$ $D = Failure$					x fKP / De^2 () ad (kN) at core diamete ction Factor or	MPa) r(mm)								
FAILURE	E DESCRIPTI	ON:										MADE BY:		JW
1. Fractur	e through fab	ric of specin	nen not influenced by weak j	planes.								CHECKED BY	':	AC
2. Fractur	e along beddi	ng.										DATE:		24/05/2018
3. Fractur	e influenced b	oy pre-existi	ng plane (J), microfracture (l	M), vein (V), chemio	al alterati	on (C)					JOB No:		261648
4. Chip of	Partial Fract		Jo	6510 071	7	DATEC	E CALIES	ATION		17	10/2014	VERIFIED BY	: ED:	
POINT L	OAD TESTE	n sekial [NU.	0010-061	/	DATEO	г UALIBŀ	A HON:		1 //	10/2010	DATE VERIFI	ы D :	

Appendix E

Laboratory Test Result Certificates

Uniaxial Compressive Strength									
Client:	Arup	Sample Source:	BH1-02 2.14-2.28m						
Address:	Level 10, 201 Kent Street, Sydney 2000 Australia	Sample Description:	Sandstone						
Project:	Terrigal Boardwalk (261648) Report No.:		S33958-UCS						
Job No.:	S18220	Lab No.:	\$33958						
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa						
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-						
Sampling Method:	Sampled by Client	Date Sampled:	23/05/2018						
Storage History:	Storage History: Core Box Storage Environment		Sealed at as received moisture condition						

Uniaxial Compressive Strength 10 MPa									
Date Tested: 5/06/2018	Moisture Content:	6.8	%						
Specimen Height: 123.0 mm	Duration of Test:	634	seconds						
Average Specimen Diameter: 52.0 mm	Rate of Displacement:	< 0.1	mm/min						
Failure Type: Mixed mode									
Other Pertinent Observations:									
Deviation fromTest specimen length to diameter ratio falls outside of standard limitations of 2.5-3.0.Standard:									
		Authorised Signatory:							
The results of the tests, calibrations and/or measurements in this document are traceable to Australian/national str Accredited for compliance with ISO/IEC 17025 - Testin document shall not be reproduced, except in full.	Jupl								
	-	Jacob Lloyd	-						
NATA Accredited Laboratory Number: 14874	Date:	7/06/2018							
MACQUARIE	Macquarie G	eotechnical							
GEOŢECH	U8 10 Bradfe Alexandria N	ord Street ISW 2015							

Uniaxial Compressive Strength									
Client:	Arup	Sample Source:	BH1-04 8.37-8.55m						
Address:	Level 10, 201 Kent Street, Sydney 2000 Australia	Sample Description:	Sandstone						
Project:	Terrigal Boardwalk (261648) Report No.:		S33960-UCS						
Job No.:	S18220	Lab No.:	\$33960						
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa						
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-						
Sampling Method:	Sampled by Client	Date Sampled:	23/05/2018						
Storage History:	ge History: Core Box Storage Environment:		Sealed at as received moisture condition						

Uniaxia	Compressive Stre	ngth 13	MPa				
Date Tested:	5/06/2018	Moisture Content:	4.3	%			
Specimen Height:	110.4 mm	Duration of Test:	642	seconds			
Average Specimen Diameter:	51.7 mm	Rate of Displacement:	< 0.1	mm/min			
Failure Type: Single shea	r plane						
Other Pertinent Observations:							
Deviation from Test specimen length to diameter ratio falls outside of standard limitations of 2.5-3.0. Standard:							
			Authorised Signatory:				
The results of the tests, of in this document are tr. Accredited for complian document shall not be rep	Jupp						
			Jacob Lloyd	_			
NATA Accredited Labora	atory Number: 14874	Date:	7/06/2018				
MACQUARIE	Macquarie	Geotechnical					
GEOŢECH	U8 10 Brad Alexandria	U8 10 Bradford Street Alexandria NSW 2015					

Uniaxial Compressive Strength								
Client:	Arup	Sample Source:	BH2-01 3.06-3.23m					
Address:	Level 10, 201 Kent Street, Sydney 2000 Australia	Sample Description:	Sandstone					
Project:	Terrigal Boardwalk (261648)	Report No.:	S33961-UCS					
Job No.:	S18220	Lab No.:	\$33961					
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa					
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-					
Sampling Method:	Sampled by Client	Date Sampled:	23/05/2018					
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition					

Uniaxial Compressive Strength 7.6 MPa									
Date Tested:	5/06/2018	3	Moisture Conter	nt:	7.5	%			
Specimen Height:	133.6	mm	Duration of Test	:	624	seconds			
Average Specimen Dia	ameter: 51.7	mm	Rate of Displace	ment:	< 0.1	mm/min			
Failure Type:	Single shear plane								
Other Pertinent Observations:									
					Authorised Signatory:				
The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025 - Testing. This document shall not be reproduced, except in full.					Jupp				
				•	Jacob Lloyd	_			
NATA Accred	dited Laboratory Numbe	er: 14874		Date:	7/06/2018				
MACQUAR	MACQUARIE								
GEOŢECH					U8 10 Bradf Alexandria M	ord Street NSW 2015			

Uniaxial Compressive Strength								
Client:	Arup	Sample Source:	BH2-02 7.7-7.86m					
Address:	Level 10, 201 Kent Street, Sydney 2000 Australia	Sample Description:	Siltstone					
Project:	ct: Terrigal Boardwalk (261648) Report No.:		S33962-UCS					
Job No.:	S18220	Lab No.:	\$33962					
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa					
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-					
Sampling Method:	Sampled by Client	Date Sampled:	23/05/2018					
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition					

Uniaxial Compressive Strength 7.7 MPa									
Date Tested	:	5/06/201	.8	Moisture Content:		5.6	%		
Specimen He	eight:	126.5	mm	Duration of Test:		621	seconds		
Average Spe	cimen Diameter:	50.2	mm	Rate of Displaceme	nt:	< 0.1	mm/min		
Failure Type	: Mixed mod	le							
Other Pertin Observation	ient s:								
					Aut	horised Signatory:			
NATA	The results of the tests, of in this document are tr Accredited for complian document shall not be rep	calibrations and aceable to Au ce with ISO/II produced, exce	l/or measurements istralian/national sta EC 17025 - Testir pt in full.	included andards. ng. This	C	Inf Q			
						Jacob Lloyd	-		
NA	TA Accredited Labor	atory Numb	oer: 14874	Da	ite:	7/06/2018			
MACO	UARIE		Macquarie G	eotechnical					
GEOŢECH							1.01		

Uniaxial Compressive Strength									
Client:	Arup	Sample Source:	BH3-02 1.75-1.88m						
Address:	Level 10, 201 Kent Street, Sydney 2000 Australia	Sample Description:	Siltstone						
Project:	Project: Terrigal Boardwalk (261648) Report No.:		S33964-UCS						
Job No.:	S18220	Lab No.:	\$33964						
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa						
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-						
Sampling Method:	Sampled by Client	Date Sampled:	23/05/2018						
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition						

Uniaxial C	compressive Strei	ngth 1.9	MPa	
Date Tested:	5/06/2018	Moisture Content:	11.3	%
Specimen Height:	103.5 mm	Duration of Test:	646	seconds
Average Specimen Diameter:	52.6 mm	Rate of Displacement:	< 0.1	mm/min
Failure Type: Mixed mode				
Other Pertinent Observations:				
Deviation from Test specimen Standard:	length to diameter ratio	o falls outside of standard	limitations of 2.5-3.0.	
			Authorised Signatory:	
The results of the tests, calib in this document are tracea Accredited for compliance document shall not be reprod	rations and/or measurements ir able to Australian/national sta with ISO/IEC 17025 - Testin luced, except in full.	ncluded ndards. g. This	Jup Q	
			Jacob Lloyd	-
NATA Accredited Laborato	ry Number: 14874	Date:	7/06/2018	
MACQUARIE			Macquarie G	Geotechnical
GEOŢECH			U8 10 Bradf Alexandria N	ord Street ISW 2015

	Uniaxial Compr	essive Strength	
Client:	Arup	Sample Source:	BH3-04 6.81-7m
Address:	Level 10, 201 Kent Street, Sydney 2000 Australia	Sample Description:	Siltstone
Project:	Terrigal Boardwalk (261648)	Report No.:	S33966-UCS
Job No.:	S18220	Lab No.:	\$33966
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-
Sampling Method:	Sampled by Client	Date Sampled:	23/05/2018
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition

Ur	niaxial Compressive Stre	ngth 9.9	MPa	
Date Tested:	5/06/2018	Moisture Content:	6.6	%
Specimen Height:	131.6 mm	Duration of Test:	606	seconds
Average Specimen Diame	ter: 51.8 mm	Rate of Displacement:	< 0.1	mm/min
Failure Type: Mix	ked mode			
Other Pertinent Observations:				
			Authorised Signatory:	
The results of t in this docume Accredited for document shall	the tests, calibrations and/or measurements i ent are traceable to Australian/national sta compliance with ISO/IEC 17025 - Testir I not be reproduced, except in full.	included andards. ıg. This	Jupl	
			Jacob Lloyd	
NATA Accredite	d Laboratory Number: 14874	Date:	7/06/2018	
MACQUARI	3		Macquarie G	Seotechnical
GEOŢECH			U8 10 Bradfo Alexandria N	ord Street ISW 2015

	Uniaxial Compr	essive Strength	
Client:	Arup	Sample Source:	BH4-01 2.31-2.47m
Address:	Level 10, 201 Kent Street, Sydney 2000 Australia	Sample Description:	Siltstone
Project:	Terrigal Boardwalk (261648)	Report No.:	S33967-UCS
Job No.:	S18220	Lab No.:	S33967
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-
Sampling Method:	Sampled by Client	Date Sampled:	23/05/2018
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition

	Uniaxia	l Compre	essive Stre	ngth 9	.9	MPa		
Date Tested	:	5/06/201	8	Moisture Con	tent:		6.6	%
Specimen He	eight:	131.6	mm	Duration of Te	est:		606	seconds
Average Spe	cimen Diameter:	51.8	mm	Rate of Displa	cement:		< 0.1	mm/min
Failure Type	: Mixed mod	le						
Other Pertin Observation	ent s:							
						Authorised	Signatory:	
NATA	The results of the tests, in this document are to Accredited for compliar document shall not be re	calibrations and aceable to Au ice with ISO/II produced, exce	/or measurements i stralian/national sta EC 17025 - Testir pt in full.	ncluded andards. ng. This		Juy	hQ	
						Jacob	Lloyd	
NA	TA Accredited Labor	atory Numb	er: 14874		Date:	7/06/2	2018	
MACO	UARIE					1	Macquarie (Geotechnical

	Uniaxial Compr	essive Strength	
Client:	Arup	Sample Source:	BH4-03 8-8.17m
Address:	Level 10, 201 Kent Street, Sydney 2000 Australia	Sample Description:	Siltstone
Project:	Terrigal Boardwalk (261648)	Report No.:	S33969-UCS
Job No.:	S18220	Lab No.:	\$33969
Test Procedure:	AS 4133.4.2.2 Determination of uniaxial co	ompressive strength-Rock str	ength less than 50 MPa
Testing Machine:	Matest 2000 kN Compression Machine	Sample Curing:	-
Sampling Method:	Sampled by Client	Date Sampled:	23/05/2018
Storage History:	Core Box	Storage Environment:	Sealed at as received moisture condition

Uniaxia	Compressive Stre	ngth 9.1	MPa	
Date Tested:	5/06/2018	Moisture Content:	5.0	%
Specimen Height:	125.1 mm	Duration of Test:	640	seconds
Average Specimen Diameter:	51.9 mm	Rate of Displacement:	< 0.1	mm/min
Failure Type: Mixed mod	e	•		
Other Pertinent Observations:				
Deviation from Test specin Standard:	nen length to diameter rati	io falls outside of standard	limitations of 2.5-3.0.	
			Authorised Signatory:	
The results of the tests, of in this document are tr Accredited for complian document shall not be rep	alibrations and/or measurements aceable to Australian/national st ce with ISO/IEC 17025 - Testin produced, except in full.	included andards. ng. This	Jupp	
			Jacob Lloyd	_
NATA Accredited Labora	atory Number: 14874	Date:	7/06/2018	
MACQUARIE			Macquarie	Geotechnical
GEOŢECH			U8 10 Brad Alexandria	ford Street NSW 2015

		S	OIL CHE	MICAL PR		TIES F	REPORT	
Client:	Arup				Source:	BH1 - 03 6-	-6.1m	
Address:	Level 10,	201 Kent S	treet, Sydney 200	0 Australia	Sample Description:	Silty CLAY	with sand	
Project:	Terrigal B	oardwalk (2	261648)		Report No:	B48632-SC	CP CP	
Job No:	S18220				Lab No:	B48632 (S	33959)	
Test Proce	edure:	Image: Constraint of the second se	AS1289 4.2.1 AS1289 4.3.1 AS 1289 4.4.1 AS 1012.20 RMS T123 RMS T185 RMS T200 RMS T1010 RMS T1010 RMS T1010 RMS T1011 BS1377(1990 pt.3) APHA 4500 SO4 2-B APHA 4500 CI-B APHA 4500 CI-B APHA 2510 & 2520-E TAI B117 by Client n accordance with 1 Sulphate Sulphate Chloride in Chloride in Chloride in (Resisitivity) (Resisitivity)	Soil Chemical Tests - Determinati Soil Chemical Tests - Determinati Soil Chemical Tests - Determinati Soil Chemical Tests - Determinati Chloride and sulphate pH value of a soil (electrometric m Resistivity of sands and granular m Chloride content of roadbase Quantitative determination of chlo Quantitative determination of sulp Water soluble sulphate content pH Sulphate Chloride B Electrical Conductivity Sulphides Present (This service N he test method ides Present r Peroxide (%) 2 content (ppm) te content (ppm) ion content (%) pH onductivity (uS/cm) Resistivity Ω.m) Density ratio (R _D)) Density index (I _D)	on of a sulfate content of on of the pH value of a s on of the electrical resisti nethod) oad construction materia rides in soil hates in soil ot Covered by NATA Ac	a natural soil and the solution of the solutio	be sulfate content of the ground tethod and for sands and granular mater Date Sampled	tvater - Normal Method
NAT	The doc con exc	e results of the te sument are trace apliance with IS0 ept in full.	ests, calibrations and/or n able to Australian/natior D/IEC 17025. This docur	neasurements included in this al standards. Accredited for nent shall not be reproduced,		Authorised	Signatory:	13/06/2018
	N	ATA Accredi	ted Laboratory Nu	mber: 14874		Brad	Morris	Date:
MAC	QUARI TECH	E	-					Macquarie Geotechnical 3 Watt Drive Bathurst NSW 2795

		S	OIL CHE	MICAL PR	OPER	TIES	REPOR	Т	
Client:	Arup				Source:	BH2 - 01 3	.06-3.23m		
Address:	Level 10,	201 Kent S	treet, Sydney 200	0 Australia	Sample Description:	Sandy GR/	AVEL with silt		
Project:	Terrigal B	oardwalk (2	261648)		Report No:	B48633-S0	CP		
Job No:	S18220				Lab No:	B48633 (S	33961)		
Sampling: Preparatio	edure:	Image: Constraint of the second se	AS1289 4.2.1 AS1289 4.3.1 AS 1289 4.4.1 AS 1012.20 RMS T123 RMS T185 RMS T200 RMS T1010 RMS T1010 RMS T1010 RMS T1011 BS1377(1990 pt.3) APHA 4500 H+B APHA 4500 CI-B APHA 4500 CI-B APHA 4500 CI-B APHA 2510 & 2520-E TAI B117 DY Client n accordance with f Sulphate Sulphate Sulphate Chloride in Chloride in Ch	Soil Chemical Tests - Determinati Soil Chemical Tests - Determinati Soil Chemical Tests - Determinati Chloride and sulphate pH value of a soil (electrometric in Resistivity of sands and granular in Chloride content of roadbase Quanitative determination of chlo Quanitative determination of sulp Water soluble sulphate content pH Sulphate Chloride B Electrical Conductivity Sulphides Present (This service N he test method he test method ides Present r Peroxide (%) content (ppm) te content (%) pH on content (%) pH onductivity (uS/cm) Resistivity Ω.m) Density ratio (R _D)	on of a sulfate content of on of the pH value of a s on of the pH value of a s on of the electrical resisti nethod) cad construction materia rides in soil hates in soil ot Covered by NATA Ac	i a natural soil and ti oil - Electrometric m vity of a soil - Metho ils 	be sulfate content of the grethod both for sands and granular both for sands and granu	roundwater - N material	23/05/2018
NAT	The doc cor exc	e results of the te cument are trace npliance with IS0 rept in full.	ests, calibrations and/or n pable to Australian/nation D/IEC 17025. This docur	neasurements included in this al standards. Accredited for nent shall not be reproduced,		Authorised	Signatory:		13/06/2018
	N	ATA Accredi	ted Laboratory Nu	mber: 14874		Brad	Morris	-	Date:
MAC	QUAR DTECH	E							Macquarie Geotechnical 3 Watt Drive Bathurst NSW 2795

	Arup				Source:	BH3 - 03 2.5-2	.6m	
5.0.0.0					Commis	2.10 00 2.0 2		
Address:	Level 10, 20	01 Kent S	Street, Sydney 200	0 Australia	Sample Description:	Silty CLAY with	n sand	
Project:	Terrigal Boa	ardwalk (2	261648)		Report No:	B48634-SCP		
Job No:	S18220				Lab No:	B48634 (S339	65)	
Test Proce	edure:	1	AS1289 4.2.1	Soil Chemical Tests - Determinat	ion of a sulfate content of	a natural soil and the sulf	ate content of the groundwater -	Normal Method
		4	AS1289 4.3.1	Soil Chemical Tests - Determinat	ion of the pH value of a s	oil - Electrometric method		
			AS 1289 4.4.1	Soil Chemical Tests - Determinat	ion of the electrical resisti	vity of a soil - Method for s	sands and granular material	
			AS 1012.20	Chloride and sulphate				
			RMS T123	pH value of a soil (electrometric r	nethod)			
			RMS T185	Resistivity of sands and granular	road construction materia	ls		
			RMS T200	Chloride content of roadbase				
		√	RMS T1010	Quantitative determination of chlo	rides in soil			
			RMS T1011	Quantitative determination of sulp	hates in soil			
			BS1377(1990 pt.3)	Water soluble sulphate content				
			APHA 4500 H+B	рН				
			APHA 4500 SO4 2-B	Sulphate				
			APHA 4500 CI-B	Chloride				
			APHA 2510 & 2520-E	B Electrical Conductivity				
Sampling			TALB117	Sulphides Present (This service r	lot Covered by NATA Ac	creditation)	Data Sampladi	22/05/2018
Samping. Proparatio		Prenared	in accordance with t	he test method			Date Sampleu.	23/03/2018
l			Sulph					
			Ouipii	ides Present		-		
			Sulphu	ides Present r Peroxide (%)		-		
			Sulphu	ides Present r Peroxide (%) e content (ppm)		- - 16.5		
			Sulphu Sulphu Sulphate	ides Present r Peroxide (%) e content (ppm) te content (%)		- - 16.5 0.00		
			Sulphu Sulphu Sulphate Chloride id	ides Present r Peroxide (%) e content (ppm) te content (%) on content (ppm)		- 16.5 0.00 124.1		
			Sulphu Sulphate Sulphate Chloride id Chloride	ides Present r Peroxide (%) e content (ppm) te content (%) on content (ppm) ion content (%)		- - 16.5 0.00 124.1 0.01 6.9		
			Sulphate Sulphate Sulphate Chloride id Chloride	ides Present r Peroxide (%) e content (ppm) te content (%) on content (ppm) ion content (%) pH onductivity (uS/cm)		- 16.5 0.00 124.1 0.01 6.9		
			Sulphu Sulphate Sulphate Chloride id Chloride Electrical Co Mean F	ides Present r Peroxide (%) e content (ppm) te content (%) on content (ppm) ion content (%) pH onductivity (uS/cm) Resistivity Ω.m		- - 16.5 0.00 124.1 0.01 6.9 - -		
			Sulphate Sulphate Sulphate Chloride id Chloride Electrical Co Mean F (Resisitivity)	ides Present r Peroxide (%) e content (ppm) te content (%) on content (ppm) ion content (%) pH onductivity (uS/cm) Resistivity Ω.m) Density ratio (R _D)		- - 16.5 0.00 124.1 0.01 6.9 - - - -		
			Sulphate Sulphate Sulphate Chloride id Chloride Electrical Co Mean F (Resisitivity) (Resisitivity)	ides Present r Peroxide (%) e content (ppm) te content (%) on content (%) pH onductivity (uS/cm) Resistivity Ω.m) Density ratio (R _D)) Density index (I _D)		- - 16.5 0.00 124.1 0.01 6.9 - - - - -		
	The re docun compl	esults of the trace iance with IS	Sulphate Sulphate Sulphate Chloride in Chloride Electrical Co Mean F (Resisitivity) (Resisitivity) (Resisitivity) of Resisitivity	ides Present r Peroxide (%) e content (ppm) te content (%) on content (ppm) ion content (%) pH onductivity (uS/cm) Resistivity Ω.m) Density ratio (R _D)) Density index (I _D) Heasurements included in this hal standards. Accredited for heast and not be reproduced,		- - 16.5 0.00 124.1 0.01 6.9 - - - - - - - - - - - - -	natory:	
NAT	The re docum excep	esults of the to nent are tracci iance with IS t in full.	Sulphate Sulphate Sulphate Chloride id Chloride Electrical Co Mean F (Resisitivity) (Resisitivity) (Resisitivity)	ides Present r Peroxide (%) e content (ppm) te content (%) on content (ppm) ion content (%) pH onductivity (uS/cm) Resistivity Ω.m Density ratio (R _D) Density index (I _D) Density index (I _D)		- 16.5 0.00 124.1 0.01 6.9 - - - - - - - - - - - - -	natory:	13/06/2018
NAT	The re docun compl excep NAT	esults of the transition of transition of the transition of	Sulphate Sulphate Sulphate Chloride id Chloride Electrical Co Mean F (Resisitivity) (Resisitivity) (Resisitivity) ited Laboratory Nu	ides Present r Peroxide (%) e content (ppm) te content (%) pn content (ppm) ion content (%) pH onductivity (uS/cm) Resistivity Ω.m) Density ratio (R _D)) Density index (I _D)			natory:	13/06/2018 Date:

Client:	Arup				Source:	BH4 - 02 6-6.	lm	
••	- 1				Sampla			
Address:	Level 10, 2	201 Kent S	Street, Sydney 200	0 Australia	Description:	Silty CLAY wit	h sand	
Project:	Terrigal Bo	ardwalk (2	261648)		Report No:	B48635-SCP		
Job No:	S18220				Lab No:	B48635 (S339	968)	
Test Proce	edure:	✓	AS1289 4.2.1	Soil Chemical Tests - Determinat	ion of a sulfate content of	a natural soil and the su	fate content of the groundwater -	Normal Method
		✓	AS1289 4.3.1	Soil Chemical Tests - Determinat	ion of the pH value of a s	oil - Electrometric metho	3	
			AS 1289 4.4.1	Soil Chemical Tests - Determinat	ion of the electrical resisti	vity of a soil - Method for	sands and granular material	
			AS 1012.20	Chioride and sulphate	4(4)			
			RMS T123	pH value of a soil (electrometric r	nethod)	le.		
			RMS T185	Resistivity of sands and granular	road construction materia	IS		
			RMS T200	Chloride content of roadbase	sisten in and			
			RMS T1010	Quantitative determination of chic	indes in soil			
			RMS T1011	Quantitative determination of sup	nates in soil			
			BS1377(1990 pt.3)	Water soluble sulphate content				
			APHA 4500 H+B	рн				
			APHA 4500 SO4 2-B	Sulphate				
			APHA 4500 CI-B	Chloride				
			APHA 2510 & 2520-E	Electrical Conductivity		19. cf - X		
Sampling		Somplod k	TALB117	Sulphides Present (This service r	lot Covered by NATA Ac	creditation)	Data Sampladi	22/05/2018
Pronaratio	n.	Prenared	in accordance with t	he test method			Date Sampled.	23/03/2010
			Sulph	ides Present				
			Sulph Sulphu	ides Present Peroxide (%)		-		
			Sulph Sulphu Sulphate	ides Present Peroxide (%) e content (ppm)		- - 14.4		
			Sulph Sulphur Sulphate Sulphate	ides Present Peroxide (%) e content (ppm) te content (%)		- - 14.4 0.00		
			Sulph Sulphur Sulphate Sulphate Chloride id	ides Present Peroxide (%) e content (ppm) te content (%) on content (ppm)		- 14.4 0.00 195.0		
			Sulph Sulphu Sulphate Sulpha Chloride id Chloride	ides Present Peroxide (%) e content (ppm) te content (%) on content (ppm) ion content (%)		- 14.4 0.00 195.0 0.02		
			Sulph Sulphu Sulphate Sulphate Chloride id Chloride	ides Present Peroxide (%) e content (ppm) te content (%) on content (ppm) ion content (%) pH pductivity (uS(cm))		- 14.4 0.00 195.0 0.02 6.7		
			Sulphu Sulphate Sulphate Chloride id Chloride Electrical Co Mean F	ides Present Peroxide (%) e content (ppm) te content (%) on content (ppm) ion content (%) pH onductivity (uS/cm) Resistivity Q m		- 14.4 0.00 195.0 0.02 6.7 -		
			Sulph Sulphate Sulphate Chloride in Chloride Electrical Co Mean F (Resisitivity	ides Present Peroxide (%) content (ppm) te content (%) on content (ppm) ion content (%) pH onductivity (uS/cm) Resistivity Ω.m Density ratio (R _p)		- 14.4 0.00 195.0 0.02 6.7 - -		
			Sulphu Sulphate Sulphate Chloride id Chloride Electrical Co Mean F (Resisitivity) (Resisitivity)	ides Present Peroxide (%) e content (ppm) te content (%) pn content (ppm) ion content (%) pH ph conductivity (uS/cm) Resistivity Ω.m pensity ratio (R _D) pensity index (I _D)		- 14.4 0.00 195.0 0.02 6.7 - - - -		
NAT		results of the to ment are trace pliance with IS pi in full.	Sulph Sulphate Sulphate Sulphate Chloride id Chloride Electrical Co Mean F (Resisitivity) (Resisitivity) (Resisitivity)	ides Present Peroxide (%) content (ppm) te content (%) ph on content (ppm) ion content (%) pH onductivity (uS/cm) Resistivity Ω.m Density ratio (R _D) Density index (I _D)		- - 14.4 0.00 195.0 0.02 6.7 - - - - - - - - - - - - -	gnatory:	13/06/2018
NAT	The idocution of the id	results of the to ment are trace bilance with IS pt in full.	Sulphate Sulphate Sulphate Sulphate Chloride id Chloride Electrical Cd Mean F (Resisitivity) (Resisitivity) (Resisitivity)	ides Present Peroxide (%) content (ppm) te content (%) ph on content (ppm) ion content (%) pH onductivity (uS/cm) Resistivity Ω.m Density ratio (R _D) Density index (I _D) Density index (I _D)		- - 14.4 0.00 195.0 0.02 6.7 - - - - - - - - - - - - -	gnatory:	13/06/2018
NAT	The i docu comp excel NA*	results of the tr ment are trace blance with IS pt in full. TA Accred	Sulph Sulphate Sulphate Sulphate Chloride id Chloride Electrical Co Mean F (Resisitivity) (Resisitivity) (Resisitivity) (Resisitivity) ited Laboratory Nu	ides Present Peroxide (%) content (ppm) te content (%) pH pH pnductivity (uS/cm) Resistivity Ω.m Density ratio (R _D) Density index (I _D) Density index (I _D)		- 14.4 0.00 195.0 0.02 6.7 - - - - - - - - Brad Mo	gnatory:	13/06/2018 Date:

Client:	Arup				Source:	BH4 - 03 8-8.17	7m	
onent.	, "up				Ocurce.			
Address:	Level 10, 2	:01 Kent S	treet, Sydney 200	0 Australia	Sample Description:	Sandy GRAVE	L with silt	
Project:	Terrigal Bo	ardwalk (2	261648)		Report No:	B48636-SCP		
Job No:	S18220				Lab No:	B48636 (S3396	69)	
Test Proce	edure:	1	AS1289 4.2.1	Soil Chemical Tests - Determinat	ion of a sulfate content of	f a natural soil and the sulfa	te content of the groundwater -	Normal Method
		 ✓ 	AS1289 4.3.1	Soil Chemical Tests - Determinat	ion of the pH value of a s	oil - Electrometric method		
			AS 1289 4.4.1	Soil Chemical Tests - Determinat	ion of the electrical resisti	ivity of a soil - Method for si	ands and granular material	
			AS 1012.20	Chloride and sulphate				
			RMS 1123	pH value of a soil (electrometric r	nethod)			
			RMS T185	Resistivity of sands and granular	road construction materia	ils		
			RMS T200	Chloride content of roadbase				
		✓	RMS T1010	Quantitative determination of chlo	orides in soil			
			RMS T1011	Quantitative determination of sulp	hates in soil			
			BS1377(1990 pt.3)	Water soluble sulphate content				
			APHA 4500 H+B	рН				
			APHA 4500 SO4 2-B	Sulphate				
			APHA 4500 CI-B	Chloride				
			APHA 2510 & 2520-B	Electrical Conductivity				
Compliner			TAI B117	Sulphides Present (This service N	lot Covered by NATA Ac	creditation)	Data Camulada	00/05/0040
Sampling:		Sampled b	by Client	the test method			Date Sampled:	23/05/2018
			Sulph	ides Present	1			
			Sulphu					
			Supriu	r Peroxide (%)		-		
			Sulphate	r Peroxide (%) econtent (ppm)		- 10.3		
			Sulphate	r Peroxide (%) e content (ppm) te content (%)		- 10.3 0.00		
			Sulphate Sulphate Chloride id	r Peroxide (%) content (ppm) te content (%) on content (ppm)		- 10.3 0.00 31.0		
			Sulphate Sulphate Chloride id Chloride	r Peroxide (%) e content (ppm) te content (%) on content (ppm) ion content (%)		- 10.3 0.00 31.0 0.00		
			Sulphate Sulphate Chloride id Chloride	r Peroxide (%) e content (ppm) te content (%) on content (ppm) ion content (%) pH anductivity (uS(cm))		- 10.3 0.00 31.0 0.00 6.9		
			Sulphate Sulphate Chloride id Chloride Electrical Co	r Peroxide (%) e content (ppm) te content (%) on content (ppm) ion content (%) pH onductivity (uS/cm) esistivity Q m		- 10.3 0.00 31.0 0.00 6.9 -		
			Sulphate Sulphate Chloride id Chloride Electrical Co Mean F (Resisitivity)	r Peroxide (%) a content (ppm) te content (%) on content (ppm) ion content (%) pH pnductivity (uS/cm) tesistivity Ω.m b Density ratio (R _p)		- 10.3 0.00 31.0 0.00 6.9 - -		
			Sulphate Sulphate Chloride id Chloride Electrical Co Mean F (Resisitivity) (Resisitivity)	r Peroxide (%) e content (ppm) te content (%) on content (ppm) ion content (%) pH onductivity (uS/cm) Resistivity Ω.m) Density ratio (R _D)) Density index (I _D)		- 10.3 0.00 31.0 0.00 6.9 - - - - -		
	The r docu comp excer	results of the te ment are trace viance with ISI	Sulphate Sulphate Sulphate Chloride in Chloride Electrical Co Mean R (Resisitivity) (Resisitivity) (Resisitivity)	r Peroxide (%) e content (ppm) te content (ppm) ion content (ppm) ion content (%) pH conductivity (uS/cm) Resistivity Ω.m) Density ratio (R _D)) Density index (I _D)		- 10.3 0.00 31.0 0.00 6.9	natory:	13/06/2018
NAT	The r docur comp excep	esults of the te ment are trace Jiance with ISI ot in full.	Sulphate Sulphate Sulphate Chloride i Chloride Electrical Co Mean F (Resisitivity) (Resisitivity) (Resisitivity) sts, calibrations and/or m able to Australian/nation O/IEC 17025. This docum	r Peroxide (%) e content (ppm) te content (ppm) ion content (ppm) ion content (%) pH onductivity (uS/cm) Resistivity Ω.m) Density ratio (R _D)) Density ratio (R _D)) Density index (I _D)		- 10.3 0.00 31.0 0.00 6.9	natory:	13/06/2018
NAT	The r docu comp excep NA	results of the te ment are trace iliance with ISo ot in full. TA Accredi	Sulphate Sulphate Sulphate Chloride id Chloride Electrical Co Mean F (Resisitivity) (Resisitivity) (Resisitivity) ests, calibrations and/or m able to Australian/nation O/IEC 17025. This docum	r Peroxide (%) e content (ppm) te content (ppm) ion content (ppm) ion content (%) pH onductivity (uS/cm) Resistivity Ω.m) Density ratio (R _D)) Density index (I _D)) Density index (I _D)		- 10.3 0.00 31.0 0.00 6.9 Brad More	natory:	13/06/2018 Date: